|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectmath.jtransforms.fft.DoubleFFT_3D
public class DoubleFFT_3D
Computes 3D Discrete Fourier Transform (DFT) of complex and real, double
precision data. The sizes of all three dimensions can be arbitrary numbers.
This is a parallel implementation of split-radix and mixed-radix algorithms
optimized for SMP systems.
Part of the code is derived from General Purpose FFT Package written by Takuya Ooura
(http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html)
| Constructor Summary | |
|---|---|
DoubleFFT_3D(int slices,
int rows,
int columns)
Creates new instance of DoubleFFT_3D. |
|
| Method Summary | |
|---|---|
void |
complexForward(double[] a)
Computes 3D forward DFT of complex data leaving the result in a. |
void |
complexForward(double[][][] a)
Computes 3D forward DFT of complex data leaving the result in a. |
void |
complexInverse(double[][][] a,
boolean scale)
Computes 3D inverse DFT of complex data leaving the result in a. |
void |
complexInverse(double[] a,
boolean scale)
Computes 3D inverse DFT of complex data leaving the result in a. |
void |
realForward(double[] a)
Computes 3D forward DFT of real data leaving the result in a
. |
void |
realForward(double[][][] a)
Computes 3D forward DFT of real data leaving the result in a
. |
void |
realForwardFull(double[] a)
Computes 3D forward DFT of real data leaving the result in a
. |
void |
realForwardFull(double[][][] a)
Computes 3D forward DFT of real data leaving the result in a
. |
void |
realInverse(double[][][] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in a
. |
void |
realInverse(double[] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in a
. |
void |
realInverseFull(double[][][] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in a
. |
void |
realInverseFull(double[] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in a
. |
| Methods inherited from class java.lang.Object |
|---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public DoubleFFT_3D(int slices,
int rows,
int columns)
slices - number of slicesrows - number of rowscolumns - number of columns| Method Detail |
|---|
public void complexForward(double[] a)
a. The data is stored in 1D array addressed in slice-major,
then row-major, then column-major, in order of significance, i.e. element
(i,j,k) of 3D array x[slices][rows][2*columns] is stored in a[i*sliceStride +
j*rowStride + k], where sliceStride = rows * 2 * columns and rowStride = 2 * columns.
Complex number is stored as two double values in sequence: the real and
imaginary part, i.e. the input array must be of size slices*rows*2*columns. The
physical layout of the input data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a - data to transformpublic void complexForward(double[][][] a)
a. The data is stored in 3D array. Complex data is
represented by 2 double values in sequence: the real and imaginary part,
i.e. the input array must be of size slices by rows by 2*columns. The physical
layout of the input data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a - data to transform
public void complexInverse(double[] a,
boolean scale)
a. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 * columns and
rowStride = 2 * columns. Complex number is stored as two double values in
sequence: the real and imaginary part, i.e. the input array must be of
size slices*rows*2*columns. The physical layout of the input data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a - data to transformscale - if true then scaling is performed
public void complexInverse(double[][][] a,
boolean scale)
a. The data is stored in a 3D array. Complex data is
represented by 2 double values in sequence: the real and imaginary part,
i.e. the input array must be of size slices by rows by 2*columns. The physical
layout of the input data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a - data to transformscale - if true then scaling is performedpublic void realForward(double[] a)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 * columns and
rowStride = 2 * columns. The physical layout of the output data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3]
= Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3],
a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3]
= -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3],
0<=k1<slices, 0<=k2<rows, 0<k3<columns/2,
a[k1*sliceStride + k2*rowStride] = Re[k1][k2][0]
= Re[(slices-k1)%slices][rows-k2][0],
a[k1*sliceStride + k2*rowStride + 1] = Im[k1][k2][0]
= -Im[(slices-k1)%slices][rows-k2][0],
a[k1*sliceStride + (rows-k2)*rowStride + 1] = Re[(slices-k1)%slices][k2][columns/2]
= Re[k1][rows-k2][columns/2],
a[k1*sliceStride + (rows-k2)*rowStride] = -Im[(slices-k1)%slices][k2][columns/2]
= Im[k1][rows-k2][columns/2],
0<=k1<slices, 0<k2<rows/2,
a[k1*sliceStride] = Re[k1][0][0]
= Re[slices-k1][0][0],
a[k1*sliceStride + 1] = Im[k1][0][0]
= -Im[slices-k1][0][0],
a[k1*sliceStride + (rows/2)*rowStride] = Re[k1][rows/2][0]
= Re[slices-k1][rows/2][0],
a[k1*sliceStride + (rows/2)*rowStride + 1] = Im[k1][rows/2][0]
= -Im[slices-k1][rows/2][0],
a[(slices-k1)*sliceStride + 1] = Re[k1][0][columns/2]
= Re[slices-k1][0][columns/2],
a[(slices-k1)*sliceStride] = -Im[k1][0][columns/2]
= Im[slices-k1][0][columns/2],
a[(slices-k1)*sliceStride + (rows/2)*rowStride + 1] = Re[k1][rows/2][columns/2]
= Re[slices-k1][rows/2][columns/2],
a[(slices-k1)*sliceStride + (rows/2) * rowStride] = -Im[k1][rows/2][columns/2]
= Im[slices-k1][rows/2][columns/2],
0<k1<slices/2,
a[0] = Re[0][0][0],
a[1] = Re[0][0][columns/2],
a[(rows/2)*rowStride] = Re[0][rows/2][0],
a[(rows/2)*rowStride + 1] = Re[0][rows/2][columns/2],
a[(slices/2)*sliceStride] = Re[slices/2][0][0],
a[(slices/2)*sliceStride + 1] = Re[slices/2][0][columns/2],
a[(slices/2)*sliceStride + (rows/2)*rowStride] = Re[slices/2][rows/2][0],
a[(slices/2)*sliceStride + (rows/2)*rowStride + 1] = Re[slices/2][rows/2][columns/2]
This method computes only half of the elements of the real transform. The
other half satisfies the symmetry condition. If you want the full real
forward transform, use realForwardFull. To get back the
original data, use realInverse on the output of this method.
a - data to transformpublic void realForward(double[][][] a)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 3D array. The physical
layout of the output data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3]
= Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3],
a[k1][k2][2*k3+1] = Im[k1][k2][k3]
= -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3],
0<=k1<slices, 0<=k2<rows, 0<k3<columns/2,
a[k1][k2][0] = Re[k1][k2][0]
= Re[(slices-k1)%slices][rows-k2][0],
a[k1][k2][1] = Im[k1][k2][0]
= -Im[(slices-k1)%slices][rows-k2][0],
a[k1][rows-k2][1] = Re[(slices-k1)%slices][k2][columns/2]
= Re[k1][rows-k2][columns/2],
a[k1][rows-k2][0] = -Im[(slices-k1)%slices][k2][columns/2]
= Im[k1][rows-k2][columns/2],
0<=k1<slices, 0<k2<rows/2,
a[k1][0][0] = Re[k1][0][0]
= Re[slices-k1][0][0],
a[k1][0][1] = Im[k1][0][0]
= -Im[slices-k1][0][0],
a[k1][rows/2][0] = Re[k1][rows/2][0]
= Re[slices-k1][rows/2][0],
a[k1][rows/2][1] = Im[k1][rows/2][0]
= -Im[slices-k1][rows/2][0],
a[slices-k1][0][1] = Re[k1][0][columns/2]
= Re[slices-k1][0][columns/2],
a[slices-k1][0][0] = -Im[k1][0][columns/2]
= Im[slices-k1][0][columns/2],
a[slices-k1][rows/2][1] = Re[k1][rows/2][columns/2]
= Re[slices-k1][rows/2][columns/2],
a[slices-k1][rows/2][0] = -Im[k1][rows/2][columns/2]
= Im[slices-k1][rows/2][columns/2],
0<k1<slices/2,
a[0][0][0] = Re[0][0][0],
a[0][0][1] = Re[0][0][columns/2],
a[0][rows/2][0] = Re[0][rows/2][0],
a[0][rows/2][1] = Re[0][rows/2][columns/2],
a[slices/2][0][0] = Re[slices/2][0][0],
a[slices/2][0][1] = Re[slices/2][0][columns/2],
a[slices/2][rows/2][0] = Re[slices/2][rows/2][0],
a[slices/2][rows/2][1] = Re[slices/2][rows/2][columns/2]
This method computes only half of the elements of the real transform. The
other half satisfies the symmetry condition. If you want the full real
forward transform, use realForwardFull. To get back the
original data, use realInverse on the output of this method.
a - data to transformpublic void realForwardFull(double[] a)
a
. This method computes full real forward transform, i.e. you will get the
same result as from complexForward called with all imaginary
part equal 0. Because the result is stored in a, the input
array must be of size slices*rows*2*columns, with only the first slices*rows*columns elements
filled with real data. To get back the original data, use
complexInverse on the output of this method.
a - data to transformpublic void realForwardFull(double[][][] a)
a
. This method computes full real forward transform, i.e. you will get the
same result as from complexForward called with all imaginary
part equal 0. Because the result is stored in a, the input
array must be of size slices by rows by 2*columns, with only the first slices by rows by
columns elements filled with real data. To get back the original data, use
complexInverse on the output of this method.
a - data to transform
public void realInverse(double[] a,
boolean scale)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 * columns and
rowStride = 2 * columns. The physical layout of the input data has to be as
follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3]
= Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3],
a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3]
= -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3],
0<=k1<slices, 0<=k2<rows, 0<k3<columns/2,
a[k1*sliceStride + k2*rowStride] = Re[k1][k2][0]
= Re[(slices-k1)%slices][rows-k2][0],
a[k1*sliceStride + k2*rowStride + 1] = Im[k1][k2][0]
= -Im[(slices-k1)%slices][rows-k2][0],
a[k1*sliceStride + (rows-k2)*rowStride + 1] = Re[(slices-k1)%slices][k2][columns/2]
= Re[k1][rows-k2][columns/2],
a[k1*sliceStride + (rows-k2)*rowStride] = -Im[(slices-k1)%slices][k2][columns/2]
= Im[k1][rows-k2][columns/2],
0<=k1<slices, 0<k2<rows/2,
a[k1*sliceStride] = Re[k1][0][0]
= Re[slices-k1][0][0],
a[k1*sliceStride + 1] = Im[k1][0][0]
= -Im[slices-k1][0][0],
a[k1*sliceStride + (rows/2)*rowStride] = Re[k1][rows/2][0]
= Re[slices-k1][rows/2][0],
a[k1*sliceStride + (rows/2)*rowStride + 1] = Im[k1][rows/2][0]
= -Im[slices-k1][rows/2][0],
a[(slices-k1)*sliceStride + 1] = Re[k1][0][columns/2]
= Re[slices-k1][0][columns/2],
a[(slices-k1)*sliceStride] = -Im[k1][0][columns/2]
= Im[slices-k1][0][columns/2],
a[(slices-k1)*sliceStride + (rows/2)*rowStride + 1] = Re[k1][rows/2][columns/2]
= Re[slices-k1][rows/2][columns/2],
a[(slices-k1)*sliceStride + (rows/2) * rowStride] = -Im[k1][rows/2][columns/2]
= Im[slices-k1][rows/2][columns/2],
0<k1<slices/2,
a[0] = Re[0][0][0],
a[1] = Re[0][0][columns/2],
a[(rows/2)*rowStride] = Re[0][rows/2][0],
a[(rows/2)*rowStride + 1] = Re[0][rows/2][columns/2],
a[(slices/2)*sliceStride] = Re[slices/2][0][0],
a[(slices/2)*sliceStride + 1] = Re[slices/2][0][columns/2],
a[(slices/2)*sliceStride + (rows/2)*rowStride] = Re[slices/2][rows/2][0],
a[(slices/2)*sliceStride + (rows/2)*rowStride + 1] = Re[slices/2][rows/2][columns/2]
This method computes only half of the elements of the real transform. The
other half satisfies the symmetry condition. If you want the full real
inverse transform, use realInverseFull.
a - data to transformscale - if true then scaling is performed
public void realInverse(double[][][] a,
boolean scale)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 3D array. The physical
layout of the input data has to be as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3]
= Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3],
a[k1][k2][2*k3+1] = Im[k1][k2][k3]
= -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3],
0<=k1<slices, 0<=k2<rows, 0<k3<columns/2,
a[k1][k2][0] = Re[k1][k2][0]
= Re[(slices-k1)%slices][rows-k2][0],
a[k1][k2][1] = Im[k1][k2][0]
= -Im[(slices-k1)%slices][rows-k2][0],
a[k1][rows-k2][1] = Re[(slices-k1)%slices][k2][columns/2]
= Re[k1][rows-k2][columns/2],
a[k1][rows-k2][0] = -Im[(slices-k1)%slices][k2][columns/2]
= Im[k1][rows-k2][columns/2],
0<=k1<slices, 0<k2<rows/2,
a[k1][0][0] = Re[k1][0][0]
= Re[slices-k1][0][0],
a[k1][0][1] = Im[k1][0][0]
= -Im[slices-k1][0][0],
a[k1][rows/2][0] = Re[k1][rows/2][0]
= Re[slices-k1][rows/2][0],
a[k1][rows/2][1] = Im[k1][rows/2][0]
= -Im[slices-k1][rows/2][0],
a[slices-k1][0][1] = Re[k1][0][columns/2]
= Re[slices-k1][0][columns/2],
a[slices-k1][0][0] = -Im[k1][0][columns/2]
= Im[slices-k1][0][columns/2],
a[slices-k1][rows/2][1] = Re[k1][rows/2][columns/2]
= Re[slices-k1][rows/2][columns/2],
a[slices-k1][rows/2][0] = -Im[k1][rows/2][columns/2]
= Im[slices-k1][rows/2][columns/2],
0<k1<slices/2,
a[0][0][0] = Re[0][0][0],
a[0][0][1] = Re[0][0][columns/2],
a[0][rows/2][0] = Re[0][rows/2][0],
a[0][rows/2][1] = Re[0][rows/2][columns/2],
a[slices/2][0][0] = Re[slices/2][0][0],
a[slices/2][0][1] = Re[slices/2][0][columns/2],
a[slices/2][rows/2][0] = Re[slices/2][rows/2][0],
a[slices/2][rows/2][1] = Re[slices/2][rows/2][columns/2]
This method computes only half of the elements of the real transform. The
other half satisfies the symmetry condition. If you want the full real
inverse transform, use realInverseFull.
a - data to transformscale - if true then scaling is performed
public void realInverseFull(double[] a,
boolean scale)
a
. This method computes full real inverse transform, i.e. you will get the
same result as from complexInverse called with all imaginary
part equal 0. Because the result is stored in a, the input
array must be of size slices*rows*2*columns, with only the first slices*rows*columns elements
filled with real data.
a - data to transformscale - if true then scaling is performed
public void realInverseFull(double[][][] a,
boolean scale)
a
. This method computes full real inverse transform, i.e. you will get the
same result as from complexInverse called with all imaginary
part equal 0. Because the result is stored in a, the input
array must be of size slices by rows by 2*columns, with only the first slices by rows by
columns elements filled with real data.
a - data to transformscale - if true then scaling is performed
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||