Reference Manual
For
The MRE Graphics Interface

By Mark L. James and Doug Lyon
Last Update: 5/28/86

Jet Propulsion Laboratory
California Institute of Technology

About This Manual

This manual describes the MRE-Graphics system. You can use it now to learn the
basic operation of the MRE-Graphics system and use it later as a reference
manual. This manual tells you how to:

¢ Load the MRE-Graphics system.

s Initialize the MRE-Graphics system.

Create MRE-Graphics screens.

*

Run MRE-Graphics demonstrations.

Use the MRE-Graphics package in user applications.

Introduction

The MRE (Multiple Reasoning Engine) graphics application package is intended for
programmers interested in drawing interactive graphics with an emphasis on the
drawing and placement of graphs. The reasoning engine programmer is likely to
find the MRE-Graphics package useful for displaying inference chains to aid in
degbugging production rules.

Contents
Loading the MRE-Graphics-system
Package Naming Convention
Initializing The MRE-Graphics System
Trying Some Example Functions
Executive MRE-Graphics Cookbook
Windows
Important User Interface Functions
Important User Interface Messages To Graphic Space Instances
More Functions
The Calculation-Mixin Flavor
The Connection Flavor
The Drawing-Mixin Flavor
The Dynamic-Placement-Mixin Flavor
The Graphics-Space Flavor
The Intersection-Grid-Mixin Flavor
The Kinetic-Mixin Flavor
The Node-Mixin Flavor
The String Flavor
The Transformable-Graphics-Object-Mixin Flavor
Creating Your Own Node Shapes

Glossary

Loading the MRE-Graphics system

To load the MRE-Graphics system the user types:
(load "sun:>lyon>graphics>makesys.lisp”)
(make-system ‘graphics :silent :noconfirm :nowarn)

Loading the Color system
Prerequisite: The Color System

To load the color system type:
(make-system ’color :nowarn :noconfirm,)

Package Naming Convention

The package name of the MRE-Graphics system is MRE-Graphics:. The
MRE-Graphics system is nicknamed MRE-G: and the shorter nickname will appear
in front of all non-exported symbols.

Initializing The MRE-Graphics System
Prerequisite: Loading the MRE-Graphics-system.

Initializing the MRE-Graphics-system will mean different things to different
people. In order to bring up a black and white graphics-window which contains a
graphics-pane and a type-in-pane on the standard lisp machine console type:
(MRE-G:graphics)

If you want the color system (and it has been loaded) type:

(MRE-G:graphics t)

Instead. This will perform a process-run-function and return immediately, the user
will notice increased run bar activity. When the function is finished initializing the
black and white graphics window the user will see a bordered-constraint-frame
window with two panes.

The MRE-G.graphics function is called only once at the beginning of a user’s
session and sets up the default window. It allows the user to type:

<select>-g

To return to the graphics-window after selecting some other window. The first
time (MRE-G:graphics) is typed the default graphics window is selected for the
user automatically. Now the user is ready to try some example functions.

Making Your Own Function For Initializing The Graphics System

The experienced user may wish to run the graphics system without going through
the standard procedures as described above. Reasons for this may include the
setting up of a custom graphics pane, multiple graphics spaces, special mouse
sensitivity, ete. Typically what initializing the graphics system will do is set a
global variable called MRE-G:Graphics-Frame before default functions like

MRE-G:Create-My-Window and the examples will work. If the user does not want
to set the MRE-G:Graphics-Frame then the default for the :Map-To-Window on the
MRE-G:Create-Graphics-Space function will not work and the user will have to
provide a :Map-To-Window.

Trying Some Example Functions
Prerequisite: Initializing The MRE-Graphics-system.

A type in pane labeled New Age Type In Window Concepts appears at the bordered
constraint frame bottom. To run the following example type into the type in pane:

(MRE-G:graph 2)

This will invoke the following code:

(defun graph (n &key (color? nil)
(connections :random)
(node-shape ’circle))
;7 'rectangle is also possible.
(let (my-window g rp cp)
(setq levels n)
(setq my-window (create-my-window color?))
(if g-space (send g-space :kill-mouse-process))
(setq g-space (create-graphics-space ’g-space :map-to-window my-window))
(send g-space :clear)
(send g-space :focus-on-active-object :switch :off)
(setq cp (make-object-desc node-shape))
(setq mother (send g-space :create-object cp :x-coord 500 :y-coord 100 :string "mother"))
(btree g-space cp mother 1 connections)
(send g-space :default-menu)
(send g-space :start-mouse-process)))

Explaining The Example

(MRE-G:graph n &key (color? nil)
(connections :random)
(node-shape ’circle)) Function

¢ n is an integer used to indicate the number of levels in the graph to be
generated.

» color?
When non-nil color? will cause the output of the MRE-Graphics system to
appear on the Color System. Prerequisite: Initializing The Color System.

* connections may have the value

° :random
This will cause nodes to be connected randomly with the restrictions that
every node is connected at least once, is never connected to the same node
twice and is never connected to itself.

° :complete
If this is used then the graph of n nodes is drawn such that the nodes are
completely connected.

:node-shape <Type>
Type may be "MRE-G:Circle or "MRE-G:Rectangle.

My-window is the graphics-space window created by default function
MRE-G:create-my-window.

*

Cp is a description of a circle.

* G-space is a global variable. See :kill-mouse-process method of graphics-space
flavor for more information.

The Tree Example

To run the tree example type:

(MRE-G:tree 2)

This will draw a widely spaced tree. To obtain a more dense tree mouse-right on
the mother and select the "Squish Down" option from the menu.

The Textured-Tree Example

To create a tree identical with the tree in the last section but with textured
connections type:

(MRE-G:textured-tree 2)

The user is invited to examine the code of these last two examples to notice that
the only difference is the use of the :texture and :width keys when the objects are
connected. See the :Connect-Objects method in the Important User Interface
Messages To Graphics Space Instances section of this manual.

The Multi-Growth-Tree Example

Here is a tree which uses placement by numerical methods. A node is moved
through a user specified angle at an ever increasing radius until a free space is
found. This is very CPU bound but can result in good placement density. To run
this example the user types:

(MRE-G:Multi-Growth-Tree 2)

See the Important User Interface Messages To Graphics Space Instances section for
more information about the level option.

Executive MRE-Graphics Cookbook
Prerequisite: Initializing The MRE-Graphics-system.

Described here is a step by step description of how to create and connect two
objects using the MRE-Graphies package.

What To Do
1. (Setq W (MRE-G:Create-My-Window))

Use (Setq W (MRE-G:Create-My-Window t))

If you want and have loaded color.

2. (Setq G (MRE-G:Create-Graphics-Space 'Gspa :Map-To-Window W))
3. (Setq Od (MRE-G:Make-Object-Desc "Mre-G:Rectangle))
4. (Setq OI (Send MRE-G:G :create-object od :string "Node #1"))
5. (Send O1 :Move 500 400)
6. (Setq 02 (Send MRE-G:G :Create-Object Od :String "Node #2"))
7. (Send G :Connect-Objects O1 02)
What It Means To Do It

1. This sets W to an instance of a graphics pane. This is the top pane in the
bordered-constraint-pane labeled "New Age Graphics Space Concepts".

2. This sets G to an instance of a graphics space. The instance name is
arbitrarily named ‘gspa.

3. This sets Od to an instance of an object description of *MRE-G:Rectangle type.

4. This sets OI to an instance of a graphics space object labeled "Node #1" and
draws this object on the window called W.

Recovering From Bad Errors
Prerequisite: Initializing The MRE-Graphics-system.

Occasionally the user will find it neccessary to reset the graphics-window and
regenerate the bordered constraint frame. To do this the user types:
MRE-G:reset &optional

(color? nil)

(graphics-pane-name ""graphics pane’’) Function
create a new bordered constraint frame black and white window or a new color
window and bind this window instance to the global variable called Graphics-Frame.

For more about window see the following section.

Windows

The window flavor descriptions are intended to support the example programs and
serve as a basis for the users own custom window flavors. It is the stated
intention of the design of the MRE-Graphics package not to assume the window
needs of the user. However, the user is cautioned to mixin the
MRE-G:Users-Graphics-Window-Mixin because of certian assumed windowing
cababilities.

¢ bordered-window has tv:bordered-constraint-frame and tv:window mixed-in. There
are usually at least 2 panes in a bordered window, a graphics pane and a type
in pane.

» graphics-pane has users-graphics-window-mixin, draw-grayed-in-areas-mixin,
tv:centered-label-mixin, tv:borders-mixin, tv:top-box-label-mixin and
tv:pane-mixin,

¢ users-graphics-window-mixin has tv:basic-mouse-sensitive-items, tv:stream-mixin
and tv:window mixed in.

» lisp-type-in has tv:centered-label-mixin, tv:truncating-window,
tviwindow-with-typeout-mixin, tv:borders-mixin, tv:text-scroll-window,
tv:stream-mixin, tv:window, MRE-G:scrolling-mixin and tv:pane-mixin.
With the MRE-G:scrolling-mixin the lisp-type-in pane will accept a
<function>-scroll and do smooth scrolling.

Important User Interface Functions

The following functions are vital in most user applications and have been
designated the offical method for user interface with the MRE-Graphics system.

L

MRE-G:Create-Graphics-Space Name &Key

(Map-to-window (create-my-window))

(default-font fonts:cptfont)) Function
¢ Creates and returns a Graphic-Space instance.

o Name is the name of the graphics space.

.

The following keyword options are possible:

° :Map-To-Window <Window-Instance>
Specifies that the graphics space is to be displayed on the window
Window-Instance.

° default-font
Here the font may be any font loaded into the system.

MRE-G:Make-Object-Desc Type &key

(height 20)

(width 20)

(string nil)

(font fonts:cptfont) Function
Returns a datatype that is an instantiated version of a generic object, i.e. its
length, width, etc. have been defined.
Type can be from any of the following:

° ’MRE-G:Rectangle

° "MRE-G:Circle

° MRE-G:Fabricated-Object

Look under the Flavors section to find out the methods and instance variables
for each one. The object here is to make a template object description for the

graphics space instance to copy. This allows the user to define the defaults
since all settable variables will be copied from the objects description instance.

Important User Interface Messages To Graphic Space Instances

The following messages are vital in most user applications and have been
designated the offical method for user interface with the MRE-Graphics system.
For more information see the Graphics Flavor section.

s :Kill-Mouse-Process of MRE-G:Graphics-Space Method
It is reccomended that an old Graphics-space instance be sent a
:kill-mouse-process message before a new graphics-space is created. Every
graphics-space instance has a window which it sends draw commands to. This
window is an instance of a graphics-window-flavor and is discussed in the
Windows section of the manual

o :Start-Mouse-Process of MRE-G:Graphics-Space Method
Typically a user starts a mouse process just before application program
completion. This mouse process send an :any-tyi message to the map-to-window.
If another graphics-space instance is made with the same map-to-window and if
a mouse-process is started for this graphics-space the user will generate an
error. It is the users responsibility to kill a mouse process associated with an
old graphics-space if a new graphics-space instance is created with the same
map-to-window.

e :Create-Object <Desc> &Key

(:X-Coord 500)

(:Y-Coord 500)

(:String """} of MRE-G:Graphics-space Method
This method creates an instance of the graphic object described by Desc and
draws it in the graphic space. Create-Object returns an instance of the
description returned by Make-Object-Desc the format for a desc is an instance so
this method returns a specially instantiated copy of the instance desc.
The following keys are legitimate:

¢ :X-Coord <n>
The object is to be placed at the X coordinate of n.

¢ ¥-Coord <n>
The object is to be placed at the Y coordinate of n. Generally the x and y
coordinates of a object define the objects center. For user defined objects and
for fabricated objects this may not necessarly be true.

° :String <string>
The string is to serve as a label for the object with will have meaning to the
user.

o :Connect-Objects <Objl> <Obj2> &key
(:width 5)
(:texture nil)
(:entry-points :discrete)

(:place-now? t)

(:connecting-angle :diagonal)

(:level? t)

(:placement :ring-topology)
of MRE-G:Graphics-Space Method
Connects Objl to Obj2 by a user specified line segment. The result of this
message is an instance representing the line that was drawn.
Connect-Objects automatically adds O8I to the list of parents contained in Obj2
and adds OBj2 to the list of children in ObjI if it is appropriate to do so. Before
a parent child relation is formed a test is given to see if the proposed child will
be "allowed" in the family. The childs’ blood line is examined and if it is found
that the child is already an ancestor of the parent (however remote) the child is
barred from admission. This is done to protect the program internals which
perform operations on trees via recursive mechanisms. Go ahead and add the
children by hand but do so at your own risk. A special data structure exists
called the nodes-to-be-placed-data-structure, this allows for insestual family
relationships but uses iterative placement techniques which require a substantial
increase in CPU usage.

° Objl and OYj2 are instances of the two objects to connect. The instances are
those returned from :Create-Object. Below is a set of keys that can affect the

operation of this message:

° rwidth <N>
This is the width of a connection. This will not be used if the texture is left
unspecified.

® texture <Texture>
Texture may be any texture such as fv:hes-gray. There is a small, linear
increase in CPU usage when textures are used. The texture of a connection
will be a gray array which is bit-blted onto a scratch screen and anded with a
rectangle which is in the shape of the connection. This is then blted onto the
graphics pane.

° :Entry-points <Flag>
Flag may be:

s :Discrete
Each connection will enter a node at a point on the node perimeter which
1s North, South, East or West of node center. The program automatically
uses the shortest path to decide where to enter the node.

¢ :Continuous
the node entry point will "float" around the perimeter of the node
attempting to shorten the distance between the node entry point and the
center of a ring-placement topology. Using the :Continous option for
non-circular nodes or non-ring topologies may yield incorrect results.

° :Level <Flag>
Flag may be any of the following:

Non-NIL
0bjl and OB2 are placed on the same level.

NIL

Then the level constraint is relaxed and space is searched for in a manner
more likely to yield compact results. See the
:max-number-of-trials-for-swing-placement instance variable in the
Graphics-Space Flavor section of this manual.

:Place-Now? <Flag>

This is used to forstall placement. It can work indefinitly. The intended use
for this feature is to allow many node to be connected and semantically
related with respect to their placement. Thus the user may build a graph
and define the relationships between node position without having to invoke
placement. This is also useful for connecting nodes in graphs with already
acceptable placement (as in the introduction of siblings in an untangled
tree).

:Placement <Flag>
Flag may be:

° :Left
Obj2 is placed to the left of OBjl.

° :Right
Obj2 is placed to the right of O#jl.

° Up
Obj2 is placed to the up of OBbjl.

° :Down
0bj2 is placed below Objl. The above 4 flags automatically update the
direction-data-structure and avoids insestual checkups when connecting a
family. The penilty is greater CPU usage during placement.

¢ :place-children-up
¢ :place-children-down
¢ :place-children-left

° :place-children-right
These 4 messages check for insestual relationships before doing tree
placement. They are much faster because of the geometrical algorithm
used in placement. It is less general however because the children in a
graph may not be directly connected to the siblings unless the placement
is :inhibit for the offending connections. Since these are immediate mode
commands the user may not mask there usage with the :Place-Now? flag.
These commands do placement by finding the width of the greatest
grandchildren from OBj2 and create a tree which can easily accomidate
all the children. Better packing of objects onto the screen can be

obtained after these commands are used if the user send the appropriate
squish message.

° rinhibit
No placement is recorded in the placement data structure but a
connection is drawn and placement will occur if :Place-Now? is Non-Nil.

° ring-topology
Places the nodes in a ring. The user is advised to make :entry-points
:continuous when using this option.

© :Connecting-Angle <Type>
This option specifies at what angle this connecting line is to be drawn.
Type is selected from below:

¢ :Diagonal
The connecting line can be a diagonal between the two objects. This is the
default.

¢ Spline
The connecting line can be a spline. The spline is constrained by 1st
derivitive continuity with a normal to the node surface and its’ endpoints
touch the node entry points so that a bezier curve instead of a spline.
Small linear increases in CPU usage will be noticed.

More Functions

¢ MRE-G:Angle-Between-Objects O1 02 Function
Returns a degree angle between objects.

¢ MRE-G:Atand dx dy Function
Returns a degree result.

¢ MRE-G:Any-True? List Function
If any of the List is non-nil the return is T.

e MRE-G:Broadcast ObjectList Message (MessageParams) &Key

(return :deep)

(concurrent? nil)

(priority -10)

Function

This send Message with the optional message parameters to every object in
ObjectList. Use the concurrent option with caution as the length of the objects
will determine how many processes will be started. This can create a hazard.
The following keys are permitted:

° :Return
whose value may be:

¢ :None
No returns are collected.

o :Deep
Returns are placed in a list of lists.
:Flat
Returns are placed in a flat list suitable for rebroadcast.

o

:Concurrent?
whose values may be:

o NIL
The process is run sequentially, each send waits for a return in sequence.

¢ Non-NIL
The process is run concurrently, each send returns immediately after
starting a process.

° :Priority
An integer, not to high, to be used as process priority.

o MRE-G:Create-My-Window &optional (color? nil) Function
Color? may take on the following values:

° NIL
Used for a monocrome window.

¢ Non-Nil
Prerequisite: Initializing The Color System.
This will cause the MRE-Graphics output to appear on the Color System.

MRE-G:Copy Instance Function
This takes an instance and returns a new instance with the same values in the
instance varables. Beware that the which operations message is not updated
every time a new instance is made. This can cause confusing errors the only
known cure for which is a cold boot. Basic-copyable-object must be mixed-in.

MRE-G:Get-Mouse G-Space Function
Given the graphics space instance G-Space Get-Mouse will get the mouse in an
infinite loop.

MRE-G:Hardcopy-files Direc Function
Direc is a path name with optional wild cards and optional .newest embedded.
This reverse spools files out to the laser printer.

MRE-G: ld direc &key (direction fowards) (return-list? nil) Function
LD (List Directory).

Direc is a path name with optional wild cards and optional .newest embedded.
Direction may be any of the following:

° :Fowards
Lists the files in lexographic order.

° :Backwards
Lists the files in reverse lexographic order.

Return-List?
May be any of the following:

° NIL
Then LD will not return a list of files and output instead will appear on
terminal-io.

° Non-NIL
Then LD will return a list of files.

MRE-G:List-Com Object &optional String (return-list? nil) (exception-string nil) Function

Does a :which-operations to Object and forms a list-of-operations.

If String is specified a new list is formed called filtered-list. The filtered-list is
formed by matching String with the elements in the list-of-operations. If
exception-string is present then the elements in the filtered-list with matching
substrings are removed. Finally if Return-list? is nil the filtered-list is printed,
otherwise the filtered-list is returned.

MRE-G:List-Methods Function
Returns all methods from a :which-operations which do not have the ser- prefix.

MRE-G:Radians-To-Degrees Theta-In-Radians
Takes a radial angle and returns degrees.

MRE-G: Retrieve-String &Key
(Prompting-String "Please Enter Your String”)
(Default-String "Type In Some Jazz Here")
This uses a pop-up window to ask the user to enter a string.

MRE-G:Sum A-List-Of-Numbers
This takes a list of numbers and returns there sum.

MRE-G :take-first n some-list

Returns the first n elements from the list in the second argument.

Function

Function

Function

Function

The Calculation-Mixin Flavor

A primary flavor with several dependents. The calculation-mixin is mixed in to
give an object some common capabilities. It is used as a special library of software
tools.

Messages

The following are messages to the calculation-mixin:

o :dilate uxl yI of MRE-G:*flavor* Method
Returns a number which is u percent between x1 and yl.

¢ .find-distance-between-two-points x1 yI x2 y2 of MRE-G:*flavor* Method
Returns the euclid distance between two points.

e cprint-array of MRE-G:*flavor* Method
Uses the instance variables px and py which are points in a graphics object.

The Connection Flavor

"Connection"” is a flavor which is usually used internally by the MRE graphics
package. This documentation exists largely for maintainability of the package and
to satisfy the curious.

The following instance variables are usually set automatically by the
:connect-objects message which is handled by the graphics-space flavor.

(objectl nily

(object2 nil)
These are the objects to be connected by the connection instance.

(level nil)
Now believed to be obsolete, level used to be used by an auto-placement
algorithm and would attempt to make objectl and object2 level with each other.

(points-to-object1? nil)
Indicates if arrowl is to point to Objectl.

(points-to-object2? nil)
Indicates if arrow2 is to point to Object2. If these flags are non-nil then the
arrows are reoriented and redrawn when the connection is redrawn.

(draw-straight-alu tv:alu-ior)

This is the alu function used for drawing straight lines. A straight line is a line
which is always slope 0 or <. It is used to make connections between objects
such that there length is always a Manhatten distance. Tv:alu-ior always sets a
pixel on despite its previous state.

(erase-straight-alu tv:alu-andca)

This always sets a pixel off reguardless of its’ previous state. Using these
destructive alu functions has been found to be a necessary evil. Necessary
because straight line connections often write over each other. Evil because
dragging a connection which is destructivly updating the screen requires an
entire screen refresh, this can be computationally expensive and annoying.

(x1 nil)

(y1 niD)
These are the coordinates of Objectl’s center.

(entry-point-x1 nil)

(entry-point-y1 nil)

This is the point at which the connection instance will intersect Objectl.
(entry-point-x2 nil) (entry-point-y2 nil) This is the point at which the connection
instance will intersect Object2.

¢ (arrowl (make-instance ’arrow))

e (arrow2 (make-instance ’arrow))
These are arrows which can be drawn at run time. Arrowl is designed to point
towards Objectl. Arrow2 is designed to points towards Object2.

¢ (connection-type nil)
This can be :diagonal :straight or :spline. :diagonal goes from entry point to
entry point. :straight is :diagonal at right angles. :spline is :diagonal with 1st
derivitive continuity.

¢ (spline-array-x nil)

* (spline-array-y nil)
Points in the spline curve.

¢ (number-of-points-in-spline nil)
Number of points in the spline curve.

¢ (angle-between-objectl-and-2 nil)
An internal variable in degrees.

* (relative-orientation nil)
With respect to Objectl and Object2. This takes on the values:

° :left-to-right ==> Objectl is left of Object2.

° :right-to-left ==> Objectl is to the right of Object2.
¢ :top-to-bottom ==> Objectl is above Object2.

¢ :bottom-to-top ==> Objectl is below Object2.

¢ (growth nil)
Presently an obsolete means of specifying placement.

e (window terminal-io)
Generally this will be set to be the Map-to-window in the Graphics-space.

¢ (label (make-instance ’string))
This is the label on the connection.

¢ (label-clipping? nil)
When this is non-nil the label will be shortened to fit on the connection. **Not
yet implemented**

The Connection Flavor Mixins

¢ connection-label-mixin

+ drawing-mixin

s calculation-mixin

» si:property-list-mixin

.

Messages to Connections

:bottom-to-top-connect top-object bottom-object of MRE-G:Connection Method
These make a simple connection between Objectl and Object2. These routines
are usually called by a program after the relative orientation of the objects is
calculated.

:bottom-to-top-spline-connect Top-object Bottom-object of MRE-G:Connection Method
The above methods are called by a routine which has calculated the relative
orientation of the objects.

:calculate-bottom-to-top-entry-point of MRE-G:Connection Method
Assumes Objectl is below Object2 and calculates both entry points.

:calculate-entry-points of MRE-G:Connection Method
Figures out the entry-points for both objects. The entry points are another name
for the end points of the connection.

:calculate-left-to-right-entry-point of MRE-G:Connection Method
Assumes Objectl is left of Object2 and calculates both entry points.

calculate-relative-orientation of MRE-G:Connection Method
Properly set the relative orientation instance variable depending on the relative
position of Objectl and Object2.

:calculate-right-to-left-entry-point of MRE-G:Connection Method
Assumes Objectl is right of Object2 and calculates both entry points.

rcalculate-top-to-bottom-entry-point of MRE-G:Connection Method
Assumes Objectl is above Object2 and calculates both entry points.

:delete of MRE-G:Connection Method
Sends objects 1 and 2 the :delete-connection message and proceeds to erase itself
from the screen. Handles for connections are only stored in the objects being
connected.

:dingonal Object] Object2 of MRE-G:Connection Method
A simple connection is made between the objects.

:draw of MRE-G:Connection Method
Clips label and sends connection instance the appropriate connection-type
command. Please note that the connection-type is an instance variable which has
the same content as an appropriate message name used for drawing the
connection.

:draw-arrows &optional (which-arrows :both) of MRE-G:Connection Method
Which-arrows can have the value:

° :both - draws both arrows

° :arrowl - draws only arrowl
° :arrow2 - draws only arrow2

:draw-straight x1 yI x2 y2 alu of MRE-G:Connection Method
A lower level draw function which draws the straight connection type after
calculating the relative orientation.

:draw-straight-old xI yI x2 y2 alu of MRE-G:Connection Method
Draw based on relative orientation. Does not calculate the relative orientation
first. This is because the objects might be in motion (this is what differs an
erase from a draw). You see if the object is moving and we need to update the
connection image we want to draw the old connection with an alu function
which will draw over the old connection precisly. This will hopefully erase the
old connection. When we redraw we do it with the draw-straight method because
this will recalculate the orientation....

:draw-straight-specific x1 yI x2 y2 alu draw-key of MRE-G:Connection Method
Recall that a straight line is what is come to be known as a "T-Bar connection”.
The nature of the T-bar connection is such that we can have a change in one
dimension followed by a change in another dimension. This is encoded in the
draw-key. Draw-key may have the following parameters :dxdydx - change of x
first then change in y then change in x. Or... :dydxdy :erase of
MRE-G:Connection Method
Erases the connection

:horizontal-connect of MRE-G:Connection Method
Connects Objectl’s left or right entry point to Object2’s left or right entry point.
:horizontal-spline-connect Objectl Object2 of MRE-G:Connection Method
:left-to-right-connect left-object right-object of MRE-G:Connection Method
:left-to-right-spline-connect Left-object Right-object of MRE-G:Connection Method
:length of MRE-G:Connection Method

Returns the distance from Objectl to Object2 in pixels.

:New-String <String> &Key (Font fonts:cptfont) of MRE-G:Graphics-Space Method
Causes the indicated object to be labeled. String is used as the string to label
the connection.

° :Font
Specifies the font of the label, the default is fonts:cptfont.

corient-arrowl of MRE-G:Connection Method
rorient-arrow2 of MRE-G:Connection Method
Rotates the arrows to the correct position.

:prep-arrows of MRE-G:Connection Method
Causes window inheritance from the connection. Orients the arrows and

temporarily draws them.

:record-connection-profile of MRE-G:Connection Method
Stashes the positions of the objects.

:redraw of MRE-G:Connection Method
Redraws self, labels and arrows.

:redraw-arrows of MRE-G:Connection Method
Redraws the arrows if the Points-to-object booleans are non-nil.
:right-to-left-connect left-object right-object of MRE-G:Connection Method
:right-to-left-spline-connect Left-object Right-object of MRE-G:Connection Method
:spline Object] Object2 of MRE-G:Connection Method

Here no choice is provded for the programmer, the objects are connected totally
as a function of their relative orientation.

:straight Object] Object2 of MRE-G:Connection Method
A "t-bar" connection is made between the objects. This implies that 3 straight
line must be drawn.

top-to-bottom-connect top-object bottom-object of MRE-G:Connection Method
:top-to-bottom-spline-connect Top-object Bottom-object of MRE-G:Connection Method

:vertical-connect of MRE-G:Connection Method
Connects Objectl’s top or bottom entry point to Object2’s top or bottom entry
point.

:Vertical-spline-connect Objectl Object2 of MRE-G:Connection Method
These reduce to one degree of freedom the choice of which spline connect to

use.

The Drawing-Mixin Flavor

The Drawing-Mixin is a primary, internal mixin which is mixed into objects which
need to draw themselves and are transformable.

Instance Variables

The following are instance variables in the Drawing-Mixin:

*

(Visible? nil)
This is non-nil when the object is visible on the screen.

Messages

The following are messages to the Drawing-Mixin:

L]

LJ

L]

:draw &optional

(x-to

(y-to y) of MRE-G:*flavor*
This draws the object at point X-To Y-To.

:draw-spline x y of MRE-G:*flavor*
Here x and y are arrays of points which serve to control a bezier curve.

rerase of MRE-G:*flavor*
Erases the object.

:move x y of MRE-G:*flavor*
Updates the objects X and Y coordinates properly.

Method

Method

Method

Method

The Dynamic-Placement-Mixin Flavor

The Dynamic-Placement-Mixin flavor is mixed into the Graphics-Space flavor. This
is intended to give the experienced user a system programmer like control over
the placement mechanism. This flavor has the following instance variables:

¢ (Ring-Topology-Used? nil)
This is set to a non-nil value if the user send a :Connect-Objects message to a
graphics space instance with a :Placement key of (:Ring-Topology). When this is
non-nil the entry points of all nodes become floating entry points (See Glossary).
The actual entry point appearence is changed only upon connection refresh.

¢ (max-number-of-trials-for-swing-placement 5)
This controls the number of trials used when placing nodes by iterative
technique. This may be set using the:
(:set-max-number-of-trials-for-swing-placement n) message to the graphics-space
instance. After the alloted n tries the placement algorithm gives up and leaves
the node at its last position. When placing iterativly tree skew is to be expected.
Thus because of the time penility due to iterative placement activity and
because of the tree skew it is expected that iterative placement will be used
sparingly. It is reccommended that a multi-growth-tree connected to a normal
tree inhibit placement until an application program has stopped creating nodes
(that is placement occurs at a logical point). The node will look for free space
on the same level as its siblings. The node looks within the constraints of the
:Placement flag and the :Max-Number-Of-Trials-For-Swing-Placement in addition
to the :Placement-Conflict-Criterion. After all this stuff comes into play some nodes
will not be able to be placed on the same level as there siblings. When this
happens the level constraint is relaxed and the next level is sought. Thus after
:Max-Number-Of-Trials-For-Swing-Placement**2 times placement may still fail
and the node will be left in a bad place...at this point the user may choose to
increase the :Max-Number-Of-Trials-For-Swing-Placement or try to place the node
with an external application program or by hand using the mouse.

Messages To The Dynamic-Placement-Mixin

Since this is only mixed into the graphics space all the following messages are
available to users of instanced of Graphics-Space flavors.

¢ After :Connect-Objects

obj1 ohj2

&allow-other-keys

&key
(placement-conflict-criterion :objects-avoid-objects)
(entry-points :discrete)
(level? t) ;;; if this is t all nodes must be level with there siblings.
(place-now? t) ;;; If this is nil the user starts the placement by hand.
(placement :Ring-Topology)) ;; connecting-angle is also available.

of MRE-G:Dynamic-Placement-Mixin Method
These are documented more fully in Messages To Graphics-Spaces.

The Graphics-Space Flavor

"Graphics-space” is a flavor which is created by the Create-Graphics-Space function.
Certian instance variables are useful to the user and are documented here:

L J

{Object-stack nil)
This is a list of all known objects in the graphics-space instance.

(map-to-window terminal-io)
This is usually initialized when the create-graphics-space function is invoked. The
instance variable is usually refered to but not set.

:Focus-On-Active-Object &Key :Switch <Flag> of MRE-G:Graphics-Space Method
This will cause the most recently connected child node to be centered in the
graphics space if the child is drawn out of sight.

The user should note that the graph generation will be slowed by the scrolling
required. Flag may be :on or :off.

:Clear of MRE-G:Graphics-Space Method
This will clear a graphics space and all related objects.

:Scroll XY of MRE-G:Graphics-Space Method
Causes the graphic space to scroll the indicated amounts.

Messages

The following are messages to the graphics-space:

L

L]

!ADD-MOUSING-MESSAGE of MRE-G:Graphics-Space Method
&key message
menu-name
documentation
(default-p nil)

® :Message
This is the message which will be sent to the object on the screen.

° :Documentation
This is the documentation string which will appear in the who line.

¢ :Menu-Name
This is the string which will appear in the menu.

¢ Default-p
When this is non-nil the message, menu-name and documentation are bound
to mouse-l.

!CLEAR &key (window t) of MRE-G:Graphics-Space Method

Object and connection records are erased and if window non-nil window is
cleared.

:CONNECTION-STACK of MRE-G:Graphics-Space Method
Returns a list of all connections made in the graphics space.

:CREATE-GLOBAL-DEFAULT-MENU of MRE-G:Graphics-Space Method
Returns an instance of the pop-up menu used when the mouse is clicked left.
This is called once upon graphics space initialization.

:DEFAULT-MENU of MRE-G:Graphics-Space Method
Installs a series of menu items which appear when the user clicks right on a
mouse sensitive item in the graphics-pane. This also serves to make all nodes
update there extent box listings in the window for highlighting purposes.

DEFAULT-MOUSE-HANDLER-FOR-NON-NODES blip of MRE-G:Graphics-Space
Method

If the user clicks the mouse over a non-node this method is called with the
original mouse blip. The blip is sure to be a list and its first element to be
smouse-button.

:DRAW-CONNECTIONS of MRE-G:Graphics-Space Method
Sends all connections in the graphics-space an :draw message.

:DRAW-OBJECTS of MRE-G:Graphics-Space Method
Sends all objects in the graphics-space an :draw message.

!ERASE-CONNECTIONS of MRE-G:Graphics-Space Method
Sends all connections in the graphics-space an :erase message.

:ERASE-OBJECTS of MRE-G:Graphics-Space Method
Sends all objects in the graphics-space an :erase message.

!GREATEST-GRANDCHILDREN of MRE-G:Graphics-Space Method
This returns the leaves of a family oriented tree.

:HARDCOPY of MRE-G:Graphics-Space Method
Makes laser copy of :Map-to-window.

:OBJECT-STACK of MRE-G:Graphics-Space Method
Returns a list of all objects made in the graphics space.

!ORPHANS of MRE-G:Graphics-Space Method
Returns a list of all objects made in the graphics space with no parents.

:UPDATE-OBJECT-BORDERS-AND-MESSAGES of MRE-G:Graphics-Space Method
Despite name this message only updates the extent boxes in the item-type-alist in
the graphics pane for highlighting purposes.

The Intersection-Grid-Mixin Flavor

This flavor is mixed into the Graphics-Space flavor. This gives the user the
flexibility to do node-node and node-connection intersection calculations.

Messages Added To Graphic Spaces

L

:LinelntersectionP <StartX> <StartY> <EndX> <EndY> of
MRE-G:Intersection-Grid-Mixin Method
Returns a non-NIL value if any node intersects along the indicated line.

:NodesAtPoint <x> <y> of MRE-G:Intersection-Grid-Mixin Method
Returns a list of all the nodes at the point.

:NodesForLinelntersection <StartX> <StartY > <StartX> <EndY> of
MRE-G:Intersection-Grid-Mixin Method
Returns all the nodes which intersect along the specified line.

:NodesInRectangle <UpperLeftX> <UpperLeftY > <LowerLeftY > <UpperRightX> &Optional
<NodesToSkip> of MRE-G:Intersection-Grid-Mixin Method
Returns a list of nodes which areintersecting with the specified rectangle.

:NodesInRectangleP <UpperLeftX> <UpperLeftY > <LowerLeftY> <UpperRightX> &Optional
<NodesToSkip> of MRE-G:Intersection-Grid-Mixin Method
Returns a non-NIL value if there are any nodes within the rectangle.

:PointIntersectionP <x> <y> of MRE-G:Intersection-Grid-Mixin Method
Returns a non-NIL value if there is any node at a point.

:SendForNodesInRectangle <Message> <UpperLeftX> <UpperLeftY> <LowerLeftY >
<UpperRightX> &Optional <NodesToSkip> of MRE-G:Intersection-Grid-Mixin Method

:ObjectsWhichIntersect

Messages Added To Nodes

L

AIntersectsP of MRE-G:Intersection-Grid-Mixin Method
Returns a non-NIL value if any node intersects with the current placement of
this node.

:MapForlIntersectedNodes <x> <y> <Fn> of MRE-G:Intersection-Grid-Mixin = Method
Applies (FUNCALLs) a function to each node that would intersect with the node
if it were moved to the specified position, other than itself.

:NodelntersectionP <x> <y> of MRE-G:Intersection-Grid-Mixin Method
Returns a non-NIL value if the node would intersect with any other node, other
than itself, if it were moved to the indicated position.

:NodesInIntersection <x> <y> of MRE-G:Intersection-Grid-Mixin Method
Returns a list of nodes that would be intersected if the node were moved to the

indicated position, other than itself..

:ObjectsWhichIntersect of MRE-G:Intersection-Grid-Mixin Method
Returns a list of all nodes which intersect with this node.

:RectangleOverlapsP <UpperLeftX> <UpperLeftY> <LowerLeftY> <UpperRightX> of
MRE-G:Intersection-Grid-Mixin Method
Returns a non-NIL value if the specified rectangle overlaps any portion or all of
the node.

:SendForlntersectedNodes <x> <y> <Message> of MRE-G:Intersection-Grid-Mixin
Method

Sends a message to each node that would intersect with the node if it were
moved to the specified position, other than itself.

The Kinetic-Mixin Flavor
The Kinetic-Mixin is mixed into the Node-Mixin. The Kinetic-Mixin is designed to
give a centeralized location for methods which deal with animating an object (as
opposed to basic object drawing primitives like move and draw).
Mixi
The Kinetic-Mixin has the Calculation-Mixin mixed in.
Instance Variables
The Kinetic-Mixin has one settable instance variable:
s (angular-position 0)
This is an angle in degrees which is used to show the relative rotation of an

object with respect to its’ initial orientation.

The Kinetic-Mixin handles the following messages:

o :absolute-rotation theta of MRE-G:Kinetic-Mixin Method

Orients the object theta degrees from its’ initial orientation.

o family-follow-mouse of MRE-G:Kinetic-Mixin Method
Causes the entire family to be dragged by the mouse.

s follow-mouse of MRE-G:Kinetic-Mixin Method
Causes the object to follow the mouse as long as the mouse button is held.

e :slide x-to y-to of MRE-G:Kinetic-Mixin Method
Causes the object to move from present location to x-to y-to gradually.

e :slide-along-connection from-object to-object connection of MRE-G:Kinetic-Mixin

Method
Causes an object to move from the from-object to the to-object along the
connection. This does not work for splined or T connections.

e :spin omega &optional x y of MRE-G:Kinetic-Mixin Method
The object spins about x y for omega degrees. This message is only for
transformable objects (like the arrow, line or fabricated object).

o :spin-about-mouse omega of MRE-G:Kinetic-Mixin Method

Allows the object to spin about the mouse.

The Node-Mixin Flavor
The node-mixin is a required flavor for all nodes in the graphics space.
Mixins
The node-mixin has:

» Node-Placement-Mixin
Debugging-Mixin
Copyable-Property-List-Mixin
Basic-Copyable-Object
Mousable-Mixin and
Kinetic-Mixin
mixed in.

Instance Variables
The node-mixin has the following instnace variables:

» (graphics-space nil)
This is a pointer to the graphics-space in which the object resides. Only one
graphics-space is permitted per object. (parents nil)

e This is a list of parents.

* (object-description nil)
Set by graphics space upon creation.

¢ (maximum-downward-connecting-angle 90)
(maximum-leftward-connecting-angle 75)
(maximum-rightward-connecting-angle 75)
(maximum-upward-connecting-angle 75)

All in degrees, these angles are the max angles of spread between children.

s (left-extent nil)
(right-extent nil)
(top-extent nil)
(bottom-extent nil)
Extents define the outer boundary of the mouse sensitive boxes. Send the
message :Calculate-Extents to properly initialize.

¢ (x-left-entry-point nil)
(y-left-entry-point nil)
(x-top-entry-point nil)
(y-top-entry-point nil)
(x-right-entry-point nil)
(y-right-entry-point nil)
(x-bottom-entry-point nil)

(y-bottom-entry-point nil)
Entry-points are used to define where the connection will make contact with the
node. send the message :Calculate-Entry-Points to properly initialize.

(inter-block-gap 5)
This is used to calculate the Extent box.

(children nil)
This is a list of all children to the node.

(arrows-which-point-to-me nil)
These are all the arrow instances which are supposed to point towards a node.

(font fonts:cptfont)
This is the font for the string of this node.

(window terminal-io)
This is the window of the node.

(string nil)
This is the nodes label.

(place-your-children-flag :down)
This may take on the values :up :left :right or :down.

(connection-store nil)
This is a list of connections to the object.

(highlight-flag :off)
This is always :on or :off and is usually set by the :switch message.

MRE-G:Node-Mixin flavor

The Node-Mixin handles the following messages:

*

LJ

*

:add-arrow-which-points-to-you arrow-instance of MRE-G:Node-Mixin Method
This stores an arrow instance in the arrows-which-point-to-me instance variable.

radd-child child of MRE-G:Node-Mixin Method
Adds the child to the list of children.

:add-connection connection of MRE-G:Node-Mixin Method
Adds the connection instance to the connection store.

:adjacent-nodes of MRE-G:Node-Mixin Method
Returns a list of all nodes connected to the node.

:all-ancestors of MRE-G:Node-Mixin Method
Returns a list of all ancestors.

:all-descendants of MRE-G:Node-Mixin Method

Returns a list of all descendants.

:allowed-in-the-family? new-member of MRE-G:Node-Mixin Method
Tests the new member to see if cycles are introduced into the graph.

:bottomists-at-level-n n of MRE-G:Node-Mixin Method
:center of MRE-G:Node-Mixin Method

Centers the node. Provisions are available for expansion but are not yet ready.

:center-self-unconditionally of MRE-G:Node-Mixin Method
Always centers the node.

:children-at-level-n n of MRE-G:Node-Mixin Method
Returns a list of all children at generation n.

:connect-objects of MRE-G:Node-Mixin Method
Used when interacting with the screen. The user must send the other object
message to the object which is to be connected to.

:copy-family of MRE-G:Node-Mixin Method
Copies the entire family of nodes with a fixed offset.

:copy-node of MRE-G:Node-Mixin Method
creates a new node of similiar type in the graphics-space.

:delete of MRE-G:Node-Mixin Method
Deletes the node and all connections to the node.

:delete-child child of MRE-G:Node-Mixin Method
Removes the child from the children list.

:delete-connection connection of MRE-G:Node-Mixin Method
Deletes the connection instance from the connection list.

:distance-from-mom <node> of MRE-G:Node-Mixin Method
Returns the distance in pixels <node>.

:distance-from-point node x y of MRE-G:Node-Mixin Method
returns the distance from node to point x y.

:draw-all-arrows-to-children of MRE-G:Node-Mixin Method
Propagates the draw-arrows-to-children to all descendants.

:draw-all-connections of MRE-G:Node-Mixin Method
Draws connections for entire family.

:draw-arrows-to-children of MRE-G:Node-Mixin Method
This causes all the connection drawn to children to have arrows which point to
the children.

:draw-connections of MRE-G:Node-Mixin
sends the :draw message to every connection in the connection store.

rerase-all-connections of MRE-G:Node-Mixin
erases connection in family.

rerase-connections of MRE-G:Node-Mixin
sends an erase message to all connecitons in the connection-store.

Samily of MRE-G:Node-Mixin
Returns a list of all members of the family.

JSamily-extent arg of MRE-G:Node-Mixin
arg may be :left, :right, :top, or :bottom.

family-node-nearest-point x y of MRE-G:Node-Mixin
Returns the node in the family which is nearest to the given point.

:grandchildren of MRE-G:Node-Mixin
Returns a list of level 2 descendents.

:greatest-grandchildren of MRE-G:Node-Mixin
Returns a list of the deepest descendents.

:height-of-children-at-level-n n of MRE-G:Node-Mixin
Returns the pixel height of the children at level n.

:how-many-children-at-level-n n of MRE-G:Node-Mixin
Returns the number of children at this level of decendency.

rinside-bottom-extent of MRE-G:Node-Mixin
Returns extent values in pixels.

cinside-left-extent of MRE-G:Node-Mixin
sinside-right-extent of MRE-G:Node-Mixin
rinside-top-extent of MRE-G:Node-Mixin

Hargest-outside-dimension of MRE-G:Node-Mixin
returns the larger: outside width or height.

:eftists-at-level-n n of MRE-G:Node-Mixin

:make-visible of MRE-G:Node-Mixin
decides if object is visible and places itself in center if it is not.

:maximum-number-of-generations of MRE-G:Node-Mixin
Returns the number of levels of decendancy.

:minimum-distance-from-the-mother-node of MRE-G:Node-Mixin

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method
Method
Method

Method

Method

Method

Method

Method

Returns the distance from the closest child.

:minimum-height-of-all-children of MRE-G:Node-Mixin Method
Returns sum of all the tallest children for each generation.

:move-children dx dy of MRE-G:Node-Mixin Method
Moves only children.

:move-family dx dy of MRE-G:Node-Mixin Method
Does a relative move on all members of the family.

:nearest-child of MRE-G:Node-Mixin Method
Returns the nearest child instance.

:orphans of MRE-G:Node-Mixin Method
Returns a list of all orphans in the family.

:other-object of MRE-G:Node-Mixin Method
Returns the object instance. This is used in conjunction with the
:connect-objects method.

routside-height of MRE-G:Node-Mixin Method

:outside-width of MRE-G:Node-Mixin Method
Uses extents to calculate values.

:place-children &key :growth <flag> of MRE-G:Node-Mixin Method
Flag may be :left, :right, :up or :down.

:place-children-left of MRE-G:Node-Mixin Method
traverses the family placing the children to the left.

:play-family of MRE-G:Node-Mixin Method
Plays all objects in family. This only works on machines with the sound option.

:rightists-at-level-n n of MRE-G:Node-Mixin Method
These are the nodes which are below, right, left (or are above) at a specific
generation away from the node recieving the message.

:seroll of MRE-G:Node-Mixin Method
orphans in the graphics-space.

:shrink &optional percentage of MRE-G:Node-Mixin Method
Shrinks by a percentage. 0 < percentage < 1.

:shrink-family of MRE-G:Node-Mixin Method
Stores the present label and reduces the node-size. Use this only once since the
label will be lost after 2 shrinks.

:squish-down of MRE-G:Node-Mixin Method

L 4

:squish-left of MRE-G:Node-Mixin Method

:squish-right of MRE-G:Node-Mixin Method
:squish-up of MRE-G:Node-Mixin Method
:switch &key :Highlight <Flag> of MRE-G:Node-Mixin Method
Increases the border size for the node.

:tallest-child of MRE-G:Node-Mixin Method
Returns a child instance or nil.

:tallest-child-in-generation-n n of MRE-G:Node-Mixin Method
Returns the child instance which is the tallest for the generation.

:to-the-bottom? node of MRE-G:Node-Mixin Method
:to-the-left? node of MRE-G:Node-Mixin Method
If node is to the left this returns non-nil.

:to-the-right? node of MRE-G:Node-Mixin Method
Tests to see if node is to-the-(right or below) and returns non-nil if it is.
:to-the-up? node of MRE-G:Node-Mixin Method
If node is above this returns non-nil.

:topists-at-level-n n of MRE-G:Node-Mixin Method
:total-refresh of MRE-G:Node-Mixin Method

sends a refresh to the graphics-space.

:unshrink of MRE-G:Node-Mixin Method
Sets the node back to its original size.

:viewable? of MRE-G:Node-Mixin Method
Returns t if object is viewable. This can be fooled by sending a refresh to the
graphics-pane, if this happens a :refresh sent to the graphics-space may clear
things up.

:width-of-children-at-level-n n of MRE-G:Node-Mixin Method
Returns the pixel width of the children at level n.

:window-extent of MRE-G:Node-Mixin Method
side may be :left, :right, :top, :bottom, :midpoint-x or :midpoint-y. Values
returned are in pixels.

Well these messages do placement by compacting existing placement. They
propagate through the family decendants. Current thinking about placement is
that we should have messages which do the same thing but with a limited
scope, this would allow for more flexible topological representations.

Node-Mixin Flavor Mixins

The following are mixed into the Node-Mixin flavor:
Node-Placement-Mixin and the Debugging-Mixin.

The String Flavor

"String" is a flavor with the following instance variables:

(x 100)

(y 100)

(x2 200)

(y2 200)

(visible? nil)
(character-length-limit :none)
(stashed-string "")

(string ")

(font fonts:cptfont)

(window terminal-io)

The following may be set upon instance variable creation:

L

X, 1y
The start points of the string.

e X2, :y2

The end points of the string.

:font
The font of the string must be any currently loaded font.

:window

The window (with a tv:graphics-mixin) in which the string appears. To reset any
of the above variables the following methods exist. If a method does not exist
for changing the property of your choice (such as the :font) the user is advised

to erase the string first.

Methods Of The String Flavor

e :character-trim-string of MRE-G:String Method

used internally to reduce the string length and append a "e" when truncation
occurs.

:draw &optional new-x new-y new-x2 new-y2 of MRE-G:String Method
draws the string from new-x new-y towards new-x2 new-y2. If the string does

not fit it is stretched. Very little compression is possible. If new-x is present
new-y must be present also. If new-x2 is present then so must new-y2.

rerase of MRE-G:String Method
Erases string by using the exclusive-or alu function.

Sollow-mouse of MRE-G:String Method
mouse-1 must be held down and in motion before this message will work. String
will be drawn towards the mouse as long as mouse-1 is held. While the
kinetic-mixin is mixed in, the string does not support the messages present and
the user is discouraged from trying them.

‘move new-x new-y &optional new-x2 new-y2 of MRE-G:String Method
Makes new-x, new-y the new start position for string. If new-x2 is present then
so must new-y2. :new-string string of MRE-G:String Method

The drawn string takes on the shape of the new string and is drawn. The
character-length-limit is reset to :none. This may be used reguardless of
visibility status. :length length &optional (in-pixels? nil) The drawn string is
shortened of lengthed to the character-length if in-pixels? is nil. If in-pixels? is
on-nil then the length is taken to be in pixels.

:pixel-height of MRE-G:String Method
returns pixel height of string.

:pixel-length of MRE-G:String Method
returns true pixel length (unstretched) of string.

:restore-old-string of MRE-G:String Method
used internally whenever the length is changed.

:save-string of MRE-G:String Method
used internally to save the string whenever a :new-string message is sent.

Atrim-string of MRE-G:String Method
used internally to reduce the size of the string by using :character-trim-string if
needed.

The Transformable-Graphics-Object-Mixin Flavor

This provides homogenious coordinate transforms for a transformable graphics
object.

Mixi

The following flavors are mixed in:
calculation-mixin and drawing-mixin.

Instance Variables

The following settable instance variables are provided:

¢ pXpy
These are arrays of points which are to be transformed.

s (rotation 0)
This is the angular displacement in degrees of the object.

* (number-of-points 0)
This is the number of points in px and py.

Required Methods
The following are code requirements:

e :make-array
This fills px and py and sets number-of-points.

Messages
The following are valid messages:

s corigin-rotate theta of MRE-G:Transformable-Graphics-Object-Mixin Method
This rotates the object about the origin by theta degrees.

s rotate &key

(theta-z 0)

(x-center (send self :x))

(y-center (send self :y))

(absolute nil)) of MRE-G:Transformable-Graphics-Object-Mixin

Method

This rotates the object theta-z degrees about x-center y-center. If absolute is
non-nil the rotation is not relative. :after :init
of MRE-G:Transformable-Graphics-Object-Mixin Method
The :make-array message is sent,

s initalize-orientation &key (theta-z 0)

of MRE-G:Transformable-Graphics-Object-Mixin Method
Theta-z is the angle about the z axis (out of the screen) in degrees to set the
objects orientation.

:rmove dx dy of MRE-G:Transformable-Graphics-Object-Mixin Method
Does a relative translation.

:scale &optional

(sx 1.)

(sy sx) of MRE-G:Transformable-Graphics-Object-Mixin Method
This scales the object relative to current size.

stransiate &optional (dx 0) (dy 0) of MRE-G:Transformable-Graphics-Object-Mixin
Method

Does a relative translation.

Creating Your Own Node Shapes

One day the experienced user will get tired of looking at circles and rectangles.
The user would like to create a custom node shape and desires more flexibility
then the Fabricated-Object can afford.

Code Requirements

When the user whishes to create a custom node shape certian requirements must
be met:

1. All required instance variables must be present in the custom flavor.
¢ x

*y
X and Y coordinates for the center of the object. Defaults are required and
500 500 is reccomended.

s class
A colon followed immediately by an atom must be present at default.

2. All required methods must be present in the custom flavor.

* adjust-size-for-string
This will adjust the size of the object probably by using the :pixel-length
message.

e :draw &optional ignore ignore ...
This will draw the object by sending the instance variable window draw
messages. The center of the object will be X and Y. The first 2 ignores are
used by a before demon to set up the center coordinates. The ... in the
lambda-list is used to indicate more information the user might like to add.

s cinside-height
Must return the inside height in pixels.

o inside-width
Must return the inside width in pixels.

3. The flavor’s file must have the MRE-G package in its attribute list.

4. The flavor must have settable instance variables.

5. The flavor must require and node-mixin variables it intends to use, including
but not limited to, the window. The window will almost always be required if

drawing is intended, the only exception would be if the user obtained the
window instance by the form:

(send self :window)
6. The flavor must have the node-mixin flavor mixed-in.

In order to provide a clearer explaination I shall site the Circle node as an
example:

Creating The Circle Flavor

What follows is the actual MRE-Graphics circle flavor. This is shown in order to
give the user an idea of what is involved in defining a new node type. The file
which defines the flavor must have the MRE-Graphics package in its’ attribute
list.

(defflavor circle

((x 500)

(y 500)

(radius 30)

(clags ’:circle))

{node-mixin)
(:required-instance-variables window)
:settable-instance-variables)

(defmethod (circle :adjust-size-for-string) ()
(setq radius (+ 4 (// (send self :pixel-length) 2)))
(if (< radius 4) (setq radius 4)))

(defmethod (circle :draw) (Soptional ignore ignore r)
(if r (setq radius r))
(send window :draw-circle x y radius tv:alu-xor)
(if (eq (send self :highlight-flag) :on)
(send window :draw-circle x y (- radius 1) tv:alu-xor)))

(defmethod (circle :inside-height) ()
(* 2 radius))

(defmethod (circle :inside-width) ()
(* 2 radius))

Note how the :draw message provides code for the highlight mode. This is optional
and if it is ommitted highlight will simply do nothing. Also, see how the radius
parameter was "tacked” on so that an external message could be sent to change
radius without having to erase the node and send a set message.

Glossary

Child A node decendent from a parent. It is the leaf of a subtree but could
become a parent to another node.

Entry-Points This is the place on a node which makes contact with a connection.

Extents A node is approximated by a rectangle which usually encompasses the
node. This rectangle marks the outside node extents. The extents are used in
object intersection calculation and are shown when mouse sensitive objects are
within proximity to the mouse. The :Inside-Width and :Inside-Height methods
(See Creating Your Own Node Shapes) are used to calculate extents.

Family A list of nodes which contains parents and there children.

Floating-Entry-Points These are entry-points which move continously as the object
moves. They always pick the point on an object which is closest to
ring-topological center.

Parent An ancestor node which could have existed before any of its descendants.
It is the origin in a tree or subtree. This could be a child to another node.

Ring-topology This is a placement which is patterned after a circle. All nodes in
this pattern fall on the rim of the circle and entry point are usually floating in
order to reduce connection-node interference.

