
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 2, March-April 2005

Cite this column as follows: Douglas Lyon: “Java Optimization for Superscalar and Vector
Architectures”, in Journal of Object Technology, vol. 4, no. 2, March-April 2005, pp. 27-39
http://www.jot.fm/issues/issue_2005_03/column3

Java Optimization for Superscalar and
Vector Architectures

Douglas Lyon, Fairfield University, Fairfield CT, U.S.A.

Windows NT crashed.
 I am the Blue Screen of Death.

 No one hears your screams.
-Anon

Abstract
This paper describes the refactoring of Java code to take advantage of the superscalar
and vector architectures available on many modern desktop computers.
The unrolling of Java loops is shown to cause some speed-ups for Java code. However,
our benchmarks reveal that Java still lags behind vectorized C code.
The present state-of-the-art in computer hardware has outpaced the current state of the
JIT (Just-In-Time) compilers. We have resorted to modifying our Java code to make use
of JNI (Java Native Interface) based vector-accelerated C programs to obtain speed-
ups from 2 to 10 times.

1 THE SUPERSCALAR G4

The superscalar G4 core (also known as the Motorola MPC74xx series processor) is
capable of executing four instructions per clock cycle. Superscalar processors are based
on pipelined MIMD (Multiple Instruction, Multiple Data) architectures. Simple loop
unwinding can take advantage of such architectures. The G4 also has a 128-bit wide
vector unit called the Altivec. The Altivec has 32 registers with 128 bits each and
represents a departure from the pure general purpose CPU and a focus upon a SIMD
(Single Instruction, Multiple Data) architecture that enables fine-grained parallelism. A
block diagram depicting the PowerPC execution flow is shown in Figure 1.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_03/column3

JAVA OPTIMIZATION FOR SUPERSCALAR AND VECTOR ARCHITECTURES

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Cache / Memory

Dispatch

FPU Vector UnitIU
FPRs Vector Register File GPRs

32 64 128In
st

ru
ct

io
n

St
re

am

128 bits6432

PowerPC
Execution Flow

Figure 1. The G4 Execution Flow

Although the PowerPC (PPC) is a RISC (Reduced Instruction Set Computer) system, the
addition of the Altivec processor adds over 160 machine instructions. These instructions
map directly to C subroutines that can be invoked for the purpose of acceleration. In an
ideal world, vectorizing compilers should be able to map data into these instructions and
take advantage of the Altivec. In our experience, however, this almost never happens,
even with the simplest of code [Freescale].

The trend toward SIMD-style signal processing type architectures is gaining wide
acceptance (first with Intel’s MMX instructions and lately with the new SSE and SSE2
instructions). The SIMD idea can be traced back to Alan Turing's 1946 parallel
computing studies on VLIW (Very Long Instruction Word) computers. A key difference
between the super-scalar architecture and the VLIW architecture is that programs are
typically changed in order to take advantage of the new architecture. In theory, Java
obviates the need for the programs to change, in response to a new architecture, since this
is the responsibility of the JIT (which should mean recompilation for each run). However,
the present JIT’s do not take advantage of the modern VLIW machine [Patterson and
Hennessy].

The computer industry is motivated to incorporate MIMD architectures into their
hardware because they enable the fast computation of homogenous data arrays. These
appear in several applications, such as signal processing, image processing, computer
graphics, computer vision, communications, etc. In fact, an entire industry has grown up
around the creation of chips dedicated to the processing of homogenous data arrays.
These are typically called DSP (Digital Signal Processing) chips. It is therefore a matter
of an evolutionary trend that we see DSP functions incorporated into general-purpose
processors.

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 29

2 WHAT ARE C PROGRAMMERS DOING?

To observe just how C programmers optimize their code for the PPC, consider the
following function, which is designed to add n numbers in an array and return the result:

float sum(float a[], int n) {
 int i = 0;
 float s = 0;
 for (i=0; i < n; i++) {
 s = s + a[i];
 }
 return s;
}

The kernal of the for-loop translates into the following assembler:
L5:
 lwz r0,32(r30)
 slwi r2,r0,2
 lwz r0,88(r30)
 add r2,r2,r0
 lfs f13,36(r30)
 lfs f0,0(r2)
 fadds f0,f13,f0
 stfs f0,36(r30)
 lwz r2,32(r30)
 addi r0,r2,1
 stw r0,32(r30)
 b L2

Based on the addition of 1024 floats (32 bits, each), we find that the unoptimized code,
running on a G4/400 Mhz, executes in 9 microseconds. In an effort to get the superscalar
nature of the processor to kick-in, it is typical for the C programmer to unwind the loop.
Since the G4 processor has a 4 stage super-scalar pipe-line, we can obtain some speed-up
by using:

float sumV(float a[], int n) {
 int i = 0;
 register float s[4] = {0};
 for (i=0; i < n; i=i+4) {
 s[0] = s[0] + a[i];
 s[1] = s[1] + a[i+1];
 s[2] = s[2] + a[i+2];
 s[3] = s[3] + a[i+3];
 }// compaction phase...
 return s[0]+s[1]+s[2]+s[3];
}

The kernal of the for-loop translates into the following assembler:
L5:
 lwz r0,32(r30)
 slwi r2,r0,2
 lwz r0,104(r30)
 add r2,r2,r0
 lfs f13,48(r30)

JAVA OPTIMIZATION FOR SUPERSCALAR AND VECTOR ARCHITECTURES

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

 lfs f0,0(r2)
 fadds f0,f13,f0
 stfs f0,48(r30)
 lwz r0,32(r30)
 slwi r2,r0,2
 lwz r0,104(r30)
 add r2,r2,r0
 addi r2,r2,4
 lfs f13,52(r30)
 lfs f0,0(r2)
 fadds f0,f13,f0
 stfs f0,52(r30)
 lwz r0,32(r30)
 slwi r2,r0,2
 lwz r0,104(r30)
 add r2,r2,r0
 addi r2,r2,8
 lfs f13,56(r30)
 lfs f0,0(r2)
 fadds f0,f13,f0
 stfs f0,56(r30)
 lwz r0,32(r30)
 slwi r2,r0,2
 lwz r0,104(r30)
 add r2,r2,r0
 addi r2,r2,12
 lfs f13,60(r30)
 lfs f0,0(r2)
 fadds f0,f13,f0
 stfs f0,60(r30)
 lwz r2,32(r30)
 addi r0,r2,4
 stw r0,32(r30)
 b L2

Unwinding the loop by 4 elements gives us a speed up of 2 microseconds (that is a 7
microsecond execution time). However, based on an inspection of the assembler, we find
that no vector operations are added to the assembler output. Thus, we have been able to
take advantage of the super-scalar architecture, but not the internal vector architecture.

Encouraged by the speed up, we double the unwinding of the loop. Further speed-
ups can be had, since there may be a speculative pre-fetch in the CPU that enables the
needed data to appear in the L1 cache (which is 32k bytes in size). Thus, we expand the
unwinding and note that the array length must be an even multiple of 8, or we will access
the array out of bounds:

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 31

float sumV8(float a[], int n) {
 int i = 0;
 register float b[8] = {0};
 for (i=0; i < n; i=i+8) {
 b[0] = b[0] + a[i];
 b[1] = b[1] + a[i+1];
 b[2] = b[2] + a[i+2];
 b[3] = b[3] + a[i+3];
 b[4] = b[4] + a[i+4];
 b[5] = b[5] + a[i+5];
 b[6] = b[6] + a[i+6];
 b[7] = b[7] + a[i+7];

 }

 return b[0]+b[1]+b[2]+b[3]+
 b[4]+b[5]+b[6]+b[7];
}

The unwinding of the loop by 8 does give a small speed-up (executing the sum in only 6
microseconds). It is well to note that unwinding by 16 actually slows the code by a small
margin, and thus there are diminishing returns in using the unwinding approach.

One would hope that a vectorizing compiler would see the structure of the above
code and take advantage of the obvious parallelism. This appears to be beyond the GCC
compilers ability (at the moment). In support of the Altivec processor a -faltivec has been
added to the GCC compiler. This enables the direct invocation of extensions to the C
language. These include the vector data type, as well as direct invocation of subroutines
that map to Altivec assembler instructions, without the inclusion of header files
[Freescale]. For example:

float sumVAltivec2(float a[], int n) {
 int i;
 register vector float vb;
 // ensures intermediate sum vb stays in register
 vector float dest;
 // Declare vector in memory to move contents out of register
 float *p = (float *)(&dest);
 // set pointer to it in order to add the four floats
 vector float *input=(vector float *)a;
 // Set up input pointer at array address

 vb=(vector float)vec_splat_u32(0);
 // clear intermediate sum (integer 0 == float 0)
 for (i=0; i < n; i+=4) {
 vb = vec_add(*input++,vb);
 // c = vec_add(a, b);
 }
 dest=vb;
 return *p+*(p+1)+*(p+2)+*(p+3);
 // compacting phase
}

The assembler for the kernal of the for-loop is:

JAVA OPTIMIZATION FOR SUPERSCALAR AND VECTOR ARCHITECTURES

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

L5:
 addi r9,r30,68
 lwz r2,0(r9)
 lvx v0,0,r2
 addi r2,r2,16
 stw r2,0(r9)
 addi r2,r30,80
 lvx v1,0,r2
 vaddfp v0,v0,v1
 addi r2,r30,80
 stvx v0,0,r2
 lwz r2,32(r30)
 addi r0,r2,4
 stw r0,32(r30)
 b L2

The assembler reveals that vec_add has been mapped to the assembler instruction vaddfp.
Thus, we have finally started to take advantage of the Altivec processor. However, to do
it required major modification to the source code.

Even worse, the code has gotten rather much harder to understand. The invocation,
vec_splat_u32 zeros out the vector (a 128 bit quantity). The vec_add instruction is adding
128 bits (i.e. 4, 32-bit floats) at a time. The new code now runs in 3 microseconds (about
300% faster then the original sum function).

Not to be outdone, an optimized assembler language subroutine is available in a
library called SAL (Scientific Application Library) [Mercury].

// Check out my new sal call:
// void svex(
// float *a, /* input vector */
// int i, /* address stride for a */
// float *c, /* output scalar */
// int n, /* real element count */
// int flag /* ESAL flag */
//);
float sumSal(float a[], int n) {
 float sum;
 svex(a,1,&sum,n,0);
 return sum;
}

The svex based sumSal function can sum the 1024 floats in just 1.5 microseconds (some
600% faster than the original sum function).

Even faster results can be had when using the VAST compiler [Crescent]. A non-
disclosure agreement requires that I remain silent about how much faster VAST is. Also,
some of the code had to be altered in order to get the code to work. I am told that my
code uses non-standard C extensions.

3 JAVA HAS SPEED PROBLEMS

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 33

In Java it is possible to write the same sum function as in C:
 public static final float sum(
 final float[] a) {
 float s = 0;
 for (int i = 0; i < a.length; i++)
 s += a[i];
 return s;
 }

Using the command:
java -noclassgc -Xint math.Mat1

We turn off garbage collection and run our benchmark in interpreted mode. This takes
503 microseconds. The just-in-time compiler can be turned back on using:

java -noclassgc -Xmixed math.Mat1

With the JIT on, the sum method takes 41 microseconds to run (about 4.5 times slower
than the corresponding C code). We are using the same G4 processor (running at 400
Mhz). Just as in Section 1, we proceed to unwind the for-loop:

 public static final float sumV(
 final float a[]) {
 int i = 0;
 int n = a.length;
 float s[] = {0, 0, 0, 0};
 for (i = 0; i < n; i = i + 4) {
 s[0] = s[0] + a[i];
 s[1] = s[1] + a[i + 1];
 s[2] = s[2] + a[i + 2];
 s[3] = s[3] + a[i + 3];
 }// compaction phase...
 return s[0] + s[1] + s[2] + s[3];
 }

The above code saves no time at all, and, in fact runs in 48 microseconds (7
microseconds slower). What is going on? Each test is run 10 times, and the fastest time is
being reported. This gives the JIT a chance to kick in. What happens if we only run the
test once? The sum code runs in 246 microseconds (about 30 times slower than the
slowest C code).

The following code can take advantage of pipelining, without introducing
independence in the computation:

public static final float sum4(final float[] a) {
 float s = 0;
 for (int i = 0; i < a.length; i = i + 4) {
 s = a[i] +
 a[i + 1] +
 a[i + 2] +
 a[i + 3] +
 s;
 }
 return s;
 }

JAVA OPTIMIZATION FOR SUPERSCALAR AND VECTOR ARCHITECTURES

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

It is able to execute in 39 microseconds. Expansion to 8 terms yields:
 public static final float sum8(final float[] a) {
 float s = 0;
 for (int i = 0; i < a.length; i = i + 8) {
 s = a[i] +
 a[i + 1] +
 a[i + 2] +
 a[i + 3] +
 a[i + 4] +
 a[i + 5] +
 a[i + 6] +
 a[i + 7] +
 s;
 }
 return s;
 }

The above program runs in 31 microseconds.
Thus with simple loop unwinding, Java seems able to get a 25% increase in speed,

yet it is still 3 times slower than our slowest C code (and 30 times slower than vector-
optimized assembler).

4 WHAT IS GOING ON WITH JAVA’S COMPILER?

Our simple-minded example just adds up a list of numbers, yet we see dramatic speed
hits when we start to benchmark our code. Also, we find no direct improvement available
for vectorization (though there is some improvement with loop unwinding).

What is going on with the Java compiler? Does it understand anything about
vectorization? It might be useful for us to examine the assembler output for some of our
code. Given the input code:

 public static final float sum(
 final float[] a) {
 float s = 0;
 for (int i = 0; i < a.length; i++)
 s += a[i];
 return s;
 }

The compiler produced:
 Code:
 0: fconst_0
 1: fstore_1
 2: iconst_0
 3: istore_2
 4: iload_2
 5: aload_0
 6: arraylength
 7: if_icmpge 22
 10: fload_1
 11: aload_0

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 35

 12: iload_2
 13: faload
 14: fadd
 15: fstore_1
 16: iinc 2, 1
 19: goto 4
 22: fload_1
 23: freturn

Now consider the sum4 function:
 public static final float sum4(final float[] a) {
 float s = 0;
 for (int i = 0; i < a.length; i = i + 4) {
 s = a[i] +
 a[i + 1] +
 a[i + 2] +
 a[i + 3] +
 s;
 }
 return s;
 }

Compare the assembler output for sum with that of sum4:
Code:
 0: fconst_0
 1: fstore_1
 2: iconst_0
 3: istore_2
 4: iload_2
 5: aload_0
 6: arraylength
 7: if_icmpge 41
 10: aload_0
 11: iload_2
 12: faload
 13: aload_0
 14: iload_2
 15: iconst_1
 16: iadd
 17: faload
 18: fadd
 19: aload_0
 20: iload_2
 21: iconst_2
 22: iadd
 23: faload
 24: fadd
 25: aload_0
 26: iload_2
 27: iconst_3
 28: iadd
 29: faload
 30: fadd
 31: fload_1
 32: fadd

JAVA OPTIMIZATION FOR SUPERSCALAR AND VECTOR ARCHITECTURES

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

 33: fstore_1
 34: iload_2
 35: iconst_4
 36: iadd
 37: istore_2
 38: goto 4
 41: fload_1
 42: freturn

Thus we see in the byte codes an output that has expanded in direct correspondence with
the expansion in the input code. Yet the code does appear to run somewhat faster,
indicating that the JIT/G4 is taking advantage of loop unwinding to exploit pipelining.
Wherever the speed up is occurring, we know for sure it is not with Javac.

5 WHAT CAN WE DO TO SPEED UP JAVA?

Several projects have been started to address poor numerical performance in Java. For
example, IBM has created the Ninja project, a closed-source C-based system that is
compiled only for the PowerPC. Ninja uses C to create a series of JNI (Java Native
Interface) assembler calls in order to speed subroutine invocations. If Ninja were an
open-source project then we could recompile it for other platforms. As it is, it accelerates
PowerPC only.

There are some very high-performance vector accelerated C libraries available from
Apple Computer [Apple]. The Apple code is open-source but highly optimized for the
PowerPC. Additionally, it has not been interfaced to JNI. To be of use to Java
programmers, a more portable version of the vector-accelerated code is needed, so that
several platforms can take advantage of the vectorization.

There are portable, open-source, vector-accelerated C libraries available for signal
processing [VSIPL]. However, such libraries do not have JNI interfaces, and generating
them is a non-trivial exercise.

6 ON THE VECTORIZATION OF JAVA

This section describes a low-level vector-based API that is open-source. In addition, a
Java reference implementation is available, for portability to platforms where the C code
is not vectorized.

The accelerated C-based API can be recompiled on a per-platform basis, thereby
speeding up code that has been refactored to take advantage of the vector-based
subroutines. This is going to require that the programmer alter code, in order to get the
speed advantage. A nice alternative would be to create a vectorizing JIT compiler.

Luca Lutterotti created a project that contains the source code for implementing all
the Altivec operations in Java. Benchmarks show that there can be a 2 to 10 times speed-
up over pure Java implementations [Lutterotti].

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 37

The Lutterotti library automatically detects the presents of the Altivec processor.
Java code is supplied that will compute the result (when no libraries are available). If
there are native C-code libraries or if there are native C-code libraries that make use of
Altivec, those are used instead. From the programmer’s point of view, a single, high-level
subroutine is supplied:

public static void sqrtf(float[] A, float[] B) {
 switch (libraryType) {
 case NO_LIBRARY:
 if (A == null)
 break;
 int size = A.length;
 if (B == null || (B.length < size))
 B = new float[size];
 for (int i = 0; i < size; i++)
 B[i] = (float) Math.sqrt(A[i]);
 break;
 case NATIVE_LIBRARY:
 ssqrtf(A, B);
 break;
 case ALTIVEC_LIBRARY:
 vsqrtf(A, B);
 break;
 }
 }

A short array can actually slow down the execution of JNI-based computations (due to
overhead). On the other hand, given arrays of length 256 floats or longer, the above code
can run from 2 to 10 times faster than the Java source code. Size 256 arrays are 10 times
faster in Altivec accelerated code than the pure Java code. However, size 1024 arrays are
only 2.6 times faster than the pure Java code. What happened? Based on my
examinations of the code, there appears to be allocation and freeing of array storage, at
run-time. This is sure to cause a speed-hit (and one that might be avoidable, given more
effort).

7 CONCLUSION

The creation of application specific API’s appears to be a trend in Java. Particularly
where speed is critical. For example, there is the Java Advanced Imaging (JAI) API used
for image processing, and the Java3D API for graphics. These API’s are closed source
and typically written in C or C++. We, as Java programmers, must hope that Sun will
support our platform with the new API, or Java programs that make use of the new API
will not run.

For example, for several years, Windows, Solaris and Linux variants had Java3D and
JAI, but the Macintosh did not. As a result, Mac users had to use another platform in
order to use these APIs.

JAVA OPTIMIZATION FOR SUPERSCALAR AND VECTOR ARCHITECTURES

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Application specific API’s are basically frameworks that encourage code reuse.
(Altivec is not meant for double precision (i.e., 64 bit) floating point numbers. As a
result, vectorization is limited to integers and single-precision floating point numbers.

Calling subroutines outside of the Java environment exchanges reliability for speed.
The C code can generate segmentation faults, access memory in ways that Java cannot
and generally increases the complexity of the system. We have found that complexity is
inversely related to reliability.

It would be far better for reliability and complexity if there were vector-based byte
codes that could be created by Javac. These could then map into low-level vector
instructions (i.e., Altivec or SSE/SSE2). Clearly, heroic refactoring of legacy code is
costly, in terms of programmer time. Even better would be a JIT that understands the
vectorization of code (thus leaving the byte codes intact). With the advent of a JIT that
can take advantage of pipelined MIMD and SIMD architectures, common on today’s
desktops, Java would be propelled into the world of high-performance numerical
computing [Arvedahl] [Sanseri].

ACKNOWLEDGEMENT

The author is indebted to Rob Distinti, Member of Technical Staff at Norden Systems, for
his contribution of the vectorized version of the sum function.

REFERENCES

[Apple] http://developer.apple.com/hardware/ve/vector_libraries.html.

[Arvedahl] Svante Arvedahl. Java Just-In-Time Compilation for the IA-64 Architecture.
2002. Master's thesis, Linkoping University.

[Crescent] Crescent Bay Software,
http://www.crescentbaysoftware.com/compilertech.html

[Freescale] Altivec Technology Programming Interface Manual, Motorola/Freescale,
1999,
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

[IBM] Ninja (Numerically Intensive Java) http://alphaworks.ibm.com/tech/ninja

[Lutterotti] Luca Lutterotti, http://www.ing.unitn.it/~luttero/javaonMac/

[Mercury] SAL Reference Manual, TC-SAL-RM-570, Mercury Computer Systems, Inc.,
Chelmsford, MA 01824-2820, May, 2002. http://www.mc.com/.

http://developer.apple.com/hardware/ve/vector_libraries.html
http://www.crescentbaysoftware.com/compilertech.html
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://alphaworks.ibm.com/tech/ninja
http://www.ing.unitn.it/~luttero/javaonMac/
http://www.mc.com/

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 39

[Patterson and Hennessy] David Patterson, John Hennessy: Computer Organization
and Design, Morgan Kaufmann Publishers, Inc., San Francisco, California,
1998.

[Sanseri] Samuel K. Sanseri: Toward an Optimizing JIT Compiler for IA-64. 2000.
Master's thesis, Portland State University, OR, US.

[VSIPL] Vector Signal Image Processing Library, http://www.vsipl.org/

About the author

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

http://www.vsipl.org/
http://www.DocJava.com
mailto:Lyon@DocJava.com

