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Windows NT crashed. 
   I am the Blue Screen of Death. 

   No one hears your screams. 
-Anon 

Abstract 
This paper describes the refactoring of Java code to take advantage of the superscalar 
and vector architectures available on many modern desktop computers. 
The unrolling of Java loops is shown to cause some speed-ups for Java code. However, 
our benchmarks reveal that Java still lags behind vectorized C code. 
The present state-of-the-art in computer hardware has outpaced the current state of the 
JIT (Just-In-Time) compilers. We have resorted to modifying our Java code to make use 
of JNI (Java Native Interface) based vector-accelerated C programs to obtain speed-
ups from 2 to 10 times. 

1 THE SUPERSCALAR G4 

The superscalar G4 core (also known as the Motorola MPC74xx series processor) is 
capable of executing four instructions per clock cycle. Superscalar processors are based 
on pipelined MIMD (Multiple Instruction, Multiple Data) architectures. Simple loop 
unwinding can take advantage of such architectures. The G4 also has a 128-bit wide 
vector unit called the Altivec. The Altivec has 32 registers with 128 bits each and 
represents a departure from the pure general purpose CPU and a focus upon a SIMD 
(Single Instruction, Multiple Data) architecture that enables fine-grained parallelism. A 
block diagram depicting the PowerPC execution flow is shown in Figure 1. 
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Figure 1. The G4 Execution Flow 

 
Although the PowerPC (PPC) is a RISC (Reduced Instruction Set Computer) system, the 
addition of the Altivec processor adds over 160 machine instructions. These instructions 
map directly to C subroutines that can be invoked for the purpose of acceleration. In an 
ideal world, vectorizing compilers should be able to map data into these instructions and 
take advantage of the Altivec. In our experience, however, this almost never happens, 
even with the simplest of code [Freescale]. 

The trend toward SIMD-style signal processing type architectures is gaining wide 
acceptance (first with Intel’s MMX instructions and lately with the new SSE and SSE2 
instructions). The SIMD idea can be traced back to Alan Turing's 1946 parallel 
computing studies on VLIW  (Very Long Instruction Word) computers. A key difference 
between the super-scalar architecture and the VLIW architecture is that programs are 
typically changed in order to take advantage of the new architecture. In theory, Java 
obviates the need for the programs to change, in response to a new architecture, since this 
is the responsibility of the JIT (which should mean recompilation for each run). However, 
the present JIT’s do not take advantage of the modern VLIW machine [Patterson and 
Hennessy]. 

The computer industry is motivated to incorporate MIMD architectures into their 
hardware because they enable the fast computation of homogenous data arrays. These 
appear in several applications, such as signal processing, image processing, computer 
graphics, computer vision, communications, etc. In fact, an entire industry has grown up 
around the creation of chips dedicated to the processing of homogenous data arrays. 
These are typically called DSP (Digital Signal Processing) chips. It is therefore a matter 
of an evolutionary trend that we see DSP functions incorporated into general-purpose 
processors.  
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2 WHAT ARE C PROGRAMMERS DOING? 

To observe just how C programmers optimize their code for the PPC, consider the 
following function, which is designed to add n numbers in an array and return the result: 

float sum(float a[], int n) { 
  int i = 0; 
  float s = 0; 
  for (i=0; i < n; i++) { 
    s = s + a[i]; 
  } 
  return s; 
} 

The kernal of the for-loop translates into the following assembler: 
L5: 
        lwz r0,32(r30) 
        slwi r2,r0,2 
        lwz r0,88(r30) 
        add r2,r2,r0 
        lfs f13,36(r30) 
        lfs f0,0(r2) 
        fadds f0,f13,f0 
        stfs f0,36(r30) 
        lwz r2,32(r30) 
        addi r0,r2,1 
        stw r0,32(r30) 
        b L2 
 

Based on the addition of 1024 floats (32 bits, each), we find that the unoptimized code, 
running on a G4/400 Mhz, executes in 9 microseconds. In an effort to get the superscalar 
nature of the processor to kick-in, it is typical for the C programmer to unwind the loop. 
Since the G4 processor has a 4 stage super-scalar pipe-line, we can obtain some speed-up 
by using: 

float sumV(float a[], int n) { 
  int i = 0; 
  register float s[4] = {0}; 
  for (i=0; i < n; i=i+4) { 
    s[0] = s[0] + a[i]; 
    s[1] = s[1] + a[i+1]; 
    s[2] = s[2] + a[i+2]; 
    s[3] = s[3] + a[i+3]; 
  }// compaction phase... 
  return s[0]+s[1]+s[2]+s[3]; 
} 

The kernal of the for-loop translates into the following assembler: 
L5: 
        lwz r0,32(r30) 
        slwi r2,r0,2 
        lwz r0,104(r30) 
        add r2,r2,r0 
        lfs f13,48(r30) 
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        lfs f0,0(r2) 
        fadds f0,f13,f0 
        stfs f0,48(r30) 
        lwz r0,32(r30) 
        slwi r2,r0,2 
        lwz r0,104(r30) 
        add r2,r2,r0 
        addi r2,r2,4 
        lfs f13,52(r30) 
        lfs f0,0(r2) 
        fadds f0,f13,f0 
        stfs f0,52(r30) 
        lwz r0,32(r30) 
        slwi r2,r0,2 
        lwz r0,104(r30) 
        add r2,r2,r0 
        addi r2,r2,8 
        lfs f13,56(r30) 
        lfs f0,0(r2) 
        fadds f0,f13,f0 
        stfs f0,56(r30) 
        lwz r0,32(r30) 
        slwi r2,r0,2 
        lwz r0,104(r30) 
        add r2,r2,r0 
        addi r2,r2,12 
        lfs f13,60(r30) 
        lfs f0,0(r2) 
        fadds f0,f13,f0 
        stfs f0,60(r30) 
        lwz r2,32(r30) 
        addi r0,r2,4 
        stw r0,32(r30) 
        b L2 

Unwinding the loop by 4 elements gives us a speed up of 2 microseconds (that is a 7 
microsecond execution time). However, based on an inspection of the assembler, we find 
that no vector operations are added to the assembler output. Thus, we have been able to 
take advantage of the super-scalar architecture, but not the internal vector architecture. 

Encouraged by the speed up, we double the unwinding of the loop. Further speed-
ups can be had, since there may be a speculative pre-fetch in the CPU that enables the 
needed data to appear in the L1 cache (which is 32k bytes in size). Thus, we expand the 
unwinding and note that the array length must be an even multiple of 8, or we will access 
the array out of bounds: 
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float sumV8(float a[], int n) { 
  int i = 0; 
  register float b[8] = {0}; 
  for (i=0; i < n; i=i+8) { 
    b[0] = b[0] + a[i]; 
    b[1] = b[1] + a[i+1]; 
    b[2] = b[2] + a[i+2]; 
    b[3] = b[3] + a[i+3]; 
    b[4] = b[4] + a[i+4]; 
    b[5] = b[5] + a[i+5]; 
    b[6] = b[6] + a[i+6]; 
    b[7] = b[7] + a[i+7]; 
 
  } 
 
  return b[0]+b[1]+b[2]+b[3]+ 
         b[4]+b[5]+b[6]+b[7]; 
} 

The unwinding of the loop by 8 does give a small speed-up (executing the sum in only 6 
microseconds). It is well to note that unwinding by 16 actually slows the code by a small 
margin, and thus there are diminishing returns in using the unwinding approach. 

One would hope that a vectorizing compiler would see the structure of the above 
code and take advantage of the obvious parallelism. This appears to be beyond the GCC 
compilers ability (at the moment). In support of the Altivec processor a -faltivec has been 
added to the GCC compiler. This enables the direct invocation of extensions to the C 
language. These include the vector data type, as well as direct invocation of subroutines 
that map to Altivec assembler instructions, without the inclusion of header files 
[Freescale]. For example: 

float sumVAltivec2(float a[], int n) { 
   int i; 
   register vector float vb;        
   // ensures intermediate sum vb stays in register  
   vector float dest;                     
   // Declare vector in memory to move contents out of register  
   float *p = (float *)(&dest);         
   // set pointer to it in order to add the four floats              
   vector float *input=(vector float *)a;  
   // Set up input pointer at array address  
         
   vb=(vector float)vec_splat_u32(0);    
   // clear intermediate sum (integer 0 == float 0) 
   for (i=0; i < n; i+=4) { 
     vb = vec_add(*input++,vb);          
     // c = vec_add(a, b); 
   } 
   dest=vb; 
   return *p+*(p+1)+*(p+2)+*(p+3);         
   // compacting phase 
} 
 

The assembler for the kernal of the for-loop is: 
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L5: 
        addi r9,r30,68 
        lwz r2,0(r9) 
        lvx v0,0,r2 
        addi r2,r2,16 
        stw r2,0(r9) 
        addi r2,r30,80 
        lvx v1,0,r2 
        vaddfp v0,v0,v1 
        addi r2,r30,80 
        stvx v0,0,r2 
        lwz r2,32(r30) 
        addi r0,r2,4 
        stw r0,32(r30) 
        b L2 
 

The assembler reveals that vec_add has been mapped to the assembler instruction vaddfp. 
Thus, we have finally started to take advantage of the Altivec processor. However, to do 
it required major modification to the source code. 

Even worse, the code has gotten rather much harder to understand. The invocation, 
vec_splat_u32 zeros out the vector (a 128 bit quantity). The vec_add instruction is adding 
128 bits (i.e. 4, 32-bit floats) at a time. The new code now runs in 3 microseconds (about 
300% faster then the original sum function). 

Not to be outdone, an optimized assembler language subroutine is available in a 
library called SAL (Scientific Application Library) [Mercury]. 

// Check out my new sal call: 
//   void svex( 
//   float *a,                     /* input vector */ 
//   int i,                     /* address stride for a */ 
//   float *c,                     /* output scalar */ 
//   int n,                     /* real element count */ 
//   int flag                   /* ESAL flag */ 
//   ); 
float sumSal(float a[], int n) { 
  float sum; 
  svex(a,1,&sum,n,0); 
  return sum; 
} 

The svex based sumSal function can sum the 1024 floats in just 1.5 microseconds (some 
600% faster than the original sum function).  

Even faster results can be had when using the VAST compiler [Crescent]. A non-
disclosure agreement requires that I remain silent about how much faster VAST is. Also, 
some of the code had to be altered in order to get the code to work. I am told that my 
code uses non-standard C extensions. 

3 JAVA HAS SPEED PROBLEMS 
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In Java it is possible to write the same sum function as in C: 
   public static final float sum( 
            final float[] a) { 
        float s = 0; 
        for (int i = 0; i < a.length; i++) 
            s += a[i]; 
        return s; 
    } 
 
Using the command: 
java -noclassgc -Xint math.Mat1 

We turn off garbage collection and run our benchmark in interpreted mode. This takes 
503 microseconds. The just-in-time compiler can be turned back on using: 

java -noclassgc -Xmixed math.Mat1 

With the JIT on, the sum method takes 41 microseconds to run (about 4.5 times slower 
than the corresponding C code). We are using the same G4 processor (running at 400 
Mhz). Just as in Section 1, we proceed to unwind the for-loop: 

 
    public static final float sumV( 
            final float a[]) { 
        int i = 0; 
        int n = a.length; 
        float s[] = {0, 0, 0, 0}; 
        for (i = 0; i < n; i = i + 4) { 
            s[0] = s[0] + a[i]; 
            s[1] = s[1] + a[i + 1]; 
            s[2] = s[2] + a[i + 2]; 
            s[3] = s[3] + a[i + 3]; 
        }// compaction phase... 
        return s[0] + s[1] + s[2] + s[3]; 
    } 

The above code saves no time at all, and, in fact runs in 48 microseconds (7 
microseconds slower). What is going on? Each test is run 10 times, and the fastest time is 
being reported. This gives the JIT a chance to kick in. What happens if we only run the 
test once? The sum code runs in 246 microseconds (about 30 times slower than the 
slowest C code). 

The following code can take advantage of pipelining, without introducing 
independence in the computation: 

public static final float sum4(final float[] a) { 
         float s = 0; 
         for (int i = 0; i < a.length; i = i + 4) { 
             s = a[i] + 
                 a[i + 1] + 
                 a[i + 2] + 
                 a[i + 3] + 
                 s; 
         } 
         return s; 
     } 
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It is able to execute in 39 microseconds. Expansion to 8 terms yields: 
 public static final float sum8(final float[] a) { 
        float s = 0; 
        for (int i = 0; i < a.length; i = i + 8) { 
            s = a[i] + 
                a[i + 1] + 
                a[i + 2] + 
                a[i + 3] + 
                a[i + 4] + 
                a[i + 5] + 
                a[i + 6] + 
                a[i + 7] + 
                s; 
        } 
        return s; 
    } 

The above program runs in 31 microseconds. 
Thus with simple loop unwinding, Java seems able to get a 25% increase in speed, 

yet it is still 3 times slower than our slowest C code (and 30 times slower than vector-
optimized assembler). 

4 WHAT IS GOING ON WITH JAVA’S COMPILER? 

Our simple-minded example just adds up a list of numbers, yet we see dramatic speed 
hits when we start to benchmark our code. Also, we find no direct improvement available 
for vectorization (though there is some improvement with loop unwinding). 

What is going on with the Java compiler? Does it understand anything about 
vectorization? It might be useful for us to examine the assembler output for some of our 
code. Given the input code: 

   public static final float sum( 
            final float[] a) { 
        float s = 0; 
        for (int i = 0; i < a.length; i++) 
            s += a[i]; 
        return s; 
    } 

The compiler produced: 
  Code: 
   0:   fconst_0 
   1:   fstore_1 
   2:   iconst_0 
   3:   istore_2 
   4:   iload_2 
   5:   aload_0 
   6:   arraylength 
   7:   if_icmpge       22 
   10:  fload_1 
   11:  aload_0 
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   12:  iload_2 
   13:  faload 
   14:  fadd 
   15:  fstore_1 
   16:  iinc    2, 1 
   19:  goto    4 
   22:  fload_1 
   23:  freturn 

Now consider the sum4 function: 
    public static final float sum4(final float[] a) { 
         float s = 0; 
         for (int i = 0; i < a.length; i = i + 4) { 
             s = a[i] + 
                 a[i + 1] + 
                 a[i + 2] + 
                 a[i + 3] + 
                 s; 
         } 
         return s; 
     } 

Compare the assembler output for sum with that of sum4: 
Code: 
   0:   fconst_0 
   1:   fstore_1 
   2:   iconst_0 
   3:   istore_2 
   4:   iload_2 
   5:   aload_0 
   6:   arraylength 
   7:   if_icmpge       41 
   10:  aload_0 
   11:  iload_2 
   12:  faload 
   13:  aload_0 
   14:  iload_2 
   15:  iconst_1 
   16:  iadd 
   17:  faload 
   18:  fadd 
   19:  aload_0 
   20:  iload_2 
   21:  iconst_2 
   22:  iadd 
   23:  faload 
   24:  fadd 
   25:  aload_0 
   26:  iload_2 
   27:  iconst_3 
   28:  iadd 
   29:  faload 
   30:  fadd 
   31:  fload_1 
   32:  fadd 
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   33:  fstore_1 
   34:  iload_2 
   35:  iconst_4 
   36:  iadd 
   37:  istore_2 
   38:  goto    4 
   41:  fload_1 
   42:  freturn 

Thus we see in the byte codes an output that has expanded in direct correspondence with 
the expansion in the input code. Yet the code does appear to run somewhat faster, 
indicating that the JIT/G4 is taking advantage of loop unwinding to exploit pipelining. 
Wherever the speed up is occurring, we know for sure it is not with Javac.  

5 WHAT CAN WE DO TO SPEED UP JAVA? 

Several projects have been started to address poor numerical performance in Java. For 
example, IBM has created the Ninja project, a closed-source C-based system that is 
compiled only for the PowerPC. Ninja uses C to create a series of JNI (Java Native 
Interface) assembler calls in order to speed subroutine invocations. If Ninja were an 
open-source project then we could recompile it for other platforms. As it is, it accelerates 
PowerPC only.  

There are some very high-performance vector accelerated C libraries available from 
Apple Computer [Apple]. The Apple code is open-source but highly optimized for the 
PowerPC. Additionally, it has not been interfaced to JNI. To be of use to Java 
programmers, a more portable version of the vector-accelerated code is needed, so that 
several platforms can take advantage of the vectorization. 

There are portable, open-source, vector-accelerated C libraries available for signal 
processing [VSIPL]. However, such libraries do not have JNI interfaces, and generating 
them is a non-trivial exercise. 

6 ON THE VECTORIZATION OF JAVA 

This section describes a low-level vector-based API that is open-source. In addition, a 
Java reference implementation is available, for portability to platforms where the C code 
is not vectorized.  

The accelerated C-based API can be recompiled on a per-platform basis, thereby 
speeding up code that has been refactored to take advantage of the vector-based 
subroutines. This is going to require that the programmer alter code, in order to get the 
speed advantage. A nice alternative would be to create a vectorizing JIT compiler. 

Luca Lutterotti created a project that contains the source code for implementing all 
the Altivec operations in Java. Benchmarks show that there can be a 2 to 10 times speed-
up over pure Java implementations [Lutterotti]. 
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The Lutterotti library automatically detects the presents of the Altivec processor. 
Java code is supplied that will compute the result (when no libraries are available). If 
there are native C-code libraries or if there are native C-code libraries that make use of 
Altivec, those are used instead. From the programmer’s point of view, a single, high-level 
subroutine is supplied: 

public static void sqrtf(float[] A, float[] B) { 
                switch (libraryType) { 
                        case NO_LIBRARY: 
                                if (A == null) 
                                        break; 
                                int size = A.length; 
                                if (B == null || (B.length < size)) 
                                        B = new float[size]; 
                                for (int i = 0; i < size; i++) 
                                        B[i] = (float) Math.sqrt(A[i]); 
                        break; 
                        case NATIVE_LIBRARY: 
                                ssqrtf(A, B); 
                        break; 
                        case ALTIVEC_LIBRARY: 
                                vsqrtf(A, B); 
                        break; 
                } 
        } 

A short array can actually slow down the execution of JNI-based computations (due to 
overhead). On the other hand, given arrays of length 256 floats or longer, the above code 
can run from 2 to 10 times faster than the Java source code. Size 256 arrays are 10 times 
faster in Altivec accelerated code than the pure Java code. However, size 1024 arrays are 
only 2.6 times faster than the pure Java code. What happened? Based on my 
examinations of the code, there appears to be allocation and freeing of array storage, at 
run-time. This is sure to cause a speed-hit (and one that might be avoidable, given more 
effort). 

7 CONCLUSION 

The creation of application specific API’s appears to be a trend in Java. Particularly 
where speed is critical. For example, there is the Java Advanced Imaging (JAI) API used 
for image processing, and the Java3D API for graphics. These API’s are closed source 
and typically written in C or C++. We, as Java programmers, must hope that Sun will 
support our platform with the new API, or Java programs that make use of the new API 
will not run.  

For example, for several years, Windows, Solaris and Linux variants had Java3D and 
JAI, but the Macintosh did not. As a result, Mac users had to use another platform in 
order to use these APIs.  
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Application specific API’s are basically frameworks that encourage code reuse. 
(Altivec is not meant for double precision (i.e., 64 bit) floating point numbers. As a 
result, vectorization is limited to integers and single-precision floating point numbers. 

Calling subroutines outside of the Java environment exchanges reliability for speed. 
The C code can generate segmentation faults, access memory in ways that Java cannot 
and generally increases the complexity of the system. We have found that complexity is 
inversely related to reliability.  

It would be far better for reliability and complexity if there were vector-based byte 
codes that could be created by Javac. These could then map into low-level vector 
instructions (i.e., Altivec or SSE/SSE2). Clearly, heroic refactoring of legacy code is 
costly, in terms of programmer time. Even better would be a JIT that understands the 
vectorization of code (thus leaving the byte codes intact). With the advent of a JIT that 
can take advantage of pipelined MIMD and SIMD architectures, common on today’s 
desktops, Java would be propelled into the world of high-performance numerical 
computing [Arvedahl]  [Sanseri]. 
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