
JOURNAL OF OBJECT TECHNOLOGY

Vol. 8, No. 6, September-October 2009

Douglas A. Lyon: “The Discrete Fourier Transform, Part 3: The PSD”, in Journal of Object

The Discrete Fourier Transform, Part
3: The PSD

By Douglas Lyon

Abstract
This paper is part 3 in a series of papers about the Discrete Fourier Transform
(DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is
on computing the Power Spectral Density (PSD) of the FFT (Fast Fourier
Transform) and the IFFT (Inverse Fast Fourier Transform). The implementation is
based on a well-known algorithm, called the decimation in time Radix 2 FFT, and
requires that its’ input data be an integral power of two in length.
This paper demonstrates the computation of the PSD and applications of the DFT
and IDFT. The applications include filtering, windowing, pitch shifting and the
spectral analysis of re-sampling.

1 INTRODUCTION

This section introduces the DFT and PSD computations. We then demonstrate how to
implement and display the numeric output, using Java.

1.1 The DFT

Given a sampled waveform

 vj , j ∈ 0...N −1[] (1.1)

The Continuous Time Fourier Transform (CTFT) is defined by:

 V (f) = F[v(t)] = v(t)e−2π ift dt
−∞

∞

∫ (1.2).

The DFT is given by:

 Vk =
1
N

e−2π ijk / Nvj
j=0

N −1

∑ (1.3).

Direct computation of the DFT takes O(N 2) complex multiplications while the FFT
takes O(N log N) complex multiplications. The primary goal of the FFT is to speed
computation of (1.3).

Our last paper described an FFT algorithm known as the decimation-in-time
radix-two FFT algorithm (also known as the Cooley-Tukey algorithm).

Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Technology, vol. 8. no. 6, September-October 2009 pp. 17 - 30

THE DISCRETE FOURIER TRANSFORM, PART 3: THE PSD

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

1.2 PSD Computations

To compute the PSD of the FFT output, we use the computePSD method in the FFT
class. The PSD is computed by squaring the real and imaginary parts of the FFT
output:

public double [] computePSD () {
 double [] psd = new double[r_data.length];
 for (int k = 0; k < r_data.length; k++) {
 psd[k] =
 r_data[k] * r_data[k] +
 i_data[k] * i_data[k];

 }
 return psd;
 }

The testPSD method demonstrates the use of computePSD:
private static void testPSD () {
 FFT f = new FFT();
 int N = 8;
 int numBits = f.log2(N);
 double x1[] = new double[N];
 for (int j=0; j<N; j++)
 x1[j] = j;
 double[] in_r = new double[N];
 double[] in_i = new double[N];
 // copy test signal.
 in_r = arrayCopy(x1);
 f.forwardFFT(in_r, in_i);
 f.printArrays("After the FFT");
 double psd[] = f.computePSD();
 FFT.printArray(psd,"The psd");
}

The output of the test method appears below:
After the FFT
[0]=(3.5,0)
[1]=(-0.5,1.20711)
[2]=(-0.5,0.5)
[3]=(-0.5,0.207107)
[4]=(-0.5,0)
[5]=(-0.500000,-0.207107)
[6]=(-0.500000,-0.5)
[7]=(-0.500000,-1.20711)
The psd
v[0]=12.25
v[1]=1.70711
v[2]=0.5
v[3]=0.292893
v[4]=0.25
v[5]=0.292893
v[6]=0.500000
v[7]=1.70711
Completed(0)

Figure 1.2-1 shows the PSD of a real input. Real-valued signals are always symmetric
about the origin.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 19

Figure 1.2-1. The PSD of a 2048 Sampled Waveform

The implementation of the PSD computation and the graphing are shown in the
following section.

1.3. Implementation of the Transforms in the AudioFrame

In the AudioFrame class, we assume that we will be taking the FFT of a real signal. A
real signal, like audio, has no imaginary part, only a single value that varies from
sample to sample. Thus, we construct a complex input to the FFT, setting the
imaginary part of the input equal to zero.

When taking the IFFT, a signal that starts as being real will end up as a real
signal. The exception to this occurs when a spectral modification introduces terms that
do not null out in the imaginary plane.

Figure 1.3-1 shows the part of the Audio menu in the MainMenuBar in the
AudioFrame that contains the transform fragments for performing the FFT
manipulations. The keyboard shortcuts are shown in brackets (i.e., ‘[1]’).

Figure 1.3-1. The Transform Fragment of the AudioFrame

In the following DFT and IDFT code, we include facilities for benchmarking the
execution of the DFT on long sequences.

 public FFT dft() {
 double doubleArray[] = ulc.getDoubleArray();
 double [] psd;
 FFT f = new FFT();
 Timer t1 = new Timer();
 t1.mark();
 psd=f.dft(doubleArray);
 // Stop the timer and report.
 t1.record();
 System.out.println("Time to perform DFT:");

THE DISCRETE FOURIER TRANSFORM, PART 3: THE PSD

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

 t1.report();
 f.graphs();
 return f;
 }

The IDFT method follows:
 public void idft(FFT f) {
 double doubleArray[];
 Timer t1 = new Timer();
 t1.mark();
 doubleArray=f.idft();
 // Stop the timer and report.
 t1.record();
 System.out.println("Time to perform IDFT:");
 t1.report();
 f.graphs();
 }

In the following method getTruncatedDoubleData truncates the input data to the
nearest integral power of two.

 public void fft() {
 fftInstance = new FFT();
 double[] r_d = getTruncatedDoubleData();
 double[] i_d = new double[r_d.length];
 fftInstance.forwardFFT(r_d, i_d);
 ulc.play();
}

The audio data is copied before truncation occurs. It is not overwritten until after the
ifft method is invoked. The getTruncatedDoubleData truncation method follows:

double [] getTruncatedDoubleData() {
 double[] temp = FFT.arrayCopy(getDoubleData());
 int trunc = 1 << FFT.log2(temp.length);
 System.out.println("Truncated size: " + trunc);
 double[] truncArray = new double[trunc];
 for (int i=0; i < trunc; i++)
 truncArray[i] = temp[i];
 return truncArray;
}

An FFT is part of an analysis phase, while the IFFT is part of a synthesis phase.
public void ifft() {
 double realInput[] =
 FFT.arrayCopy(fftInstance.getReal());
 double imaginaryInput[] =
 FFT.arrayCopy(fftInstance.getImaginary());
 fftInstance.reverseFFT(realInput,imaginaryInput);
 ulc = new UlawCodec(realInput);
 ulc.play();
 }

The ifft method throws away the imaginary part of the reverseFFT methods output.
For real input signals, the imaginary part is zero, in theory. We have found, however,
that there is some small near-zero imaginary part that has been attributed to round-off
error.

The graph of the PSD is drawn using graphPSD

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 21

public void graphPSD() {
 Graph.graph(fftInstance.computePSD(),
 "PSD of truncated waveform","a^2");
 };

A saw wave and its’ PSD are shown using the OscopeFrame and graph methods on
the left and right in Figure 1.3-2.

Figure 1.3-2. Saw Wave and Spectral output from the graphPSD method.

2 A NOISE FILTER USING THE FFT

The basic idea of providing a noise filter is that you take a signal, with added noise,
perform an FFT on the signal, remove all spectral harmonics that have a PSD below
some threshold, and then take the IFFT. Selecting the PSD threshold for noise can be
tricky. What works well on a synthetic sound might turn a sampled sound into silence.

A block diagram of the process appears in Figure 2-1. The code for adding noise
to the waveform stored in the AudioFrame instance is shown below:

public void addNoise() {
 double r_d[] = getDoubleData();
 for (int i = 0; i< r_d.length; i++)
 r_d[i] = r_d[i] + 0.1*(Math.random() -0.5);
 ulc = new UlawCodec(r_d);
}

THE DISCRETE FOURIER TRANSFORM, PART 3: THE PSD

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Samples FFT

noise

+ if psd[i] < L
psd[i]=0

IFFT

Figure 2-1. The Noise Filter

The Math.random method returns a random value between zero and one. Thus, the
sampled data is summed with time-domain uniformly distributed noise (also known as
white noise). The following code performs a PSD-based cutoff, after taking the FFT
of the sound samples:

public void removeNoise() {
 double noisePowerCutoff = 0.05;

 fftInstance = new FFT();
 double r_d[] = getTruncatedDoubleData();
 double i_d[] = new double[r_d.length];
 fftInstance.forwardFFT(r_d, i_d);
 double psd[] = fftInstance.computePSD();
 for (int i = 0; i < psd.length; i++) {
 if (psd[i] < noisePowerCutoff) {
 r_d[i] = 0;
 i_d[i] = 0;
 }
 }
 fftInstance.reverseFFT(r_d,i_d);
 ulc = new UlawCodec(r_d);
 ulc.play();
}

The UlawCodec is described in [Lyon 08G]. The initial waveform is a sine wave of
400 Hz. A graph of the sine wave with PSD is shown in Figure 2-2.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 23

Figure 2-2. Graph of the Sine Wave at 400 Hz with PSD

Figure 2-3 shows the sine wave after noise is added.

Figure 2-3. Sine wave after the addition of noise

The PSD of the sine wave plus noise is shown in Figure 2-4.

THE DISCRETE FOURIER TRANSFORM, PART 3: THE PSD

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Figure 2-4. The PSD of the Sine Wave plus Noise

Figure 2-5 shows the clean spectral break between the noise and the sine wave. The
removal of noise from such a waveform is performed with a trivial frequency-based
amplitude detector.

Figure 2-5. The Reconstructed Waveform and its psd

3 FREQUENCY SHIFTING USING THE FFT

To shift the pitch of a time-domain signal, we take the FFT, perform the high-pass
filtering, shown in the previous section, shift the spectrum lower, and then perform
the IFFT. Recall that the FFT produces a real and a complex output. The pitch shifter
as just one of many possible spectral modifications that may be performed by the user
before the IFFT is taken. The approach is to work on bins 0..N/2 first, then to copy the
bins about the N/2 point in the spectrum, assuming that the left and right-hand sides
are symmetric (as is always the case for real signals). The code for the pitch shift
follows:

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 25

public void pitchShift() {
 fftInstance = new FFT();
 double[] r_d = getTruncatedDoubleData();
 int N = r_d.length;
 double[] i_d = new double[N];
 int N_on_4 = N/4;

 fftInstance.forwardFFT(r_d, i_d);
 // shift data down
 for (int i = 0; i < N_on_4; i++) {
 r_d[i] = r_d[i + N_on_4];
 i_d[i] = i_d[i + N_on_4];
 }
 for (int i= N_on_4; i < N/2; i++) {
 r_d[i] = 0;
 i_d[i] = 0;
 }
 // reflect about center, assuming a real signal
 int i,j;
 for (i=0,j=N-1; i < N/2; i++, j--) {
 r_d[j] = r_d[i];
 i_d[j] = i_d[i];
 }
 fftInstance.reverseFFT(r_d,i_d);
 ulc = new UlawCodec(r_d);
 ulc.play();
}

The result for synthetic tones, rich in harmonics, is to filter out some of the lower
frequencies and to lower the upper harmonic content.

Figure 3-1. The Squarewave and its psd

THE DISCRETE FOURIER TRANSFORM, PART 3: THE PSD

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Figure 3-2. The pitch-shifted square wave and its psd.

4 RESAMPLING AND THE FFT

Resampling a 1D waveform is a common way to perform time-compressed speech.
One way to perform the resampling is to perform Fairbanks sampling and throw away
every other sample [Fairbanks].

Fairbbanks sampling is a 2:1 sub sampling in the time domain. The
implementation follows:

public void resample() {
 double[] r_d = getTruncatedDoubleData();
 int N = r_d.length;
 double [] resampled = new double[N/2];
 for (int i=0; i < N/2; i++)
 resampled[i] = r_d[2*i];

 ulc = new UlawCodec(resampled);

 ulc.play();

}

Figure 4-1 shows a saw wave and its PSD.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 27

Figure 4-1. The sawwave and psd before the subsampling

Figure 4-2. The Saw Wave and PSD after Sub Sampling

From figures 4-1 and 4-2 we can clearly see that the 2:1 sub sampling has doubled the
pitch of the harmonics, and halved the number of available samples.

5 CENTERING THE FFT

Typically the lowest frequency is located at the center of the PSD when taking an
FFT. This is due to the process of centering the FFT (called centering). Centering the
FFT is accomplished by replacing the sample data with a value that is changing from
positive to negative. This described by:

 vk = vk −1()k (5.1)

THE DISCRETE FOURIER TRANSFORM, PART 3: THE PSD

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

for the real sample on input. After the IFFT (or IDFT) the formula must be applied
again [Myler].

Figure 5-1 A Pulse with A Centered psd.

The centered PSD for a pulse is shown in Figure 5-1. One can modify the
forwardFFT in using:

public void forwardFFT(double in_r[], double in_i[]) {
 int id;
 int localN;
 double wtemp, Wjk_r, Wjk_i, Wj_r, Wj_i;
 double theta, tempr, tempi;
 int ti, tj;
 int numBits = log2(in_r.length);
 if (forward) {
 centering(in_r);
}

Where centering is a method that equation (5.1) for the real part of the sample data.
private void centering(double r[]) {
 int s = 1;
 for (int i = 0; i < r.length; i++) {
 s = -s;
 r[i] *= s;
 }
}

The reverseFFT implements centering after the IFFT is finishing up:
public void reverseFFT(double in_r[], double in_i[]) {
 forward = false;
 forwardFFT(in_r, in_i);
 forward = true;
 centering(in_r);
}

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 29

Figure 5-2. An Un-Centered PSD

Without centering the PSD is shown with the lowest frequencies on the edges. This is
the convention that we have adopted for the 1D PSD display (except when explicitly
marked otherwise). Left un-centered, the FFT and DFT produce results that can match
the outputs of other FFT and DFT implementations (like [Moore]). As a result, we felt
it best to leave the spectrum un-centered, at least for the 1-D FFT.

6 SUMMARY

The idea that a pitch shifter be combined with a re-sampler to compress speech is not
new. In fact, it may be used to help perform skimming on recorded speech (a topic of
current research) [Arons].

The introduction to the DFT, IDFT, FFT and IFFT is not new either. Also, it is
probably the case that the FFT is not the fastest. For the fastest Fourier transform in
the west, see http://theory.lcs.mit.edu/~fftw. The FFTW may be the fastest, but it may
also rank as one of the most complex of implementations. It is still O(N log N) but it
has a very low constant time.

THE DISCRETE FOURIER TRANSFORM, PART 3: THE PSD

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

REFERENCES

[Arons] 1997. “SpeechSkimmer: A System for Interactively Skimming Recorded
Speech”, by Barry Arons. ACM Transactions on Computer-Human
Interaction 4:1, pps. 3-38. Also on
http://barons.www.media.mit.edu/People/barons.

[Fairbanks] 1954. “Method for Time or Frequency Compression-Expansion of
Speech”, Transactions of the Institute of Radio Engineers, Professional
Group on Audio AU-2: 7-12.

[Lyon 90] “Ad-Hoc and Derived Parking Curves”, by Douglas Lyon, SPIE -
International Society for Optical Engineering, Boston MA, November 8,
1990.

[Lyon 97] Java Digital Signal Processing, Douglas A. Lyon and H. Rao, M&T Press
(an imprint of Henry Holt). November 1997

[Lyon 08G] "The U-Law CODEC",by Douglas A. Lyon, Journal of Object
Technology, vol. 7, no. 8, November-December 2008, pp. 17-31.

[Moore] 1990. pps. 560, Elements of Computer Music, Moore, F.R., Prentice Hall,
Englewood Cliffs, NJ.

[Myler] 1993. pps. 284, Computer Imaging Recipes in C, Harley R. Myler and Arthur
R. Weeks, Prentice Hall, Englewood Cliffs, NJ. Floppy.

About the author
Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S.
degrees in computer and systems engineering from Rensselaer
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion
Laboratory at the California Institute of Technology, Pasadena, CA.
He is currently the co-director of the Electrical and Computer

Engineering program at Fairfield University, in Fairfield CT, a senior member of the
IEEE and President of DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has
authored or co-authored three books (Java, Digital Signal Processing, Image
Processing in Java and Java for Programmers). He has authored over 40 journal
publications. Email: lyon@docjava.com. Web: http://www.DocJava.com.

