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The Discrete Fourier Transform, Part 
3: The PSD 

By Douglas Lyon 

Abstract 
This paper is part 3 in a series of papers about the Discrete Fourier Transform 
(DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is 
on computing the Power Spectral Density (PSD) of the FFT (Fast Fourier 
Transform) and the IFFT (Inverse Fast Fourier Transform). The implementation is 
based on a well-known algorithm, called the decimation in time Radix 2 FFT, and 
requires that its’ input data be an integral power of two in length. 
This paper demonstrates the computation of the PSD and applications of the DFT 
and IDFT. The applications include filtering, windowing, pitch shifting and the 
spectral analysis of re-sampling.  

1 INTRODUCTION 

This section introduces the DFT and PSD computations. We then demonstrate how to 
implement and display the numeric output, using Java. 

1.1 The DFT 

Given a sampled waveform 

 vj , j ∈ 0...N −1[ ] (1.1) 

The Continuous Time Fourier Transform (CTFT) is defined by: 

 V ( f ) = F[v(t)] = v(t)e−2π ift dt
−∞

∞

∫  (1.2).  

The DFT is given by: 

 Vk =
1
N

e−2π ijk / Nvj
j=0

N −1

∑  (1.3). 

Direct computation of the DFT takes O( N 2 ) complex multiplications while the FFT 
takes O(N log N )  complex multiplications. The primary goal of the FFT is to speed 
computation of (1.3). 

Our last paper described an FFT algorithm known as the decimation-in-time 
radix-two FFT algorithm (also known as the Cooley-Tukey algorithm).  
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1.2 PSD Computations 

To compute the PSD of the FFT output, we use the computePSD method in the FFT 
class. The PSD is computed by squaring the real and imaginary parts of the FFT 
output: 

public double [] computePSD () { 
  double [] psd = new double[r_data.length]; 
  for (int k = 0; k < r_data.length; k++) { 
    psd[k] =  
       r_data[k] * r_data[k] +  
       i_data[k] * i_data[k]; 
 
  } 
  return psd; 
 } 

The testPSD method demonstrates the use of computePSD: 
private static void testPSD () { 
 FFT f = new FFT(); 
    int N = 8; 
    int numBits = f.log2(N); 
    double x1[] = new double[N];   
  for (int j=0; j<N; j++) 
   x1[j] = j; 
    double[] in_r = new double[N]; 
    double[] in_i = new double[N]; 
    // copy test signal. 
    in_r = arrayCopy(x1); 
    f.forwardFFT(in_r, in_i); 
    f.printArrays("After the FFT"); 
    double psd[] = f.computePSD(); 
 FFT.printArray(psd,"The psd"); 
} 
 

The output of the test method appears below: 
After the FFT 
[0]=(3.5,0) 
[1]=(-0.5,1.20711) 
[2]=(-0.5,0.5) 
[3]=(-0.5,0.207107) 
[4]=(-0.5,0) 
[5]=(-0.500000,-0.207107) 
[6]=(-0.500000,-0.5) 
[7]=(-0.500000,-1.20711) 
The psd 
v[0]=12.25 
v[1]=1.70711 
v[2]=0.5 
v[3]=0.292893 
v[4]=0.25 
v[5]=0.292893 
v[6]=0.500000 
v[7]=1.70711 
Completed(0) 

Figure 1.2-1 shows the PSD of a real input. Real-valued signals are always symmetric 
about the origin.  
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Figure 1.2-1. The PSD of a 2048 Sampled Waveform 

The implementation of the PSD computation and the graphing are shown in the 
following section. 

1.3. Implementation of the Transforms in the AudioFrame 

In the AudioFrame class, we assume that we will be taking the FFT of a real signal. A 
real signal, like audio, has no imaginary part, only a single value that varies from 
sample to sample. Thus, we construct a complex input to the FFT, setting the 
imaginary part of the input equal to zero. 

When taking the IFFT, a signal that starts as being real will end up as a real 
signal. The exception to this occurs when a spectral modification introduces terms that 
do not null out in the imaginary plane.  

Figure 1.3-1 shows the part of the Audio menu in the MainMenuBar in the 
AudioFrame that contains the transform fragments for performing the FFT 
manipulations. The keyboard shortcuts are shown in brackets (i.e., ‘[1]’). 

 
Figure 1.3-1. The Transform Fragment of the AudioFrame 

In the following DFT and IDFT code, we include facilities for benchmarking the 
execution of the DFT on long sequences.  

 public FFT dft() { 
   double doubleArray[] = ulc.getDoubleArray(); 
   double [] psd; 
   FFT f = new FFT(); 
        Timer t1 = new Timer(); 
        t1.mark(); 
   psd=f.dft( doubleArray); 
        // Stop the timer and report. 
        t1.record(); 
        System.out.println("Time to perform DFT:"); 
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        t1.report(); 
  f.graphs(); 
   return f; 
 } 

The IDFT method follows: 
 public void idft(FFT f) { 
   double doubleArray[]; 
        Timer t1 = new Timer(); 
        t1.mark(); 
   doubleArray=f.idft( ); 
        // Stop the timer and report. 
        t1.record(); 
        System.out.println("Time to perform IDFT:"); 
        t1.report(); 
   f.graphs(); 
  } 

In the following method getTruncatedDoubleData truncates the input data to the 
nearest integral power of two. 

 public void fft() { 
    fftInstance = new FFT(); 
     double[] r_d = getTruncatedDoubleData(); 
     double[] i_d = new double[r_d.length]; 
     fftInstance.forwardFFT(r_d, i_d); 
     ulc.play(); 
} 

The audio data is copied before truncation occurs. It is not overwritten until after the 
ifft method is invoked. The getTruncatedDoubleData truncation method follows: 

double [] getTruncatedDoubleData() { 
     double[] temp = FFT.arrayCopy(getDoubleData()); 
    int trunc = 1 << FFT.log2(temp.length); 
     System.out.println("Truncated size: " + trunc); 
     double[] truncArray = new double[trunc]; 
    for (int i=0; i < trunc; i++)  
      truncArray[i] = temp[i]; 
    return truncArray; 
} 

An FFT is part of an analysis phase, while the IFFT is part of a synthesis phase.  
public void ifft() { 
  double realInput[] =  
   FFT.arrayCopy(fftInstance.getReal()); 
  double imaginaryInput[] =  
   FFT.arrayCopy(fftInstance.getImaginary()); 
  fftInstance.reverseFFT(realInput,imaginaryInput); 
  ulc = new UlawCodec(realInput); 
  ulc.play(); 
 } 

The ifft method throws away the imaginary part of the reverseFFT methods output. 
For real input signals, the imaginary part is zero, in theory. We have found, however, 
that there is some small near-zero imaginary part that has been attributed to round-off 
error. 

The graph of the PSD is drawn using graphPSD 
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public void graphPSD() { 
    Graph.graph(fftInstance.computePSD(), 
     "PSD of truncated waveform","a^2"); 
 }; 

A saw wave and its’ PSD are shown using the OscopeFrame and graph methods on 
the left and right in Figure 1.3-2. 

 
Figure 1.3-2. Saw Wave and Spectral output from the graphPSD method. 

2 A NOISE FILTER USING THE FFT 

The basic idea of providing a noise filter is that you take a signal, with added noise, 
perform an FFT on the signal, remove all spectral harmonics that have a PSD below 
some threshold, and then take the IFFT. Selecting the PSD threshold for noise can be 
tricky. What works well on a synthetic sound might turn a sampled sound into silence. 

A block diagram of the process appears in Figure 2-1. The code for adding noise 
to the waveform stored in the AudioFrame instance is shown below: 

public void addNoise() { 
 double r_d[] = getDoubleData(); 
 for (int i = 0; i< r_d.length; i++)  
  r_d[i] = r_d[i] + 0.1*(Math.random() -0.5); 
 ulc = new UlawCodec(r_d); 
} 
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Samples FFT

noise

+ if psd[i] < L 
psd[i]=0

IFFT

 
Figure 2-1. The Noise Filter 

The Math.random method returns a random value between zero and one. Thus, the 
sampled data is summed with time-domain uniformly distributed noise (also known as 
white noise). The following code performs a PSD-based cutoff, after taking the FFT 
of the sound samples: 

public void removeNoise() { 
 double noisePowerCutoff = 0.05; 
    
    fftInstance = new FFT(); 
    double r_d[] = getTruncatedDoubleData(); 
    double i_d[] = new double[r_d.length]; 
    fftInstance.forwardFFT(r_d, i_d); 
    double psd[] = fftInstance.computePSD(); 
    for (int i = 0; i < psd.length; i++) { 
     if (psd[i] < noisePowerCutoff) { 
      r_d[i] = 0; 
      i_d[i] = 0; 
     } 
    } 
    fftInstance.reverseFFT(r_d,i_d); 
  ulc = new UlawCodec(r_d); 
  ulc.play(); 
} 
 

The UlawCodec is described in [Lyon 08G]. The initial waveform is a sine wave of 
400 Hz. A graph of the sine wave with PSD is shown in Figure 2-2. 
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Figure 2-2. Graph of the Sine Wave at 400 Hz with PSD 

Figure 2-3 shows the sine wave after noise is added. 

 
Figure 2-3. Sine wave after the addition of noise 

The PSD of the sine wave plus noise is shown in Figure 2-4. 



 
THE DISCRETE FOURIER TRANSFORM, PART 3: THE PSD 

 
 
 

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 

 
Figure 2-4. The PSD of the Sine Wave plus Noise 

Figure 2-5 shows the clean spectral break between the noise and the sine wave. The 
removal of noise from such a waveform is performed with a trivial frequency-based 
amplitude detector.  

 
Figure 2-5. The Reconstructed Waveform and its psd 

3 FREQUENCY SHIFTING USING THE FFT 

To shift the pitch of a time-domain signal, we take the FFT, perform the high-pass 
filtering, shown in the previous section, shift the spectrum lower, and then perform 
the IFFT. Recall that the FFT produces a real and a complex output. The pitch shifter 
as just one of many possible spectral modifications that may be performed by the user 
before the IFFT is taken. The approach is to work on bins 0..N/2 first, then to copy the 
bins about the N/2 point in the spectrum, assuming that the left and right-hand sides 
are symmetric (as is always the case for real signals). The code for the pitch shift 
follows: 
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public void pitchShift() { 
 fftInstance = new FFT(); 
 double[] r_d = getTruncatedDoubleData(); 
 int N = r_d.length; 
 double[] i_d = new double[N]; 
 int N_on_4 = N/4; 
  
 fftInstance.forwardFFT(r_d, i_d); 
 // shift data down 
 for (int i = 0; i < N_on_4; i++) { 
  r_d[i] = r_d[i + N_on_4]; 
  i_d[i] = i_d[i + N_on_4];  
 } 
 for (int i= N_on_4; i < N/2; i++) { 
  r_d[i] = 0; 
  i_d[i] = 0; 
 } 
 // reflect about center, assuming a real signal 
 int i,j; 
 for (i=0,j=N-1; i < N/2; i++, j--) { 
  r_d[j] = r_d[i]; 
  i_d[j] = i_d[i]; 
 } 
 fftInstance.reverseFFT(r_d,i_d); 
 ulc = new UlawCodec(r_d); 
 ulc.play(); 
} 

The result for synthetic tones, rich in harmonics, is to filter out some of the lower 
frequencies and to lower the upper harmonic content. 

 
Figure 3-1. The Squarewave and its psd 
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Figure 3-2. The pitch-shifted square wave and its psd. 

4 RESAMPLING AND THE FFT 

Resampling a 1D waveform is a common way to perform time-compressed speech. 
One way to perform the resampling is to perform Fairbanks sampling and throw away 
every other sample [Fairbanks]. 

Fairbbanks sampling is a 2:1 sub sampling in the time domain. The 
implementation follows: 

public void resample() { 
 double[] r_d = getTruncatedDoubleData(); 
 int N = r_d.length; 
 double [] resampled = new double[N/2]; 
 for (int i=0; i < N/2; i++) 
  resampled[i] = r_d[2*i]; 
   
 ulc = new UlawCodec(resampled); 
  
 ulc.play(); 
 
} 

Figure 4-1 shows a saw wave and its PSD.  
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Figure 4-1. The sawwave and psd before the subsampling 

 
Figure 4-2. The Saw Wave and PSD after Sub Sampling 

From figures 4-1 and 4-2 we can clearly see that the 2:1 sub sampling has doubled the 
pitch of the harmonics, and halved the number of available samples. 

5 CENTERING THE FFT 

Typically the lowest frequency is located at the center of the PSD when taking an 
FFT. This is due to the process of centering the FFT (called centering). Centering the 
FFT is accomplished by replacing the sample data with a value that is changing from 
positive to negative. This described by: 

 vk = vk −1( )k  (5.1) 
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for the real sample on input. After the IFFT (or IDFT) the formula must be applied 
again [Myler]. 

 
Figure 5-1 A Pulse with A Centered psd. 

The centered PSD for a pulse is shown in Figure 5-1. One can modify the 
forwardFFT in using: 

public void forwardFFT(double in_r[], double in_i[])  { 
 int id; 
 int localN; 
 double wtemp, Wjk_r, Wjk_i, Wj_r, Wj_i;  
 double theta, tempr, tempi; 
 int ti, tj; 
 int numBits = log2(in_r.length); 
 if (forward) { 
  centering(in_r); 
} 

Where centering is a method that equation (5.1) for the real part of the sample data.  
private void centering(double r[] ) { 
 int s = 1; 
 for (int i = 0; i < r.length; i++) { 
  s = -s; 
  r[i] *= s; 
 } 
} 

The reverseFFT implements centering after the IFFT is finishing up: 
public void reverseFFT( double in_r[], double in_i[]) { 
 forward = false; 
 forwardFFT(in_r, in_i); 
 forward = true; 
 centering(in_r); 
} 
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Figure 5-2. An Un-Centered PSD 

Without centering the PSD is shown with the lowest frequencies on the edges. This is 
the convention that we have adopted for the 1D PSD display (except when explicitly 
marked otherwise). Left un-centered, the FFT and DFT produce results that can match 
the outputs of other FFT and DFT implementations (like [Moore]). As a result, we felt 
it best to leave the spectrum un-centered, at least for the 1-D FFT. 

6 SUMMARY 

The idea that a pitch shifter be combined with a re-sampler to compress speech is not 
new. In fact, it may be used to help perform skimming on recorded speech (a topic of 
current research) [Arons]. 

The introduction to the DFT, IDFT, FFT and IFFT is not new either. Also, it is 
probably the case that the FFT is not the fastest. For the fastest Fourier transform in 
the west, see http://theory.lcs.mit.edu/~fftw. The FFTW may be the fastest, but it may 
also rank as one of the most complex of implementations. It is still O(N log N) but it 
has a very low constant time. 
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