
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 3, May-June 2009

Douglas A. Lyon: “The Discrete Fourier Transform, Part 1”, in Journal of Object Technology,
vol. 8. no. 3, May-June 2009 pp. 17-26 http://www.jot.fm/issues/issue_2009_05/column2/

The Discrete Fourier Transform, Part 1
By Douglas Lyon

Abstract
This paper describes an implementation of the Discrete Fourier Transform (DFT)
and the Inverse Discrete Fourier Transform (IDFT). We show how the computation
of the DFT and IDFT may be performed in Java and show why such operations are
typically considered slow.
This is a multi-part paper, in part 2, we discuss a speed up of the DFT and IDFT
using a class of algorithms known as the FFT (Fast Fourier Transform) and the IFFT
(Inverse Fast Fourier Transform).
Part 3 demonstrates the computation of the PSD (Power Spectral Density) and
applications of the DFT and IDFT. The applications include filtering, windowing,
pitch shifting and the spectral analysis of re-sampling.

1 THE DISCRETE FOURIER TRANSFORM

Let

 vj , j ∈ 0...N −1[] (1)

be the sampled version of the waveform, v(t) where N is the number of samples.

Equation (1) numbers from zero, rather than one, to reflect the start point of arrays in
Java. Fourier transform of v(t) is given by

 V (f) = F[v(t)] = v(t)e−2π ift dt
−∞

∞

∫ (2).

V(f) can only exists if v(t) is absolutely integrable, i.e.

 v(t) dt
−∞

∞

∫ < +∞

In fact, v(t) is integrable if and only if |v(t)| is integrable, so the terms “absolutely
integrable” and “integrable” amount to the same thing. The inverse Fourier transform
of V(f) is given by

 v(t) = F−1 V (f)[]= V (f)e2π ift dt
−∞

∞

∫ (3).

THE DISCRETE FOURIER TRANSFORM, PART 1

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3.

In order to compute (2) for the sampled waveform of (1), we use the DFT:

 Vk =
1
N

e−2π ijk / Nvj
j=0

N −1

∑ (4).

Using Euler’s relation

 eiθ = cosθ + isinθ (4a).

In the kernel of the transform in (4) to be re-written as:

 e−2π ijk / N = cos −2π jk / N()+ isin −2π jk / N() (4b).

An even function is one that has the property that f (−x) = f (x) . An odd function has
the property that f (−x) = − f (x) . Using this definition, sin(−θ) = −sinθ , is an odd
function and, since cos(−θ) = cosθ , cosine is an even function. Using the odd-even

function properties of sine and cosine, we rewrite (4b) as:

 e−2π ijk / N = cos 2π jk / N()− isin 2π jk / N() (4c).

Substituting (4c) into (4) we obtain:

 Vk =
1
N

cos 2π jk / N()− isin 2π jk / N()()vj
j=0

N −1

∑ (5).

When implementing the Java program we compute the real and imaginary parts of (5)
using:

 for(int j = 0; j < N; j++) {
 twoPijkOnN = twoPikOnN * j;
 r_data[k] += v[j] * Math.cos(twoPijkOnN);
 i_data[k] -= v[j] * Math.sin(twoPijkOnN);
 }
 r_data[k] /= N;
 i_data[k] /= N;

The above loop is executed N times, dividing the spectrum into N buckets. Each
spectral bucket is accessed using the frequency index, k. The frequency of bucket k is
given by:

 fk =
k

NΔt
 (6),

The sampling period, Δt , is computed from the sampling rate:

 Δt = 1 / fs (7).

Equations (5) and (6) show that the spectrum is described by integral harmonics
of fs / N . For example, suppose that the sampling rate, fs , is 8000 Hz and that the

number of points is 2048; then the smallest change in frequency that can be detected

VOL. 8, NO. 3. JOURNAL OF OBJECT TECHNOLOGY 19

is given by f1 =
1

2048
8000 ≈ 4Hz . Therefore, integral harmonics of 4 Hz will be used

to approximate v(t).

The psd (Power Spectral Density) gives the power at a specific frequency index, psdk .
We compute the power at any fk by summing the square of the real and imaginary

components of the amplitude:

 psdk = real2 (Vk) + imaginary2 (Vk) (8).

The amplitude spectral density is given by the square root of the power spectral
density. An implementation of the DFT follows:

 public class FFT {

 double r_data[] = null;
 double i_data[] = null;
 ...
 public double[] dft(double v[]) {
 int N = v.length;

 double t_img, t_real;

 double twoPikOnN;
 double twoPijkOnN;

 // how many bits do we need?
 N=log2(N);
 //Truncate input data to a power of two
 // length = 2**(number of bits).
 N = 1<<N;

 double twoPiOnN = 2 * Math.PI / N;
 // We truncate to a power of two so that
 // we can compare execution times with the FFT.
 // DFT generally does not need to truncate its input.

 r_data = new double [N];
 i_data = new double [N];
 double psd[] = new double[N];

 System.out.println("Executing DFT on "+N+" points...");

 for(int k=0; k<N; k++) {

 twoPikOnN = twoPiOnN *k;

 for(int j = 0; j < N; j++) {
 twoPijkOnN = twoPikOnN * j;
 r_data[k] += v[j] * Math.cos(twoPijkOnN);

THE DISCRETE FOURIER TRANSFORM, PART 1

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3.

 i_data[k] -= v[j] * Math.sin(twoPijkOnN);
 }
 r_data[k] /= N;
 i_data[k] /= N;

 psd[k] =
 r_data[k] * r_data[k] +
 i_data[k] * i_data[k];

 }
 return(psd);
 }

2 BIT COMPUTATIONS AND A LOG REVIEW

The log function is defined by:

 if x = ay then y = loga x

For example, if x = 210 then 10 = log2 x .

The following are known as the laws of logarithms:

loga (xy) = loga x + loga y
loga (x / y) = loga x − loga y
loga xn = n loga x

For example, to find log2 4096 use:

4096 = 2y

ln 4096 = y ln2
ln 4096

ln2
= y = 12

so,

 log2 x =
ln x
ln2

Also, to find logB x use:

 logB x =
ln x
ln B

=
log10 x
log10 B

 (9)

To compute (9) to the base 2, we use:
 public static int log2(int n) {

 return (int) (Math.log(n)/Math.log(2.0));

 }

DFT does not need to the length of the data to be an integral power of two. On the
other hand, the radix 2 FFT (Fast Fourier Transform) is a common implementation of
the FFT that requires data be an integral power of two in length. To fairly compare the

VOL. 8, NO. 3. JOURNAL OF OBJECT TECHNOLOGY 21

performance of the DFT implementation against the FFT implementation, we must
perform the same truncation for both algorithms.

2.1. Benchmarking the DFT

Benchmarking is a craft that permits the measurement of hardware and software
performance. One of the remarkable things about Java is that the compile-once-run-
anywhere attribute enables the same bytes codes to be executed on different
implementations of the Java machine. In addition, we have similar Java virtual
machines that are implemented on different hardware platforms. This enables a base-
line comparison of different hardware platforms when executing the byte codes. One
use of benchmarking is to measure the effect of the implementation of an algorithm
on the execution time. Also of interest is the measurement of two different
algorithm’s execution time for the same data.

There is a difference between the performance measurement of various
algorithmic implementations and the performance measurement of various algorithms.
Better algorithms are generally combined with better implementations to yield
performance improvement.

2.2. BenchMarking the DFT method

In this section we show how to use the Timer class to measure the execution time of
the DFT. This serves both as an example of how to use the DFT and how to
benchmark a method. The following example of how to use the DFT:

THE DISCRETE FOURIER TRANSFORM, PART 1

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3.

 public void dft() {
 FFT f = new FFT();
 double [] doubleData = ulc.getDoubleArray();
 double [] psd;
 // Time the fft
 Timer t1 = new Timer();
 t1.mark();
 psd=f.dft(doubleData);
 // Stop the timer and report.
 t1.record();
 System.out.println("Time to perform DFT:");
 t1.report();
 f.graphs();
 new DoubleGraph(psd,"psd");
 }

3 THE INVERSE DFT

Recall also, that the inverse Fourier transform of V(f) was given by

 v(t) = F−1 V (f)[]= V (f)e2π ift dt
−∞

∞

∫ (3).

In order to compute (3) for the sampled waveform of (1), we must perform an inverse
discrete time Fourier transform called the IDFT (Inverse Discrete Fourier Transform).
The IDFT is given by

 Vk = e2π ijk / Nvj
j=0

N −1

∑ (10).

Recall that in (4):

 Vk =
1
N

e−2π ijk / Nvj
j=0

N −1

∑ (4)

the summation result is multiplied by 1/N. This is not the case in (10). In some
expositions, both (10) and (4) are multiplied by1 / N , in order to keep the DFT and
IDFT symmetric. We abandoned such an approach during development because it
both complicates the presentation of the PSD and requires slightly more computation.

Substituting Euler’s relation,

 eiθ = cosθ + isinθ (4a)
into (10) results in:

 vk = cos 2π jk / N()+ i sin 2π jk / N()⎡⎣ ⎤⎦Vj
j=0

N −1

∑ (11).

The multiplication of two complex numbers result may be expressed as:

 z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i x1y2 + y1x2() (11a)

VOL. 8, NO. 3. JOURNAL OF OBJECT TECHNOLOGY 23

Based on (11a) we conclude that the real part of z1z2 is given by:

 real(z1z2) = x1x2 − y1y2 (11b)

and the imaginary part of z1z2 is given by:

 imaginary(z1z2) = x1y2 + y1x2 (11c).

If we use only a real-valued signal on input (as opposed to complex-valued signal, as
may be common in radar systems) we need not to compute the result in (11c).
Substituting (11b) into (11) yields:

 real(vk) = cos 2π jk / N()real(Vj) − sin 2π jk / N()imaginary(Vj)⎡⎣ ⎤⎦
j=0

N −1

∑ (12).

Computing only the real part of the IDFT saves 2N multiplies and N additions for
each frequency index, k computed in (12) than in (11). A comparison of (12) with (5),

 Vk =
1
N

cos 2π jk / N()− isin 2π jk / N()()vj
j=0

N −1

∑ (5)

shows that both take about the same amount of time to compute (something that our
experiments confirm).

The following code implements the IDFT shown in (12):
 // assume that r_data and i_data are
 // set. Also assume that the real
 // value is to be returned
public double[] idft() {
 int N = r_data.length;
 double twoPiOnN = 2 * Math.PI / N;

 double twoPikOnN;
 double twoPijkOnN;

 double v[] = new double[N];

 System.out.println("Executing IDFT on "+N+" points...");

 for(int k=0; k<N; k++) {
 twoPikOnN = twoPiOnN *k;
 for(int j = 0; j < N; j++) {
 twoPijkOnN = twoPikOnN * j;
 v[k] += r_data[j] * Math.cos(twoPijkOnN)
 - i_data[j] * Math.sin(twoPijkOnN);

 }
 }
 return(v);
 }

4 NUMERIC CHECK OF THE DFT AND IDFT

THE DISCRETE FOURIER TRANSFORM, PART 1

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3.

A numeric check should be an integral part of every class. The FFT class contains a
method called testDFT whose role is to verify the correctness of the DFT and IDFT
implementation. With the number of samples set to 8, the testing method is able to
print the input and output points for human comparison.

 public static void testDFT () {

 int N = 8;
 FFT f = new FFT(N);

 double v[];

 double x1[] = new double[N];
 for (int j=0; j<N; j++)
 x1[j] = j;

 // take dft
 f.dft(x1);

 v = f.idft();
 System.out.println("j\tx1[j]\tre[j]\tim[j]\t v[j]");
 for (int j=0; j < N; j++)
 System.out.println(
 j+"\t"+
 x1[j]+"\t"+
 f.r_data[j]+"\t"+
 f.i_data[j]+"\t"+
 v[j]);

 }

We print the intermediate DFT results to permit a detailed check against variations in
implementation. Full data disclosure allows a base-line comparison between different
implementations of the DFT. As we shall see in the following section, this is a
comforting data result, particularly when compared with the FFT data.

Executing IDFT on 8 points...
j x1[j] re[j] im[j] v[j]
0 0 3.5 0 -3.10862e-15
1 1 -0.5 1.20711 1
2 2 -0.5 0.5 2.00000
3 3 -0.5 0.207107 3
4 4 -0.5 0 4
5 5 -0.500000 -0.207107 5
6 6 -0.500000 -0.5 6
7 7 -0.5 -1.20711 7

While the input is not quite the same as the output, it is quite close.

VOL. 8, NO. 3. JOURNAL OF OBJECT TECHNOLOGY 25

Length Time in MS
4 0
8 0

16 0
32 0
64 0

128 16
256 16
512 47

1024 234
2048 859
4096 3219
8192 13281

16384 54282
32768 235046
65536 934375

Figure 1. Runtime of the DFT

Figure 1 shows the runtime of the DFT as a function of array length. The machine is a
1.5 GHz Celeron with 1 GB RAM and a 1.6.11 version of the JVM. The order N**2
nature of the DFT execution time is more clearly seen in Figure 2.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 10000 20000 30000 40000 50000 60000 70000

Length

Ti
m

e

Series1

Figure 2. Graph of the DFT Runtime

For the u-law CODEC, audio is sampled at 8 KHz [Lyon 08G]. A sample window of
256 samples last 32 ms, but the DFT can be performed in just 16 ms. This makes the
DFT fast enough for real-time operation, using a modest machine, u-law sample rates
and 32 ms windowing.

5 SUMMARY

The DFT is typically held as too slow for direct computation, because of its’ O(N**2)
complexity. However, for small windows of time, on even modest machines and
voice-grade single-channel 8-bit audio, we find that the computation can be fast
enough for real-time processing. This was not always the case, as shown in [Lyon 97]
and [Lyon 99]. In fact, it was always a given that Java was too slow for anything
approaching real-time.

THE DISCRETE FOURIER TRANSFORM, PART 1

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3.

So, what has changed? We now see a mix of very fast hot-spot compiler
technologies, integrated into the JVMs. We also see the cheapening of fast hardware,
to the point where machines that run faster than 1.5 GHz are common.

On the other hand, if increase sample rates are involved, with better quality
signals, we need to narrow the event window, get a faster machine, or go to a better
algorithm. Considering how slow the DFT algorithm is, running on a virtual machine,
it is good to know that Java is able to keep up, using only modest hardware. In our
next paper we will address a class of algorithms known as the FFT.

REFERENCES

[Lyon 08G] "The U-Law CODEC",by Douglas A. Lyon, Journal of Object
Technology, vol. 7, no. 8, November-December 2008, pp. 17-31.

[Lyon 97] Java Digital Signal Processing, Co-Authored with H. Rao, M&T Press (an
imprint of Henry Holt). November 1997.

[Lyon 99] Image Processing in Java, Douglas A. Lyon, Prentice Hall. April 1999

About the author

Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S.
degrees in computer and systems engineering from Rensselaer
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion
Laboratory at the California Institute of Technology, Pasadena, CA.
He is currently the Chairman of the Computer Engineering

Department at Fairfield University, in Fairfield CT, a senior member of the IEEE and
President of DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has authored or
co-authored three books (Java, Digital Signal Processing, Image Processing in Java
and Java for Programmers). He has authored over 40 journal publications. Email:
lyon@docjava.com. Web: http://www.DocJava.com.

