
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007 

 
Vol. 7, No. 1, January-February 2008 

 
 
 

Cite this column as follows: Douglas A. Lyon “A Data Mining Address Book”, in Journal of 
Object Technology, vol. 7. no. 1, January - February 2008 pp. 15-26 
http://www.jot.fm/issues/issue_2008_01/column2/ 

A Data Mining Address Book 
Douglas Lyon, Ph.D. 

Abstract 
This paper describes how to use web-based data mining to populate a flat-file 
database called the JAddressBook. The JAddressBook represents a next-
generation address book program that is able to use web-based data mining. As it is 
also able to print mailing labels, and even initiate phone calls, it is useful for 
marketing. More over, its introduction to data mining has educational value, for 
those new to network programming, in Java. 
The methodology for converting the web data source into internal data structures is 
based on using HTML as input (called screen scraping). We explore a variety of 
techniques for reading the HTML data, as input. Our example focuses on mining 
data for lawyers. 

1 THE PROBLEM 

Web-based data is generally available in an HTML format. Given a web-based source 
of an HTML formatted database, we would like to find a way to create an underlying 
data structure that is type-safe and well formulated, in response to a given query. 
Basically, we want POJOs (Plain Old Java Objects), extracted from HTML. 

The motivation for studying this type of problem ranges from the educational to 
the compelling next-generation killer applications (e.g., a 3rd generation address 
book). The web is a source of data that is probably here to stay. It is almost certainly 
the largest source of data, as well as the fastest growing. Considering the general lack 
of the adoption of standards for the presentation of the data (particularly by those who 
would prefer not to share the data), we would like to take the data in an unstructured 
format and populate our data structures. 

Once we have the data, in our own database, we are at liberty to make use of it 
for a variety of applications. We will show an application that is able to print mailing 
labels from the addresses, for the purpose of marketing. We find students in our 
network programming classes are interested in data mining and that using real-world 
sources of data encourages students to become very creative in their approach to 
parsing the data. 

2 FINDING THE DATA 

Finding freely available data, on-line, is a necessary first step toward this type of data 
mining. Databases of lawyers are available from a web site called lawyers.com. The 



 
A DATA MINING ADDRESS BOOK 

 
 
 
 

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1 

URL that can obtain a list of intellectual property attorneys in the state of Connecticut 
looks like: 

http://www.lawyers.com/Intellectual-Property/CONNECTICUT/All-Cities/law-firms-
p1.html?searchtype=Q  

This creates an output on the screen that looks like: 

 
Figure 2-1. Sample Output 

The output shown in Figure 2-1 is typical of the type of output encountered on the 
web. There are all manner of distracting artifacts on the page. Javascript, 
advertisements, side articles, unrelated buttons, etc. Most disconcerting is the lack of 
any indication of the number of records or number of pages needed in order to obtain 
the entire result set from the query. That is, by clicking on the Next button, we get to 
scroll to an entire new page of results from our query, but we don’t know how many 
times we need to click Next in order to exhaust the result set. 

We break the problem into two sub-parts. The first is the creation of a URL for 
obtaining data; the second is the analysis of the results. To synthesize the URL needed 
to get the data, we use: 

 
public static URL getLaywerUrl(String lawyerType, String stateName, int pageNumber)  
            throws MalformedURLException { 
        //http://www.lawyers.com/ 
        // Criminal/New-York/All-Cities/law-firms-p8.html?searchtype=Q&site=466 
        String urlString = "http://www.lawyers.com/" + 
                lawyerType + 
                "/" + 
                stateName + 
                "/All-Cities/law-firms-p" + 
                pageNumber + 
                ".html?searchtype=Q"; 
        System.out.println(urlString); 
        return new URL( 



 
 
 
 
 
 

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 17 

                urlString); 
    } 
 

There are three parameters used to create this URL, the lawyerType and stateName 
come from lists that are presented to the user via a dialog box. 

 In order to fetch the data, given the URL, we write a simple helper utility that 
contains: 

 
public static String getLawyerText(String lawyerType, 
                                   String stateName, 
                                   int pageNumber) 
            throws IOException, BadLocationException { 
        return UrlUtils.html2text(getLawyerUrl(lawyerType, stateName, pageNumber)); 
    } 
 

The heart of the program is html2text, and this is covered in the following section. 

3 ANALYSIS 

Html2text converts the HTML referenced by the URL into text, stripping out 
JavaScript, HTML, etc. and leaving one large text string that can be used for the 
purpose of data mining. There are many approaches to writing such a program (and 
we have tried a few of them): 

 
public static String html2text(URL url)  
            throws IOException, BadLocationException { 
        InputStreamReader inputStreamReader = new InputStreamReader( 
                url.openConnection().getInputStream()); 
        final StringBuffer stringBuffer = new StringBuffer(1000); 
        EditorKit editorKit = new HTMLEditorKit(); 
        final HTMLDocument htmlDocument = new HTMLDocument() { 
            public HTMLEditorKit.ParserCallback getReader(int pos) { 
                return new TagStripper(stringBuffer); 
            } 
        }; 
        htmlDocument.putProperty("IgnoreCharsetDirective", Boolean.TRUE); 
        try { 
            editorKit.read(inputStreamReader, htmlDocument, 0); 
        } 
        catch (ChangedCharSetException e) { 
            //If the encoding is incorrect, get the correct one 
            inputStreamReader = new InputStreamReader( 
                    url.openConnection().getInputStream(), e.getCharSetSpec()); 
            try { 
                editorKit.read(inputStreamReader, htmlDocument, 0); 
            } 
            catch (ChangedCharSetException ccse) { 
                System.out.println("Couldn't set correct encoding: " + ccse); 



 
A DATA MINING ADDRESS BOOK 

 
 
 
 

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1 

            } 
        } 
        return stringBuffer.toString(); 
    } 
 

The EditorKit in Swing makes use of the inversion-of-control design pattern [GoF]. 
Inversion-of-control is a means by which a callback method is supplied in order to 
write a component that can be used in a larger framework. Basically, a class called 
TagStripper is used to remove the HTML tags found in the document. The removal is 
done by a series of handlers that are invoked when HTML tags are encountered: 

 
package net.web; 
import javax.swing.text.html.*; 
import javax.swing.text.MutableAttributeSet; 
 
public class TagStripper extends HTMLEditorKit.ParserCallback { 
    private StringBuffer sb; 
 
    public TagStripper(StringBuffer out) { 
        this.sb = out; 
    } 
 
    public void handleEndTag(HTML.Tag t, int pos) { 
        if (t.equals(HTML.Tag.TD)) 
            sb.append("<newRecord>\n"); 
        if (t.equals(HTML.Tag.STRONG)) 
            sb.append("|"); 
    } 
 
    public void handleStartTag(HTML.Tag t, MutableAttributeSet a, int pos){ 
        if (t.equals(HTML.Tag.B)) 
            sb.append("|"); 
        if (t.equals(HTML.Tag.BR)) 
            sb.append("|"); 
    } 
 
    public void handleText(char[] text, int position) { 
        sb.append(text); 
    } 
} 
 

The tags of interest include TD (Table Data), Strong, B (Bold), and BR (line break). 
We assume that table data signifies a new record, and so insert the <newRecord> tag 
in order to ease parsing, downstream. The other tags are used to denote fields within 
the record. Processing data, using an HTMLEditorKit, makes data mining of text data 
a little easier enabling us to work at a higher level. The output looks like: 

<newRecord> 
Webb & Eley, P.C.|7475 Halcyon Pointe Drive, |Montgomery, Alabama 36124 U.S.A. 
General Civil and Appellate Practice, Corporate Business Law, Commercial Law, 
Insurance Defense, Health Care, Civil Rights, Workers Compensations 



 
 
 
 
 
 

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 19 

In order to determine how many results are available, we can inspect the HTML 
output of a query. For example: 

…found 1111 listings… 
This indicates that there are 1,111 records in the result set. Also, from inspection of 
the web page, we conclude that there may be up to 25 records per page. Thus, we 
require 45 queries (1,111/25) in order to screen scrape the results. The ad-hoc nature 
of the parsing scheme is even more evident when we examine the string 
manipulations needed to obtain low-level data types: 

 
public static int getNumberOfAddresses(String matcherString){ 
        //found 325 listings 
        Matcher matcher = 
                    Pattern.compile( 
                            "([0-9]+).+ listings").matcher(matcherString); 
        matcher.find(); 
        if (matcher.groupCount()==1) { 
            String x = matcher.group(1); 
            return Integer.parseInt(x); 
        } 
        return -1; 
    } 
  

The use of the regexp "([0-9]+).+ listings" introduces a more powerful string 
matching tool than the low-level string processing (e.g. indexOf or StringTokenizer). 
“[ ]” matches a single character that is contained within the brackets. For example, 
[012] matches "0", "1", or "2". “[0-9]” matches any digit. The plus sign indicates that 
there is at least 1 of the previous expression. “.” Matches any single character. Thus 
we are searching for a string of digits followed by any character followed by the word 
“listings”. Once we know how many records there are and how many pages there are, 
we write a loop to process the data; 

 
Lawyers.numTotal = LawyerSearchUtils.getNumberOfAddresses( 
                    getLawyerText(lawyerType, stateName, 1)); 
            int numberOfPages = (int) Math.ceil(Lawyers.numTotal / 25.0); 
            final boolean[] stopFlag = new boolean[]{false}; 
            ProgressDialog2 pd = getProgressDialog(stopFlag); 
            AddressDataBase adb = AddressDataBase.getAddressBookDatabase(); 
            for (int i = 1; i <= numberOfPages; i++) { 
                process(getLawyerText(lawyerType, stateName, i), 
                        adb, pd); 
                if (stopFlag[0]) break; 
            } 
            pd.setVisible(false); 
 

From a human interface point-of-view, data mining is a time-consuming operation, so 
it is good practice to provide a progress dialog box (with a cancel button) to keep the 
user updated about the state of the search. That is why we pass the progress dialog 



 
A DATA MINING ADDRESS BOOK 

 
 
 
 

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1 

into the process method. The AddressDataBase is obtained from a singleton-pattern 
class that is used as a flat-file storage facility for our result set. 

What follows is an ad-hoc parsing scheme, using StringTokenizer to detect new 
lines and regular expressions to parse address records: 

 
private static void process(String text, AddressDataBase adb, ProgressDialog2 pd) { 
            System.out.println("Process....."); 
        StringTokenizer st = new StringTokenizer(text, "\n"); 
        while (st.hasMoreTokens()) { 
            String line = st.nextToken(); 
            if (line.equals("<newRecord>")) continue; 
            Pattern pattern = Pattern.compile(".*,.*,.*,.*[0-9]{5}.*<newRecord>"); 
            Matcher matcher = pattern.matcher(line); 
            if (matcher.find()) { 
 
                // Progress Bar Updating 
                long currentTime = System.currentTimeMillis(); 
                long timeElapsed = (currentTime - Lawyers.timeStart) / 1000; 
                int percentage = (int) (100 * (double) Lawyers.numFound / (double) 
Lawyers.numTotal); 
                pd.setText("Found " + Lawyers.numTotal + " Lawyers.  Processing: " + 
Lawyers.numFound + " (" 
                        + percentage 
                        + "%). About " + (percentage != 0 ? (((timeElapsed * 100) / percentage) - 
timeElapsed) : "-") 
                        + " seconds left."); 
                pd.setValue(Lawyers.numFound); 
 
                // Line Parsing 
                Lawyers.numFound++; 
                line = line.replaceAll("<newRecord>", ""); 
                line = line.replaceAll("U.S.A.", "|"); 
                System.out.println("NEW LINE"); 
                System.out.println(line); 
 
                adb.addRecord(getAddressRecord(line)); 
                adb.sort(); 
                adb.update(); 
                IndexPanel.getRunIndexPanel().updateLabels(); 
            } 
        } 
    } 
 

The heart of the parser is in the regexp: 
Pattern pattern = Pattern.compile(".*,.*,.*,.*[0-9]{5}.*<newRecord>"); 
The only new feature is “[0-9]{5}.*<newRecord>” which says that we are 

looking for exactly 5 digits, followed by any number of characters, followed by 
“<newRecord>”. The assumption is that 5 digits at the end of a record must be a zip 
code (9 digits with a hyphen will work too). This is a critical assumption. Should the 



 
 
 
 
 
 

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 21 

suppler alter the format of the data, this code will break (and has done so in the past). 
The question of how to make this type of processing more robust remains open.  

To obtain the AddressRecord we proceed to use an ad-hoc application of a 
StringTokenizer: 

 
private static AddressRecord getAddressRecord(String s) { 
        AddressRecord ar = new AddressRecord(); 
        StringTokenizer st = new StringTokenizer(s, "|"); 
        for (int i = 0; st.hasMoreTokens(); i++) { 
            String s1 = st.nextToken(); 
            if (i == 0) ar.setName(s1); 
            if (i == 1) ar.setAddress(s1); 
            // this is the city, state zip, replace full state name with two 
            // letter symbol 
            if (i == 2) { 
                String letterAbbreviation = LawyerSearchUtils.getTwoLetterAbbreviation(s1); 
                System.out.println("letterAbbrevation:"+letterAbbreviation); 
                ar.setAddress(ar.getAddress() + "\n" + 
                        letterAbbreviation); 
            } 
            if (i == 3) ar.setInfo(s1); 
            if (i > 3) ar.setInfo(ar.getInfo()+"\n"+s1); 
            System.out.println(s1); 
        } 
        System.out.println(ar); 
        return ar; 
    } 
 

The AddressRecord contains the name, address, information and some phone 
numbers: 

 
public class AddressRecord 
        implements Serializable, Comparable { 
    private String name = ""; 
    private String address = ""; 
    private String info = ""; 
    private String dial1 = ""; 
    private String dial2 = ""; 
    private String dial3 = "";… 
 

For the purpose of this type of this application, phone numbers are not present in the 
data, and so this area of the record is left blank. 

4 DISPLAY 

We are interested in a new “killer application” for development, called the 
JAddressBook program. This program is able to display stock quotes (and manage an 



 
A DATA MINING ADDRESS BOOK 

 
 
 
 

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1 

address book, dial the phone, print labels, do data-mining, etc.). The program can be 
run (as a web start application) from: 
      http://show.docjava.com:8086/book/cgij/code/jnlp/addbk.JAddressBook.Main.jnlp 
And provides an interactive GUI for data mining addresses. 

 
Figure 4-1. The Scanning for lawyers 

Figure 4-1 shows an image of the data mining addressbook. Users are asked to select 
a state from a standard list of states (using two-letter postal codes): 

 
Figure 4-2. State Selection Dialog 

Figure 4-2 shows an image of the state selection dialog.  



 
 
 
 
 
 

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 23 

 
Figure 4-3. The Lawyer Type Dialog 

Figure 4-3 shows an image of the lawyer type dialog. 

 
Figure 4-4. The Progress Dialog 

The progress dialog is updated, dynamically, in order to provide feedback to the user. 
Considering the amount of time it takes (several minutes is not that unusual) a multi-
threaded feedback mechanism improves the usability of the application. 

5 IMPLEMENTING AN ADDRESSBOOK 

In order to provide a consistent rendering of the address book database, the singleton 
design pattern is used. The class is made final, so that it cannot be sub-classed. The 
constructor is left private, so that the class cannot be instanced by other classes: 

 
public final class AddressDataBase extends Observable { 
    private Vector addressVector = new Vector(); 
    private int recordNumber = 0; 
 
    private boolean modifiedButNotSaved = false; 
 
    private static AddressDataBase adb = new AddressDataBase(); 
 
    public static AddressDataBase getAddressBookDatabase() { 
        return adb; 
    } 



 
A DATA MINING ADDRESS BOOK 

 
 
 
 

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1 

 
    private AddressDataBase() { 
        restoreGzDb(); 
 
    } 
 

The database is stored in a compressed serialized gzipped file. If the file name cannot 
be retrieved, the database is initialized with a single blank record. Databases can be 
stored in a variety of different formats (XML, CSV, etc.). Also, data can be merged 
from a variety of different formats. 

 
private void restoreGzDb() { 
        String file = getSaveFileName(); 
        if (file == null) { 
            addRecord(new AddressRecord()); 
            return; 
        } 
 
        try { 
            openGzDb(file); 
        } catch (IOException e) { 
            In.message(e); 
        } 
        top(); 
        modifiedButNotSaved = false; 
    } 

6 RESOURCE BUNDLING 

The file name is stored in the users’ preferences, as described in described in [Lyon 
05A]. 

 
public String getSaveFileName() { 
        PreferencesBean pb = PreferencesBean.restore(); 
        return pb.getFileName(); 
    } 
 

This enables the program to remember where the last database file was held. By 
making use of the user preferences in this way, the location of the database file is 
user-root specific. This means that different users will get different files when they 
make use of different accounts: 

 
public class PreferencesBean implements Serializable{ 
    private static final String key = "JAddressBook.PreferencesBean"; 
    private String fileName = null; 
    /** 
     * saves the properties to the Preferences of the userRoot 
     */ 



 
 
 
 
 
 

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 25 

    public void save() { 
        try { 
            Preferences p = Preferences.userRoot(); 
            ByteArrayOutputStream baos = new 
                    ByteArrayOutputStream(); 
            ObjectOutputStream oos = new 
                    ObjectOutputStream(baos); 
            oos.writeObject(this); 
            baos.close(); 
            p.putByteArray(key, baos.toByteArray()); 
        } catch (IOException e) { 
            e.printStackTrace(); 
        } 
    } 
 
    public String toString() { 
        return CompactJava.toXml(this); 
    } 
 
    /** 
     * restores the properties from the preference in the user root. 
     */ 
    public static PreferencesBean restore() { 
        try { 
            Preferences p = Preferences.userRoot(); 
            byte b [] = p.getByteArray(key, null); 
            if (b == null) 
                return new PreferencesBean(); 
            ByteArrayInputStream bais = new 
                    ByteArrayInputStream(b); 
            ObjectInputStream ois = new 
                    ObjectInputStream(bais); 
            Object o = ois.readObject(); 
            bais.close(); 
            return (PreferencesBean) o; 
        } catch (IOException e) { 
            //e.printStackTrace(); 
        } catch (ClassNotFoundException e) { 
            // e.printStackTrace(); 
        } 
        return new PreferencesBean(); 
    } 
 
    public String getFileName() { 
        return fileName; 
    } 
 
    public void setFileName(String fileName) { 
        this.fileName = fileName; 
    } 
} 
 



 
A DATA MINING ADDRESS BOOK 

 
 
 
 

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1 

Serialization of the entire address book to the user root preferences is not possible 
(due to size limits). However, the preferences can easily handle a file name. Should 
that file name become corrupt, the opening of a new file (from the file menu) will 
reset the location of the most recently used file. 

7 CONCLUSION 

We showed how an EditorKit, regular expression and StringTokenizers were 
combined using ad-hoc parsing techniques to obtain data from the web. Variation in 
data format on the web remains a topic of concern for the robustness of this class of 
programs. As we proceed to attack more sophisticated data mining tasks we refine our 
toolkit. Thus, we are still learning by experimenting with new sources of data. 

The web represents a hodge-podge of data sources and parsing is proving to be a 
hard task (though very worth-while!). The more general the data format that we 
attempt to attack; the more sophisticated our tools become.  

Our program has broken at least once before (as the source of the data changed 
format). The question of how to deal with changing data formats remains open. A 
generalized means of providing some kind of meta-data description that gives 
semantic meaning to HTML documents is needed. HTML tags serve as important 
landmarks when performing this type of language processing. The most general 
approach might convert HTML into XML, with specific semantic tags. The question 
of how this is implemented remains open. 

REFERENCES 

[Lyon 05A] "Resource Bundling for Distributed Computing," by Douglas A. Lyon, 
Journal of Object Technology , vol. 4, no. 1, January-February 2005, pp. 
45-58. http://www.jot.fm/issues/issue_2005_01/column4/ 

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software, Reading, MA, 
Addison-Wesley, 1995. 

About the author 

Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S. 
degrees in computer and systems engineering from Rensselaer 
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at 
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion 
Laboratory at the California Institute of Technology, Pasadena, CA. 
He is currently the Chairman of the Computer Engineering 

Department at Fairfield University, in Fairfield CT, a senior member of the IEEE and 
President of DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has authored or 
co-authored three books (Java, Digital Signal Processing, Image Processing in Java 
and Java for Programmers). He has authored over 30 journal publications. Email: 
lyon@docjava.com. Web: http://www.DocJava.com. 


