
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5. No. 7, September-October 2006

Cite this column as follows: Douglas A. Lyon Pawel Krepsztul and Francisco Castellanos “Initium
RJS: A Macintosh Screensaver in Java, Part 3”, in Journal of Object Technology, vol. 5. no. 7,
September-October 2006, pp. 9-18 http://www.jot.fm/issues/issue_2006_09/column1

Initium RJS: A Macintosh Screensaver
in Java, Part 3

By Douglas A. Lyon, Pawel Krepsztul and Francisco Castellanos

Abstract
We describe how to create a Java-based screensaver for a Macintosh. A screensaver is
a program that automatically runs when the computer enters a quiescent state.
Screensaver frameworks enable CPU scavenging. CPU scavenging enables the use of
otherwise wasted CPU cycles.
Screensavers are a minimally-invasive technology for volunteering CPU services.
Computers typically have 23% utilization (40 out of 168 hours, per week) or less.
Screensaver-based cycle scavenging improves utilization dramatically.
This paper is part 3 of a 5 part series on Java-based screensavers. Parts 1 and 2
addressed the creation of screensavers on Ms Windows and XWindows platforms.
These screensavers are a part of the Initium Remote Job Submission system (Initium
RJS). Initium RJS is a joint project between DocJava, Inc. and Fairfield University. The
goal of the Initium RJS system is to make grid-based computing, in Java, a little easier.

1 INTRODUCTION

This paper is the 3rd in a series on screensavers in Java and describes the application of
our technology to the Macintosh platform. Our previous papers covered the Windows and
Unix platforms. With this paper, we have covered Java-based screensavers on three major
platforms. Our goal is to make use of these screensavers in the Initium RJS system, our
grid-computing framework.

We show how to create a screensaver using a custom framework. Our past work
described an existing framework, called the SaverBeans development kit, an open-source,
freely-available framework consisting of both C and Java code. The kit is available for
both the MS Windows and Linux systems. However, it is not available for the Macintosh.
The alternative to creating a Macintosh-based screensaver is to run X-windows under the
Macintosh. Our impression is that this is an idiosyncratic use of the Macintosh, and users
prefer a solution that makes use of the native window manager (quartz) of the Macintosh.

INITIUM RJS: A MACINTOSH SCREENSAVER IN JAVA, PART 3

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

2 A JAVA SCREENSAVER FRAMEWORK

The Macintosh has a development IDE available for simultaneous creation of both
Objective C and Java programs. The IDE is freely available, as a part of the XCode
distribution and is called ProjectBuilder.

The basic idea behind our screensaver is that it will run a Java Web Start
Application. This enables deployment of updates to our screensaver without having to
reinstall it.

We start with an Objective C program (a file with a .m suffix), inspired by
[Christensen]:

//
// ScreenView.m
// ScreenSaver
//

#import "ScreenView.h"

@implementation ScreenView

int i = 0;
- (void)animateOneFrame {
 //- (void)startAnimation{
 NSBezierPath *path;
 NSRect rect;
 NSSize size;
 NSColor *color;size = [self bounds].size;

 if(i==0){
 NSLog(@" First time %d SS start now", i);
 //Call to java class
 [NSClassFromString(@"RunCS")
 newWithSignature:@"(Ljava/lang/String;)",@"start"];
}

rect.size=NSMakeSize(SSRandomFloatBetween(size.width/100,size.

width/10),
SSRandomFloatBetween(size.height/100,size.height/10));
rect.origin = SSRandomPointForSizeWithinRect(rect.size,[self

bounds]);
if (SSRandomIntBetween(0, 1) == 0) {
 path = [NSBezierPath bezierPathWithRect:rect];
} else {
 path = [NSBezierPath bezierPathWithOvalInRect:rect];
}
color = [NSColor colorWithCalibratedRed:(SSRandomFloatBetween(

0.0, 255.0)/ 255.0)
 green:(SSRandomFloatBetween(0.0, 255.0) / 255.0)
 blue:(SSRandomFloatBetween(0.0, 255.0) / 255.0)
 alpha:(SSRandomFloatBetween(0.0, 255.0) /255.0)];

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 11

[color set];
i++;
[path fill];
}

- (void)stopAnimation{
 //Call to java class to stop dhry.main.app
 [NSClassFromString(@"RunCS")
 newWithSignature:@"(Ljava/lang/String;)",@"stop"];
 NSLog(@"SS stop now %d ", i);
}

@end
 If the screensaver is started for the first time, the
counter (i=0) is zero. Events are logged to the console using
NSLog. The stopAnimation method is invoked when the screensaver
terminates. The RunCS code follows:
//
// RunCS.java
// ScreenSaver
//

import com.apple.cocoa.foundation.*;
import com.apple.cocoa.application.*;
import java.io.IOException;
import java.util.Properties;
import java.io.File;
import java.io.FileOutputStream;

public class RunCS {
 private static String tmpDir =

System.getProperty("java.io.tmpdir");
 private static String fileSep =

System.getProperty("file.separator");
 public final static File killFile = new File(tmpDir +
 fileSep +
 "killcs");

 private static void startCs() {
 if (killFile.exists())
 killFile.delete();

 final String wsMacLocation = fileSep +
 "Applications" +
 fileSep +
 "Utilities" +
 fileSep +
 "Java" +
 fileSep +
 "Java Web Start.app" +
 fileSep +
 "Contents" +
 fileSep +
 "MacOS" +
 fileSep +
 "Java Web Start";
 String url = "http://show.docjava.com:8086/" +
 "book/cgij/code/jnlp/net.rmi.rjs.pk.main.CsMain.jnlp";

 System.out.println("webstart is here:"+ wsMacLocation);

INITIUM RJS: A MACINTOSH SCREENSAVER IN JAVA, PART 3

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

 String args[] = {
 wsMacLocation,
 url
 };
 Runtime rt = Runtime.getRuntime();
 try {
 rt.exec(args, null, null);
 } catch (IOException e) {

 }
 System.out.println("finished!");
 }
 public void stopCs(){
 killFile.mkdir();
 System.out.println("Stoping the CS");
 }

 public RunCS (String cmd) {
 if (cmd.equals("start")){
 System.out.println("start");
 startCs();
 } else stopCs();
 }
}

The screensaver runs a computation server using the RunCS class. TheRunCS constructor
is created with a String argument. If the argument is equal to “start”, then the startCs
method is invoked. The method checks to see if the semaphore file, killcs exists, and
deletes it, if it does. A thread checks the file, and if it exists, the computation server is
terminated. The semaphore file is stored in a temporary directory. If the argument to the
constructor is “stop” then the stopCs method is invoked. The stopCs method creates the
killcs file to trigger termination. The screensaver (written in Objective C) invokes the
Java program using an objective C to Java bridge [Lyon and Huntley] [Monitzer].

2.1. Installing The Screensaver

We have created a web start method for automatically deploying and installing the
screensaver to a Mac. The URL is available at http://show.docjava.com:8086/book/cgij/
code/jnlp/net.rmi.rjs.MacScreenSaverUtils.jnlp and provides for an installation using a
technique we call beaming over the files. The basic idea is that the screensaver files are
transferred from the web server to the local disk. There they are uncompressed and placed
into the proper location for user screensavers (~/Library/Screensavers/). The code for this
type of beam over operation follows:

public class MacScreenSaverUtils {

 private static String screenSaverDirectoryName =
 SystemUtils.getUserHome() +
 "/Library/Screensavers/" ;
 private static File outputJarFile = new File(
 screenSaverDirectoryName+
 "screenSaver.jar");
 //download the screensaver in:

http://show.docjava.com:8086/book/cgij/%0Bcode/jnlp/net.rmi.rjs.MacScreenSaverUtils.jnlp
http://show.docjava.com:8086/book/cgij/%0Bcode/jnlp/net.rmi.rjs.MacScreenSaverUtils.jnlp

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 13

 //
http://show.docjava.com:8086/book/cgij/code/jnlp/libs/mac
/screenSaver.jar

 public static void downloadScreenSaverJar()
 throws IOException {

 URL screenSaverUrl = getResourceUrl();
 UrlUtils.getUrl(screenSaverUrl,outputJarFile);

 }
 public static void testStartRunCheckThread(){
 new CheckForDeathJobProperties();
 guiKillCS();
 }

 private static void guiKillCS() {
 while(In.getBoolean(("keep cs running?"))){
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 In.message(e);

 }
 }
 putPrefPropToDie();
 }

 private static void putPrefPropToDie() {
 Preferences p = Preferences.systemRoot();
 p.put(csKillKey, "true");
 }

 private static final String csKillKey = "timeToKillCS";
 public static void startRunCheckThread(){
 final Preferences p = Preferences.systemRoot();
 p.put(csKillKey, "false");
 new RunJob(1){
 public void run(){
 final Preferences p = Preferences.systemRoot();
 String value = p.get(csKillKey, "false");
 if (value == null) return;
 if (value.equals("false")) return;
 killCS();//kill the CS
 }
 };
 }
 private static class RunCheckThread extends Thread {

 public void run() {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 }
 final Preferences p = Preferences.systemRoot();
 String value = p.get(csKillKey, "false");
 if (value == null) return;
 if (value.equals("false")) return;
 killCS();//kill the CS
 }
 }

INITIUM RJS: A MACINTOSH SCREENSAVER IN JAVA, PART 3

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

 private static void killCS() {
 System.out.println("cs is dead");
 System.exit(0);
 }

 private static URL getResourceUrl() throws

MalformedURLException {
 URL screenSaverUrl= new

URL("http://show.docjava.com:8086" +

"/book/cgij/code/jnlp/libs/mac/screenSaver.jar");
 return screenSaverUrl;
 }

 public static void uncompressScreenSaverJar(){
 Unzipper.uncompressJarFile(outputJarFile);
 outputJarFile.deleteOnExit();
 }

 public static void main(String[] args) {
 //SystemUtils.printProps();
 installScreenSaver();
 In.message("The Computation Screensaver Now Exits...");
 System.exit(0);
 //testStartRunCheckThread();
 }
 private static boolean dateIsGood() {
 try {
 File dataDir = new File(screenSaverDirectoryName);
 long dataDirTime =

dataDir.getCanonicalFile().lastModified();
 URL resourceUrl = getResourceUrl();
 final URLConnection urlConnection =

resourceUrl.openConnection();
 long resourceUrlTime =

urlConnection.getLastModified();
 return dataDirTime > resourceUrlTime;
 } catch (IOException e) {
 In.message(e);
 }
 return false;
 }

 public static void installScreenSaver() {
 if (dateIsGood()) return;
 if (!OsUtils.isMacOs()){
 In.message("This only works on macos! Program

exits!");
 return;
 }
 if (!In.getBoolean("install screensaver?")) return;
 System.out.println("check for output

in:"+outputJarFile);
 try {
 downloadScreenSaverJar();
 uncompressScreenSaverJar();
 } catch (IOException e) {
 In.message(e);

 }

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 15

 System.out.println("finished!");
 In.message("set screensaver to ScreenSaver and check hot

corners!");
 }
}

The dateIsGood method checks the local screensaver installation to see if there were any
updates. If the old screensaver is newer than the screensaver on the web server, no
download occurs. Once the user sets up the screensaver, it can be tested with a preview
command. During preview, the new screensaver starts the Initium RJS Compute Server.

2.3 Deploying

The screensaver.jar mentioned in Section 2.2 has the following files in it:

./ScreenSaver.saver

./ScreenSaver.saver/Contents

./ScreenSaver.saver/Contents/MacOS

./ScreenSaver.saver/Contents/MacOS/ScreenSaver

./ScreenSaver.saver/Contents/pbdevelopment.plist

./ScreenSaver.saver/Contents/Info.plist

./ScreenSaver.saver/Contents/Resources

./ScreenSaver.saver/Contents/Resources/Java

./ScreenSaver.saver/Contents/Resources/Java/ScreenSaver.jar

./ScreenSaver.saver/Contents/Resources/RunSystemCmd.java

./ScreenSaver.saver/Contents/Resources/English.lproj

./ScreenSaver.saver/Contents/Resources/English.lproj/InfoPlist.s
trings

The file is uncompressed and moved into the users’ screensaver folder automatically. The
key to this effort is the ability to beam over the resources from a given URL and
uncompress them. Beaming a resource from a web server into a local file is a service
performed by a helper method in the UrlUtils class:

/**
 * Read a url and put it into a file. This is very good when

dealing
 * with large files.
 *
 * @param url input file (like data.jar)
 * @param f locally created output file.
 */
 public static void getUrl(URL url, File f)
 throws IOException {

 FileOutputStream fos = new FileOutputStream(f);
 BufferedInputStream bis = new
 BufferedInputStream(url.openStream());
 int numberOfBytesRead = 0;
 int buffSize = 65536;
 byte b[] = new byte[buffSize];

 pd.setVisible(true);
 while ((numberOfBytesRead = bis.read(b)) != -1) {
 fos.write(b, 0, numberOfBytesRead);

 }

INITIUM RJS: A MACINTOSH SCREENSAVER IN JAVA, PART 3

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

 bis.close();
 fos.close();
 pd.setVisible(false);
 }

To unpack the Jar file, we have a class called the Unzipper:
public static void uncompressJarFile(File inputJarFile){
 Unzipper uz = new Unzipper(inputJarFile);
 String s[] = uz.getNames();
 File dir = inputJarFile.getParentFile();
 for (int i=0; i < s.length;i++){
 File outputFile = new File(dir,s[i]);
 byte b[] = uz.getBlob(s[i]);
 File parentFile = outputFile.getParentFile();
 if (parentFile != null && ! parentFile.exists())
 parentFile.mkdirs();
 Futil.writeBytes(outputFile,b);
 }
}

3 SUMMARY

This paper illustrates the details of creating a Java-based screensaver for the Macintosh.
The screensaver launches a Java Web Start application upon detection of a quiescent
period. Web start applications upload to a web server asynchronously with respect to the
screensaver. New web start applications will be automatically downloaded, and verified,
by the web start launching framework.

The web start application launched by the screensaver framework is a compute
server. The compute server volunteers the spare CPU cycles of the host to the grid. Part 4
addresses the question of how the compute server is able to contact the grid and obtain
jobs from the grid framework.

We have also disclosed a beam-over technique that enables the transfer of a
screensaver resource from a compressed file stored on the web server. The beam over
includes a decompression phase, as well as, an installation phase that places the files into
the users screensaver library. Activating the grid screensaver as the default, requires
manual user intervention. The question of how to automate this process remains open. Jar
verification should help thwart man-in-the-middle attacks on the Jar file during transfer.
The question of how to do the verification against a trusted certificate remains open.

The question of how to make a screensaver more like the SaverBeans SDK is left
for future work. The introduction of the Intel processor to the Apple line of products
required us to recompile the native portion of the code and write new code for detecting
the 386 architectures.

The Initium RJS system is available from the web page for the book Java for
Programmers [Lyon].

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 17

REFERENCES

[Christensen] “Writing a Screensaver Module” by Brian Christensen, April 10, 2001,
http://www.cocoadevcentral.com/articles/000011.php

[Lyon and Huntley] “There’s More Than One Way to Build a Bridge”, By Douglas A.
Lyon and Christopher L. Huntley, Computer, May, 2002, pp. 102-103.

[Lyon] Java for Programmers, Prentice Hall, Feb. 2004.

[Monitzer] Andy Monitzer, “The Java Bridge”, March 17, 2002,
http://www.cocoadevcentral.com/articles/000024.php

[Zawinski] Jamie Zawinski: “A screensaver and locker for the X Window System”
http://www.jwz.org/xscreensaver/

About the authors

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

Pawel Krepsztul earned his Master's Degree in Electrical and
Computer Engineering from the Fairfield University in August 2005.
His research interests include grid computing. Currently he is employed
by Pepsi Bottling Group in Somers, NY as a software developer. He can
be contacted at pkrepsztul@yahoo.com.

Francisco Catellanos earned his bachelors degree with honors in
Computer Science at Western Connecticut State University. Francisco
Castellanos worked at Pepsi Bottling Group in Somers, NY as a
software developer. Currently he is working on a thesis to complete his
Master's Degree in Computer Engineering from Fairfield University.
His research interests include grid computing. Francisco Castellanos is

also employed by Access Worldwide in Boca Raton, FL as a software developer. He can
be contacted at fsophisco@yahoo.com.

http://www.cocoadevcentral.com/articles/000011.php
http://www.cocoadevcentral.com/articles/000024.php
http://www.jwz.org/xscreensaver/
mailto:Lyon@DocJava.com
http://www.docjava.com/
mailto:pkrepsztul@yahoo.com

