
JOURNAL OF OBJECT TECHNOLOGY
. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 2, March-April 2006

Cite as follows: Douglas Lyon, Martin Fuhrer and Thomas Rowland: “The JBoss Integration
Plug-in for IntelliJ IDEA, Part 3. ”, in Journal of Object Technology, vol. 5, no. 2, March-April 2006, pp.
13-26

The JBoss Integration Plug-in for IntelliJ
IDEA, Part 3.

Douglas Lyon, Fairfield University, Fairfield CT, U.S.A.
Martin Fuhrer, President of Furher Engineering AG, Biel, Switzerland
Thomas Rowland, Pitney Bowes, Shelton CT, U.S.A.

In nature,

 animals without a spine
 have the hardest shells.

 - Anon

Abstract
This paper is the third in a series of papers that describe a new plug-in for enabling the
integration of the IntelliJ IDEA IDE with the JBoss application server. The JBoss plug-in
was first conceived and implemented by Martin Fuhrer at Fuhrer Engineering.
Part 1 discussed how to download and install the new JBoss plug-in, allowing the JBoss
application server to integrate into the IntelliJ IDEA IDE development environment. It
then demonstrated how to create a project with EJBs and web modules.
Part 2 discussed how to create a session bean in our project. The session bean
contained the implementation for the functionality that we wish to expose to the client.
This paper continues to build upon our project by describing how to add a servlet for
accessing the EJB methods implemented previously, and then how to create an
application module for deployment to the JBoss application server.

1 CREATING A SERVLET

This section describes how to create a servlet that will make use of the EJB that was
created in part 2 of this paper. One of the critical elements will be setting up the
execution environment of the servlet in order to make the EJB available. This is
accomplished by declaring a reference in the web module’s deployment descriptor to the
EJB’s home interface. Once again, IntelliJ IDE wizards provide a GUI for the synthesis
of the needed resources. During runtime, the servlet will use JNDI to look up the
interface and create an object that can be used to invoke the EJB methods.

http://www.jot.fm
http://www.jot.fm/issues/issue_2006_03/column2

THE JBOSS INTEGRATION PLUG-IN FOR INTELLIJ IDEA, PART 3.

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 2

1.1. Creating a Servlet

Right-click (or control-click, for the Mac) on the web module in the project JTree and
select the New:Servlet menu item, as shown in Figure 1.1.

Figure 1.1 Creating a new servlet

In the New Servlet dialog, enter the servlet name and package, as shown in Figure 1.2,
and select OK.

Figure 1.2 The New Servlet dialog

We now have an empty servlet. The Servlet dialog will be displayed, which you may
close.

1.2. Mapping an EJB Reference

The HelloServlet has the role of providing a GUI for the EJB. The servlet locates the bean
by its logical (reference) name ejb/hello and not by the real JNDI name. To accomplish
this we first create an EJB reference, and then map the reference to the EJB’s real JNDI
name.

VOL. 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 15

Close the HelloServlet class and open the Web Module Properties by right-clicking
on the web module in the project JTree and selecting the Edit menu item.

Figure 1.3 Accessing the web module properties in the Project JTree

Click the “+” sign below the Ejb References Configured label in the web properties
dialog, as shown in Figure 1.4.

Figure 1.4 The Web Properties dialog

This will bring up the Create New EJB Reference dialog. Select the home interface,
HelloHome (or LocalHelloHome in the case of a local EJB) and enter the logical name of

THE JBOSS INTEGRATION PLUG-IN FOR INTELLIJ IDEA, PART 3.

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 2

the bean, as it is used in the servlet (recall that ejb/hello was used in the servlet when
making the call to JNDI lookup). Also note that cross module links will not work in the
deployed environment. As a result, you should delete the entry that appears in the EJB
reference’s Link field. The dialog is shown in Figure 1.5 for the case of the remote EJB
and Figure 1.6 for the case of the local EJB.

Figure 1.5 Setting the EJB Reference properties for a remote EJB

VOL. 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 17

Figure 1.6 Setting the EJB Reference properties for a local EJB

Select OK to save and close the dialog. The Web Module Properties dialog now shows
the newly created EJB reference. Figure 1.7 shows an EJB reference to the remote EJB.

THE JBOSS INTEGRATION PLUG-IN FOR INTELLIJ IDEA, PART 3.

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 2

Figure 1.7 Web Module Properties dialog showing a reference to a remote EJB

If you are referencing the local EJB then the Local checkbox will be checked. The
reference is shown in Figure 1.8.

Figure 1.8 Web Module Properties dialog showing a reference to a local EJB

Select the JBoss Server tab and map the Reference Name of the EJB to the JNDI Name
(recall that hello was specified as the JNDI name when creating the EJB), as shown in
Figure 1.9.

VOL. 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 19

Figure 1.9 Mapping the EJB Reference Name to its JNDI Name

1.3. Mapping a Friendly URL for the Servlet

We can define a URL pattern to access the servlet. To do so we map the URL pattern to
the servlet name, as shown below.

Select the Assembly Descriptor tab. Select the “+” icon under Servlet Mappings to
reveal a URL Pattern, and enter in a URL pattern, as shown in Figure 1.10.

Figure 1.10 Mapping of a friendly URL to the Servlet

THE JBOSS INTEGRATION PLUG-IN FOR INTELLIJ IDEA, PART 3.

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 2

1.4. Modifying the Servlet Class to Access the EJB Methods

Recall that we added the methods hello and getDate to our session bean. Now we
want our servlet to act as a client for invoking these methods, so we need to add this
functionality to the servlet class. Remember that we showed how to create a local bean as
well as how to create a remote bean. The only differences between the two in our servlet
code will be the names of the bean interfaces.

Open the HelloServlet class from the project JTree.

Figure 1.11 Opening the HelloServlet from the project JTree

Modify the HelloServlet code, as shown in Figures 1.12 and 1.13.

public class HelloServlet extends HttpServlet {
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 process(response);

 }

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 process(response);

 }

 private void process(HttpServletResponse response)
 throws IOException {
 ServletOutputStream out = response.getOutputStream();
 try {
 synthesizeOutput(out);
 } catch (Exception e) {
 out.println("<html><body>"
 + e.getMessage() + "</body></html>");
 }
 }

 private void synthesizeOutput(ServletOutputStream out)

VOL. 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 21

 throws NamingException, CreateException, IOException
{

 HelloHome home = (HelloHome) new
 InitialContext().lookup("java:comp/env/ejb/hello");
 Hello hello = home.create();
 out.println("<html><body><h2>" + hello.sayHello()
 + " - " + hello.getDate()
 + "</h2></body></html>");
 }
}

Figure 1.12 An implementation for accessing the remote HelloServlet EJB

Consider the local bean implementation. The code will be the same as for the remote
bean implementation except that the JNDI lookup needs to reference the LocalHello
component interface and the LocalHelloHome home interface.

For a servlet that implements a local interface, the synthesizeOutput method
will then look like that shown in Figure 1.13.

 private void synthesizeOutput(ServletOutputStream out)
 throws NamingException, CreateException, IOException

{
 LocalHelloHome home = (LocalHelloHome) new
 InitialContext().lookup("java:comp/env/ejb/hello");
 LocalHello hello = home.create();
 out.println("<html><body><h2>" + hello.sayHello()
 + " - " + hello.getDate()
 + "</h2></body></html>");
 }

Figure 1.13 A SynthesizeOutput method implementation for accessing the local HelloServlet EJB

Now that your servlet is complete, you are ready to create an application module.

2 CREATING AN APPLICATION MODULE

This section describes how to create an Enterprise Application Archive (i.e., an EAR
file). An EAR file is an archive containing EJBs, resource adapters, web modules, and
possibly other application modules [Chan]. The EAR file will serve as a container for our
EJB module (ejb.jar, containing our session bean and EJB deployment descriptor files)
and our web module (web.war, containing our servlet and web application deployment
descriptor files) that were created in previous section. The EAR file encapsulates the
entire J2EE application which will then be deployed from the IntelliJ environment to the
JBoss application server.

In order to create an application module, you select File:Settings to open the Settings
dialog box and click on the Paths icon, as shown in Figure 2.1.

THE JBOSS INTEGRATION PLUG-IN FOR INTELLIJ IDEA, PART 3.

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 2

Figure 2.1 The Paths Icon

The Paths dialog box is displayed, as shown in Figure 2.2.

Figure 2.2 The Paths dialog

Select the “+” sign under Modules in order to bring up the Add Module dialog box, as
shown in Figure 2.3.

VOL. 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 23

Figure 2.3 The Add Module dialog

Select J2EE Application Module and click the Next button. Enter the module name into
the text field, as shown in Figure 2.4.

Figure 2.4 Entering the Application Module Name

Select Next through the next set of screens until you come to the point where you must
specify the J2EE modules to include in your application. Set the Packaging Method to
Include Module in Build for both for the ejb and web modules. Edit the Web Module
Context Root so that the web module is named sample as shown in Figure 2.5.

THE JBOSS INTEGRATION PLUG-IN FOR INTELLIJ IDEA, PART 3.

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 2

Figure 2.5 Setting the J2EE Modules for inclusion in the Application Module

Select Finish, and the J2EE Application Module Settings will reflect the update in the
Modules and Libraries to Package section.

Figure 2.6 The J2EE Application Modules Settings dialog showing the ejb and web modules being included

Click on the J2EE Build Settings tab. Select the Create application archive file checkbox,
as shown in Figure 2.7.

VOL. 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 25

Figure 2.7 Create an Application Archive File.

Select OK, and close the Project Settings dialog. When you are finished, a new
application module can be seen in the project window JTree, containing the EJB and Web
modules, as shown in Figure 2.8.

Figure 2.8 A new Application Module containing an EJB module and a Web module

3 CONCLUSION

This paper discussed how to create a servlet that will act as an interface for invoking EJB
methods, and then using the data retrieved to produce an output to a web page. To
accomplish this we declared a reference to the EJB, which allowed our servlet to use
JNDI to look up the bean’s home interface. This mapping resides in the web deployment
descriptor (web.xml). We also needed to map the EJB’s reference name to the real JNDI
name, so that we could use the reference name in the JNDI lookup. This mapping resides
in the JBoss-specific web deployment descriptor (jboss-web.xml). Luckily, we did not
have to modify these XML files directly, as IntelliJ provided a GUI for us. We also saw
how to map a user friendly URL into the created servlet.

Finally, this paper discussed the creation of a J2EE application module for deploying
our enterprise application to the JBoss application server. The application module
consisted of an EAR file that served as a container for the Web and EJB modules. Using

THE JBOSS INTEGRATION PLUG-IN FOR INTELLIJ IDEA, PART 3.

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 2

this standard deployment method, our entire application can be deployed as a single
archive file.

The next and final paper in this series will focus on deploying and running the
application that we have created. It will demonstrate how to choose and create a
deployment method to make the application available to the JBoss server. A run
configuration will be needed to save options for running and debugging. And finally,
seeing our program actually run, and offer some suggestions for some possible problem
scenarios.

LITERATURE CITED

[Chan] Allen Chan, “J2EE Application Deployment Considerations”, June 11, 2003,
http://www.onjava.com/pub/a/onjava/2003/06/11/j2ee_deployment.html

About the authors

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

Martin Fuhrer has a degree as engineer in computer science from the
School of Engineering and Information Technology in Biel/Switzerland.
He is founder and president of Fuhrer Engineering Inc., a software
development company located in Biel/Switzerland. He's mainly
working in the field of web-based financial services and the online
processing of realtime stock exchange data. He can be reached at

info@fuhrer.com or through http://www.fuhrer.com.

Thomas Rowland has a B.S. in Electrical Engineering and an M.S. in
Software Engineering. He has been consulting as a Software Engineer
for the past four years, working for Pfizer Pharmaceutical, Travelers
Life & Annuity, and currently at Pitney Bowes. He has also worked for
Hyperion Solutions for over 5 years. Mr. Rowland has also had some
teaching stints along the way. He is listed in the National Register’s

2005-2006 edition of the Who’s Who in Executives and Professionals. He resides in
Connecticut and can be reached at rowlandtf@netscape.net.

http://www.onjava.com/pub/a/onjava/2003/06/11/j2ee_deployment.html
mailto:Lyon@DocJava.com
http://www.DocJava.com
mailto:info@fuhrer.com
http://www.fuhrer.com
mailto:rowlandtf@netscape.net

