

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Multi-threaded Data Mining of EDGAR CIKs (Central Index Keys) from
Ticker Symbols

Douglas A. Lyon
Chairman, Computer Engineering Department

Fairfield University
1073 North Benson Rd.

Fairfield, CT 06824
lyon@docjava.com

Abstract

This paper describes how use the Java Swing
HTMLEditorKit to perform multi-threaded web data
mining on the EDGAR system (Electronic Data-
Gathering, Analysis, and Retrieval system). EDGAR is
the SEC’s (U.S. Securities and Exchange Commission)
means of automating the collection, validation,
indexing, acceptance, and forwarding of submissions.
Some entities are regulated by the SEC (e.g. publicly
traded firms) and are required, by law, to file with the
SEC.

Our focus is on making use of EDGAR to get
information about company filings. These offers are
filed with companies, using their Central Index Key
(CIK). The CIK is used on the SEC’s computer system
to identify entities that filed a disclosure with the SEC.
We show how to map a stock ticker symbol into a CIK.

The methodology for converting the web data
source into internal data structures is based on using
HTML as the input into a context-sensitive parser-call-
back facility. Screen scraping is a popular means of
data mining, but the unstructured nature of HTML
pages makes this a challenge.

The stop-and-wait nature of HTTP queries, as well
as the non-deterministic nature of the response time,
adversely impacts performance. We show that a
combination of caching and multi-threading can
improve performance by several orders of magnitude.

Introduction

According to our scanning program, there have
been 6,842,333 filings made using the EDGAR system
between 1996 and July of 2007. The massive nature of
the database makes automation of the mining process
desirable. Each of these filings is listed in a master

record that consists of the CIK, a form type, and a
company name. However, the company symbol is
omitted from the index. EDGAR does, however,
supply a search facility that will map a company name
into a CIK. It does not supply a facility that maps a
ticker symbol into a CIK (which is what we would like
to do).

Thus, we are given an HTML data source, in
EDGAR, and a ticker symbol. We would like to find a
way to map the ticker symbol into a CIK number.

We are motivated to extract the CIK number
because all filings are done via CIK number. This
facilitates the look-up of information and helps in our
conducting empirical studies, using data mining.
Secondly, we find that domain-limited data should be
easier to parse; yet it is surprisingly difficult and these
challenges enable us to hone our techniques for data
mining. This example is used in a first course on
network programming.

We will show that the non-deterministic nature of
the data sources gives rise to the need for a multi-
threaded, cached, data-mining approach. Without
multi-threading, we are bottlenecked by the stop-and-
wait protocols that characterize HTTP queries.

2. Finding the Data

Finding the data, on-line, and free, is a necessary
first step toward this type of data mining. We obtain
EDGAR filings by using the SEC’s CIK (Central Index
Key). The keys are stored in a table that is available via
anonymous FTP at
ftp://ftp.sec.gov/edgar/docs/cik.txt.zip. The file is 231
KB, compressed and 1.2 MB uncompressed (i.e., not
that big). The table stores only company names, not
symbols. However, it was last updated in 2003 (which
is a deal killer). The shift in company organization and
ticker symbol requires a database that is maintained.

Having out-of-date keys available for general use is
both misleading and dangerous.

The keys are also available via a web-based GUI.
The interface requires a company name (not a ticker
symbol). However, we are used to entering ticker
symbols and prefer it for human interface to our
system. Thus, our first step is to map the ticker symbol
into a company name, then use the company name to
query the CIK database. It is then a matter of
constructing an HTML parser that is able to extract the
CIK from the EDGAR reply. For example:

http://www.sec.gov/cgi-
bin/cik.pl.c?company=home+depot

Yields an output on the screen that looks Figure 2-1.

Figure 2-1. The EDGAR CIK

To synthesize the URL needed to get the data, we
use:
public static String getUrlCIK2(String
companyName) {
return "http://www.sec.gov/cgi-
bin/cik.pl.c?company=" +
UrlUtils.conditionUrl(companyName);
}

Where:
public static String
conditionUrl(String s){
 return s.replaceAll(" ","%20");
}

Is needed to make sure that illegal URL characters,
like spaces, are replaced with their decimal
equivalents. After a great deal of development, we
discover that the EDGAR system has bugs in its’ query
results. For example, a search for: “Dominion
Resources Inc” results in:

0000314712 DOMINION RESOURCES INC
/DE/

0000826613 DOMINION RESOURCES INC
/TA/ /TA

0000715957 DOMINION RESOURCES INC
/VA/

0000314712 DOMINION RESOURCES INC/DE/
The first (and last company) is “DIGITAL

IMAGING RESOURCES INC”. The second and third
companies represent a change of location. For
example, Dominion is listed as: “formerly:
DOMINION RESOURCES INC /TA/ /TA (filings
through 2006-03-27))”. The term “TA” indicates that
the CIK refers to a transfer agent. A transfer agent is
an agency (usually a bank) that is appointed by a
corporation to keep records of its stock and bond
owners and to resolve problems about certificates. We
typically skip transfer agents (as they are not primary
filers).

Thus getUrlCIK2 becomes the backup query
engine, with the primary query formulated with
(pseudo code):

getUrlCIK(String CompanyName){
 try Url1..try url2…try url3…etc.
}
This non-deterministic multiple-trial attempt at

mapping a company name into a CIK is needed to
provide a more robust means of doing the mapping.
Thus, the approach of our algorithm is to automatically
fallback to alternative sources. This results in
unpredictable data mining performance.

3. Analysis

The ParserCallBack class uses HTML data to
identify relevant data from the primary and secondary
sources. In the case of the primary source, we get:
<A HREF=
 "/servlet/CompanyDBSearch?page=
 detailed&cik=0000869614&main_back=2">

In the case of the secondary source we get hrefs in the
form of:
<a href="browse-edgar?action=
 getcompany&CIK=354950">0000354950

Thus, we are interested in anchor tags that contain href
attribute “CIK=”. This is done with a combination of
standard callback features and ad-hoc string
manipulations. Each time we approach the problem of
parsing new data, our goal is to make the parser tool a
little bit more general (and thus reusable):
public class EdgarParser extends
HTMLEditorKit.ParserCallback {
 private HTML.Tag startTag = null;
 private HTML.Tag endTag = null;
 private String lastText = "";
 private int cik = 0;

 public EdgarParser(URL url) {

DataMiningUtils.mineParser(this, url);
}

/*

 <A
HREF="/servlet/CompanyDBSearch?page=det
ailed&cik=0000869614&main_back=2">
 */
 public void handleStartTag(HTML.Tag
startTag, MutableAttributeSet a, int
pos) {
 this.startTag = startTag;
if (startTag.equals(HTML.Tag.A)) {
 String href =
 ((String) a.getAttribute(
 HTML.Attribute.HREF)
).toUpperCase();
if (href.contains("CIK=")) {
 String s = StringUtils.isolate(
 href, "CIK=", "&");
if (s != null)
 cik = Integer.parseInt(s);
 else
//secondary url is being used
 cik = Integer.parseInt(

href.substring(href.indexOf("CIK=") +
4));
 }
 }
 }

We are using the ParserCallBack to look for the
primary and secondary URLs:
<A
HREF="/servlet/CompanyDBSearch?page=det
ailed&cik=0000869614&main_back=2">

and:
<a href="browse-
edgar?action=getcompany&CIK=354950">000
0354950

For example, on the secondary URL, the href attribute
that is returned is:
browse-
edgar?action=getcompany&CIK=354950

Thus it is a simple (though data-specific) matter to
isolate the CIK string and parse it. The CIK is a unique
key in the EDGAR database and is stored in:
public class Edgar {
 private String symbol;

 private int cik = 0;
 private URL urls[];
 private DarTo darTo;
 private String companyName;
 private String urlCik;
 GoogleSummaryData gd;

 public Edgar(String symbol) throws
IOException, BadLocationException {
 this.symbol = symbol;
 gd = new GoogleSummaryParser(
 symbol).getValue();
 companyName =
 gd.getCompanyName();
 getcik();

 darTo = new DarTo(symbol);
}

private void getcik(){
 getCik1();
 if (cik == 0) {
 companyName =companyName.replaceAll(
 "INC", "").trim();
 companyName =
companyName.replaceFirst(
 "-", " ").trim();
 companyName =
companyName.replaceFirst(
 "\\(INTERACTIVE\\)", "").trim();
 getCik1();
 }
}

 private void getCik1(){
 urlCik =
getUrlCIK(companyName);
 EdgarParser ep = new
EdgarParser(new URL(urlCik));
 cik = ep.getCik();
 }

We make use of the Google summary data because
YAHOO finance tends to mangle the name of the
company in its title. We obtain the Google summary in
order to obtain the company name and then transform
the name into a form that the EDGAR system will
recognize. The URL for Google finance is extracted
from:

URL getUrl(String ticker){
 return new URL(
"http://finance.google.com/finance?q="
+ ticker);
}

Figure 2-2. Sample Google output

Figure 2-2 shows the title in the sample Google
output. The SEC wants the commas and periods
removed from the title, in order to recognize the query.
It also wants a series of other changes to normalize the
form of the company name. This logic was
incorporated, in an ad-hoc string-manipulation
procedure (pseudo code):
public void setCompanyName(String
companyName) {
Convert to upper case.

Trim the spaces
Replace USA, with blank.
Replace CAPTITAL with blank.
Replace CORPORATION with CORP.
Replace COMPANY with CO.
 Etc.

Basically, we need a canonical company name for
the mapping. For example, the EDGAR system is
confused by “The Home Depot, Inc.”, it wants “Home
Depot Inc”. Also, “TLC Vision Corporation (USA)”
must be “TLC Vision Corporation”. However,
“Document Sciences Corporation “must be written as
“Document Sciences Corp”.

Even more special cases are needed with the
EDGAR search engine when things don’t work the
first time, thus accounting for really messy string
manipulations that look like (pseudo code):

If cik is unset
 Replace INC with “”, “-“ with “”
 Replace “\INTERACTIVE\” with “”
 Execute an alternative CIK mining algorithm

For example:
testCik("asml");

ASML is a Dutch company that has an ADR in this
country. Thus, it represents one of the more difficult
companies to perform a lookup on. For example, when
you search using finance.yahoo.com you get a
response:

'ASML' is no longer valid. It has changed to
ASMLD

Stockholders of ASML are surprised to learn of this
apparent symbol change in their holdings (I have
ASML employees in my class who were shocked by
the news!). Apparently Yahoo changed its policy about
listing tickers that represent ADRs’. Thankfully,
finance.google.com still works, and you get a response:

ASML Holding N.V. (ADR) (Public,
NASDAQ:ASML)

The test code prints the CIK and some company
info:
void testCik(String tckr) {
EdgarGoogle e = new EdgarGoogle(tckr);
System.out.println(
"------"+e.getCompanyName()+"------");
System.out.println(
 "cik:" + e.getCik());
System.out.println(
 "url cik:" + e.getUrlCik());
}

4. Building the Interface

We are interested in a new “killer application” for
development, called the JAddressBook program. This
program is able to chart historic stock volumes (and
manage an address book, dial the phone, print labels,

do data-mining, etc.). The program can be run (as a
web start application) from:
http://show.docjava.com:8086/book/cgij/
code/jnlp/addbk.JAddressBook.Main.jnlp

Figure 4-1. The Stock Symbols Dialog

Figure 4-1 shows entry of stock symbols into the
stock symbols dialog. Once the user selects “done” a
table of EDGAR CIK numbers is constructed.

Figure 4-2. The CIK table Comparison

Figure 4-2 shows an image of the CIK table
comparison for a series of different symbols. The old
algorithm is on the left. The backup algorithm, is on
the right. The CCBP (COMM BANCORP, INC.) has a
disparity (along with NCC, and CE). The correct
answer (for CCBP) is 730030 (i.e., the original
algorithm). In fact, if we scan the primary source, we
find that the CIK for the transfer agent is listed.

Figure 4-3. Image showing transfer agent

So, the program is not wrong, per-se, it just need to
know if the how to disambiguate the primary filers and
the transfer agent. Transfer agents generally appear
lower on the list (another ad-hoc observation!). Thus,
we program the algorithm to always take the first result
from the list (another hard-coded business rule!). Since
CIK numbers are listed in order of “date of last
update”, we can be assured of the most recent CIK
number. This is very important for companies that
change state of incorporation. Our benchmarks show
that we can map a ticker symbol into a CIK number in
about 1 second. Our benchmark ran 20 symbols
through our lookup facility. This is slow, but
acceptable unless you want to build a large
CIK/symbol database in advance (a reasonable
alternative).

5. Multi-threading

In order to further speed our search for CIKs, we
have resorted to creating a multi-threaded program that
can resolve all the NASDAQ, NYSE and AMEX
symbols into a single compressed CSV (Comma
Separated Value) flat file. This can be used for fast
lookups, when the symbol is already present in our
cached data. We have placed the cached data on a web
site, for ease of programmatic access.

Building a large cache, one symbol at a time, is very
time consuming. Without multi-threading, the process
would have taken days (rather than minutes). An easy
quick hack was to make the lookups multi-threaded
(and it makes the updates fun to watch!). The
MineAllCiks class shows a fragment that gets a list of
all the NASDAQ, NYSE and AMEX symbols (but not
the pink sheets).
public class MineAllCiks {

 private String symbols[];
 private Ciks ciks = new Ciks();
 private int numberOfJobsDone = 0;
 private int numberOfJobsRunning =
0;

public MineAllCiks(){
 Nasdaq nt = new Nasdaq();
 NyseAmex na = new NyseAmex();
 symbols = StringUtils.merge(
 nt.getTickers(),
 na.getTickers());

Once we have a long list of symbols (over 5,000).
We typically have 200 threads running concurrently (a
number that we arrived at empirically, in order to load-
balance our systems queries so as not to time-out):
private void runAddCik(final int i) {
 numberOfJobsRunning++;
 new RunJob(1, false, 1) {
 public void run() {
 try {
 addCik(symbols[i]);
 } catch (IOException e) {
 e.printStackTrace();

 } catch
(BadLocationException e) {
 e.printStackTrace();

 }
 numberOfJobsRunning--;
 }
 };
 }

Thus, the RunJob is a thread that runs only once and
starts right away. Before the thread starts, it increments
the numberOfJobsRunning. The thread decrements the
numberOfJobsRunning, upon termination. This global
variable is used to cause the launching to pause for 10
seconds if the number of threads exceeds 200:
private void addCiks(){
for (int i = 0;
 i < symbols.length; i++) {
 runAddCik(i);
// if the number of jobs running is
//greater than 200, sleep 10 seconds.
while (numberOfJobsRunning >200){
 int n = numberOfJobsRunning;
 sleep(10);
System.out.println(
 "before sleep:"+n+
 " after sleep:" +
 numberOfJobsRunning);
System.out.println(
 "#ofCiks:"+ciks.getSize());
 }
 }
}

The act of performing a query is very time-
consuming. Presently, our algorithm (unthreaded) takes

1 second per symbol to map a symbol into a CIK.
However, in the multi-threaded mode, the algorithm is
nearly 3 orders of magnitude faster, on average. Still, it
is too slow for interactive speed when the number of
symbols is high. Thus, we have taken to building a
database in advance by mining the EDGAR site and
creating a compressed CSV file that is posted on the
authors web page. The trade-off is that the database
must be built off-line. Thus we trade-off space for time
and pay now, rather than pay later. These are quickly
downloaded to populate our cache of CIK-symbol
pairs, using:
public static String[]
getSymbolCikCompany()
throws IOException {
return UrlUtils.getTxtGz(new
URL("http://show.docjava.com:8086/book/
cgij/code/data/symbolCikCompany.txt.gz"
));

}.

The compressed contains the vast majority of the
symbols, CIKs and company names, greatly speeding
our lookup.

Figure 5-1. Non-cached Performance

Figure 5-1 shows diminishing returns when data
mining many CIKS with multiple thread. Clearly, after
only 10 threads, we reach diminishing returns, and
adding threads only slows down the entire system.
After we build our database, we establish a cache on a
local web-server. This is downloaded into memory and
is used to speed up lookups. Once this cache is built,
we are able to increase the number of threads and
improve our look-up rate. If all the symbols are cached
(from a pre-built flat-file that is downloaded) we are
able to sustain a rate of 30,000 CIKS/second (on a 2.4
Ghz Intel Core 2 Duo). When the cache is missed, for a
single thread, we only get 1 or 2 CIKS/second. Thus,
the question of how many threads to use is a function
of how many bad symbols there will be in the list. Our
experiments show that most of the symbols will be
good, but that a few bad symbols can slow down the

search by 4 orders of magnitude (for any given thread)
Thus, with a cache in place, the number of threads that
can be run has been found to be about 200. This is a
comment more on the number of cache misses (on
average) than the diminishing return performance
shown in Figure 5-1. Thus, the limiting factor in the
algorithm is a function of the average number of cache
misses in the symbol look-up. This is something that is
hard to predict, but can certainly be measured as a
function of program use. Basically, we build the cache
and look at the number of misses as a function of time.
We call this cache rot. As the cache decays beyond a
given point, it will need to be rebuilt. The question of
how to implement this remains a topic of future work.

6. Previous Work

The idea of mining other forms for CIK data is not
new either. The InsiderNewsWire.com approach is to
make use of the 4K filings to obtain CIK data [1]. The
main drawback of this approach is that not all
companies’ files 4K’s every year. Also, the database is
held static and, when a symbol cannot be found, no
look up is performed. This leads to an incorrect null
result.

Our approach is a hybrid approach, where most of
the symbols are already mapped and, for those that do
not appear, we make use of our multi-threading to
perform parallel mining of the CIK data.

The use of the RunJob to provide a command
design pattern and a façade design pattern to threads is
not new [2,3]. Nor, for that matter, is the use of
HtmlEditors for data mining [4-7]. What is new is the
use of the HTMLEditorKit for multi-threaded data
mining. Also new is the application of data mining in
finance. The use of financial data mining, via the
HtmlEditorKit, to discover CIK symbol relationships
is, as far as we know, a new contribution.

Another theme in the data mining area, that appears
new, is the notion of repeated attempts to learn of
specific data. That is, when our first attempt to learn
the CIK symbol map failed, we made use of a
secondary source.

The idea of mining EDGAR for data is not new,
however, in the work of Grant and Conlon, the use
only the header in the 10K filing to perform CIK
extraction. Their focus was on the new XBRL format
and natural language processing [8].

7. Conclusion

In this paper we disclosed techniques that make use
of the HTMLEditorKit and ad-hoc parsing to extract
numeric, context-sensitive table data, from the web.

This technique presents some reusable code, along
with a plug-in style callback-parsing framework that is
sensitive to changes in URL protocol and presentation
data.

This paper also described a multi-threading
approach to data mining that enables our data-mining
algorithm to over-come the stop-and-wait limits to
throughput that plague most data mining programs.

A critical bottleneck ensues when the worst-case
scenario develops and the cache misses increases. The
question of how to adapt to cache misses and enables
the program to learn new symbol-CIK pairs, remains
open.

The messy ad-hoc string manipulations of data
mining seem to creep in, no matter how high-level the
data-mining framework. Regular expression parsers,
HTML editors, etc, all ease the burden, but there really
should be something better.

The question of why the HtmlEditorKit has not been
used more often for the purpose of financial data
mining remains open. Presently, we are exploring its
use in processing financial narratives.

The notion of cache rot was introduced to describe
what happens to the cache as time marches on. The
decay occurs because of symbol retirement, creation
and reuse. The cache decay causes cache misses that
harm performance. The question of how often the
cache will need a rebuild remains open.

8. References

 1. Email correspondence with Robert Bruce Carleton, of
insidernewswire.com, July, 2007.

 2 “Project Imperion: New Semantics, Facade and
Command Design Patterns for Swing” by
Douglas A. Lyon, Journal of Object
Technology, vol. 3, no. 5, May-June 2004,
pp. 51-64.

 3 “The Imperion Threading System” by Douglas A. Lyon,
Journal of Object Technology. vol. 3, no. 7,
July-August 2004, pp. 57-70.

 4 “Displaying Updated Stock Quotes”, by Douglas A.
Lyon, Journal of Object Technology, vol. 6.
no. 8. September-October, 2007, pp. 19-31.

 5 “Data Mining Historic Stock Quotes in Java”, by
Douglas A. Lyon, Journal of Object
Technology, vol. 6. no. 8. November-
December, 2007, pp. 17-23.

 6 “Data Mining Address Book”, by Douglas A. Lyon,
Journal of Object Technology, vol. 7. no. 1.
January-February, 2008, pp. 15-26.

 7 Alex Wing On Wong “Colleague Discoverer”, MS
Thesis, The University of Strathclyde in
Glasgow Strathmore University, 2004,
http://www.cis.strath.ac.uk/~mdd/misc/cit/pr
ojects/library/04/Wong_A.pdfhttp://www.ci
s.strath.ac.uk/~mdd/misc/cit/projects/library/
04/Wong_A.pdf

 8. Gerry Grant and Sumali Conlon, “EDGAR Extraction
Systems: An Automated Approach to
Analyze Employee Stock Option
Disclosures”, Journal of Information
Systems, vol. 20, no. 2, 2006, pp. 117-142.

