
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 5, July - August 2005

Cite as follows: D. Lyon, M. Fuhrer and T. Rowland: “The JBoss Integration Plug-in
for IntelliJ IDEA, Part1”, in Journal of Object Technology, vol. 4, no. 5, July-August 2005, pp. 7-17

The JBoss Integration Plug-in for the
IntelliJ IDEA, Part 1.

Douglas Lyon, Fairfield University, Fairfield CT, U.S.A.
Martin Fuhrer, President of Furher Engineering AG, Biel , Switzerland
Thomas Rowland, Pitney Bowes, Shelton CT, U.S.A.

The man who claims

 to be the boss in his own home
 will lie about other things as well.

– Amish saying

Abstract
This paper describes the use of a new plug-in that eases the integration of a popular
IDE, called IntelliJ with a popular open-source application server, called JBoss.
The IntelliJ IDEA is an Integrated Development Environment (IDE) used for Java
development. It is known for its strong refactoring capabilities. It is a closed-source,
proprietary product, which is used in both educational and industrial settings. IntelliJ
functionality is extended by a set of open APIs that third-party developers can use to
integrate their solutions by the development of plug-ins.
This paper describes the installation and use of the JBoss plug-in with the IntelliJ IDE.
The JBoss integration plug-in was first conceived and implemented by Martin Fuhrer at
Fuhrer Engineering.

1. THE DISTRIBUTED COMPUTING MODEL
It is typical for enterprise systems to be run on multiple computers. For example, a web
server, an application server and a development machine are often run on three different
computers.
The web server’s primary goal is to quickly serve static data (HTML, images, audio, etc.)
to a browser, over the Internet, using HTTP (Hypertext Transfer Protocol). This is
typically done in a stop-and-wait protocol, and as such, throughput during the waiting
period drops to zero while a request is processed. Thus, there is a distinct advantage to
minimizing processing time for HTTP requests in order to provide a positive experience
for the web client.

The application server’s primary goal is to run programs that create dynamic data
(servlets, JSP’s, EJB’s, etc.). This is typically done using a framework based on a large,
and sometimes computationally cumbersome, API. Part of the API may be sourced from
a vendor (like Sun), but often the API contains custom business logic that was authored

http://www.jot.fm/issues/issue_2005_7/column1
http://www.jot.fm.

THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART 1

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

by in-house programmers. As a result, the speed of execution of methods in the
application server, as well as their reliability, may not be at the same standard as a more
widely available API. Typically, systems run daemon tasks in order to handle requests for
services. They are often started by a single task that runs multiple threads, thus enabling
fast context switching (due, in part, to the shared memory architecture used by multi-
threaded systems). Even so, a few slow threads can make a task, and even a whole
computer system, seem sluggish.

The development machine is generally under direct control of a programmer. During
the process of development, machines can crash, or be deliberately rebooted. Bugs can be
introduced into code that cause slow-downs and the development environment itself can
cause a major computational load.

The environment of having one-programmer with one application server may prove
to be increasingly rare in an industrial setting. Frequently, there will be multiple
programmers and several application servers, some of which are development machines,
and others that are live (i.e., production machines). This is illustrated in Figure 1.

Application Server
Live Production Server

Developer Machine(s) Application Server
Development Server

Webserver
static content

html
image/audio data

Figure 1. A Simplified Distributed Enterprise Architecture
Figure 1 depicts an oversimplification of an enterprise architecture. There are frequently
large repositories of company proprietary data in relational database management
systems (RDBMS) as well as firewalls, perimeter networks, bastion (i.e., DMZ)
machines, etc.

One of the basic questions is “why JBoss?” There are many application severs on the
market, and JBoss is just one of many, as documented in [Lyon 2004]. Some of them are
even free and open-source. However, JBoss has doubled in popularity between 2002 and
2003, taking over 26% of the application server market [BUSINESS WIRE 2004].

The remainder of this article will address how to install the JBoss plug-in, and create
an IntelliJ IDEA project using JBoss as the application server.

VOL. 4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 9

2. THE JBOSS PLUG-IN

This section describes how to download and install the JBoss plug-in. From the IntelliJ
IDE, select the File:Settings menu item, then select the Plugins icon, as shown in Figure
2.1.

Figure 2.1 Accessing the plug-ins

The Plugins dialog displays two tabs. Select the Available tab and accept the prompt to
download latest repository information. Sort the list of plug-ins by category, proceed to
the J2EE category and select JBoss as shown in Figure 2.2. Right-click and Select
Download and Install Plugin.

Figure 2.2 Selecting the JBoss plug-in for download and install

THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART 1

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Accept the prompt to install the JBoss plug-in. A dialog will appear that says “you need
to shut down the IDE to activate the plug-ins”. Select Yes and the IntelliJ IDE will shut
down. Restart the IDE and you are ready for the next section.

3. CONFIGURE INTELLIJ TO RECOGNIZE JBOSS

Select the File:Settings menu item to bring up the Settings dialog. Select the Application
Servers icon. Select Add and then JBoss Server, as shown in Figure 3.1

Figure 3.1 Adding a new application server to the IntelliJ IDE
Once the JBoss Server is selected, its home location must be identified to the IDE. JBoss
can be run remotely on another machine; however, there are libraries that are required in
order for compilation to work. These libraries must be on the local (i.e., developer’s)
machine. Select the JBoss home, as shown in Figure 3.2, and select OK.

Figure 3.2 Select the JBoss Home
The Application Servers dialog shows the location of the libraries (needed for a
successful linkage). Select OK to finish.

VOL. 4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 11

Figure 3.3 The Application Servers dialog

4. CREATING A PROJECT WITH EJB AND WEB MODULES

This section describes the procedure for creating a multi-module project that contains
both an EJB and a web module. From the IntelliJ IDE, select the File:New Project menu
item in order to bring up the New Project dialog. Set the project file name and location,
As shown in Figure 4.1. Accept any prompts to create the project directory.

Figure 4.1 The Project Dialog Box
Select Next, select/configure the project JDK (not shown here) and select Next again.
Select the Create/configure multi-module project radio button, as shown in Figure 4.2.

THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART 1

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Figure 4.2 Creating a Multi-module project
Selecting Finish will display the Add Module dialog. You are now ready to add an EJB
Module. Select Create new module - Ejb Module as shown in Figure 4.3.

Figure 4.3 Creating a new EJB Module

VOL. 4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 13

Select Next and enter in the module name, as shown in Figure 4.4.

Figure 4.4 Setting the EJB Module name and location
Select Next through the next set of screens (the defaults should be acceptable) and then
select Finish. This will reveal the Paths dialog, as shown in Figure 4.5.

Figure 4.5 The Paths Dialog with EJB module

THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART 1

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Select Add in the Paths dialog and select Web Modules as shown in Figure 4.6.

Figure 4.6 Creating a New Web Module
Select Next and enter in the module name, as shown in Figure 4.7.

Figure 4.7 Setting the Web Module name and location

VOL. 4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 15

Select Next through the next set of screens (the defaults, as they appear, are typically
reasonable), and then select Finish. This will return you to the Paths dialog, as shown in
Figure 4.8.

Figure 4.8 The Paths dialog with EJB and Web modules
With the Web module selected, select the Dependencies tab and check the checkbox
labeled ejb, as shown in Figure 4.9

Figure 4.9 Setting the EJB Dependency

THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART 1

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Selecting OK will save your settings, close the Paths dialog, to return you to the project
window. The J2EE tab will enable a project windows display that now shows the new
files, as shown in Figure 4.10.

Figure 4.10 The new modules displayed in the Project Window

5. CONCLUSION

The JBoss plug-in is freely available and its download is integrated into the IntelliJ IDEA
IDE.

In this paper we discussed how to download and install the JBoss plug-in, allowing
the JBoss application server to integrate into the IntelliJ IDEA development environment.
We created a project with EJB and web modules, and marked the EJB module as a web
module dependency.

In Part 2 we will describe how to add a session bean, implementing a local or remote
interface to our bean.

VOL. 4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 17

REFERENCES

[BUSINESS WIRE 2004] (BW)(GA-JBOSS-GROUP) Independent Survey Shows Surge
in Use of Open Source JBoss Application Server, Business Editors/High-
Tech Writers, ATLANTA-- (BUSINESS WIRE)--Jan. 20, 2004--
http://www.businesswire.com/cgi-bin/f_headline.cgi?bw.012004/240205555

[Lyon 2004] Java for Programmers, by Douglas A. Lyon, Prentice Hall, 2004. Available
from http://www.docjava.com.

About the authors

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

Thomas Rowland has a B.S. in Electrical Engineering and an M.S. in
Software Engineering. He has been consulting as a Software Engineer
for the past four years, working for Pfizer Pharmaceutical, Travelers
Life & Annuity, and currently at Pitney Bowes. He has also worked for
Hyperion Solutions for over 5 years. Mr. Rowland has also had some
teaching stints along the way. He is listed in the National Register’s

2005-2006 edition of the Who’s Who in Executives and Professionals. He resides in
Connecticut and can be reached at rowlandtf@netscape.net.

Martin Fuhrer has a degree as engineer in computer science from the
School of Engineering and Information Technology in Biel/Switzerland.
He is founder and president of Fuhrer Engineering Inc., a software
development company located in Biel/Switzerland. He's mainly
working in the field of web-based financial services and the online
processing of realtime stock exchange data. He can be reached at

info@fuhrer.com or through http://www.fuhrer.com.

maito:info@fuhrer.com
http://www.fuhrer.com
mailto:rowlandtf@netscape.net
mailto:Lyon@DocJava.com
http://www.docjava.com
http://www.docjava.com
http://www.businesswire.com/cgi-bin/f_headline.cgi?bw.012004/240205555

