
JOURNAL OF OBJECT TECHNOLOGY
Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 7, July-August 2004

Cite as follows: Douglas Lyon: “The Imperion Threading System”, in Journal of Object
Technology, vol. 3, no. 7, July-August 2004, pp. 57-70.

The Imperion Threading System
Douglas Lyon, Fairfield University, Fairfield

When you come to
a fork in the road...

Take it.

- Yogi Berra

Abstract
This paper describes the use of the command, facade and decorator design patterns to
alter the interface and add new responsibilities to threads. Termed Project Imperion, the
threads are developed with the same design patterns as previously reported for
Imperion GUI components [Lyon 2004b]. The benefits of Imperion threading include:
simplifying code, easing maintenance, separation of thread management logic from the
business logic and improved reliability.
Our experience shows that threads are often run more than once. They are frequently
stopped and then restarted. However, the present mechanisms for doing this are both
low-level and exception-prone. Imperion threads have built-in support for iteration. They
support killing and restarting threads by introducing a new class called the RunJob. The
RunJob tracks the number of times it has been run, and can be set to run only so many
times before it dies. It can be set to start automatically, or be set to wait until explicitly
started (or restarted).
The Imperion threading system is a more reliable threading system than the normal
java.lang.Thread. Imperion removes dangerous methods and guards’ inputs in order to
avoid exceptions. For example, the daemon property can only be set during
construction, priorities are guarded for correctness and restarting is safe. This avoids a
fruitful source of complex run-time errors that have been bugging both novice and
seasoned programmers since the release of JDK 1.0.
Project Imperion was named for the Latin root, imperium, which means the power to
command. Like the Intel use of the word CELERON, the on suffix was added to give the
word a high-tech look (like electron, proton or muon). It was first conceived at the skunk
works of DocJava, Inc., in the late 1990’s.

1 THE CURRENT THREAD MODEL

There are two ways to make a new thread. Either by subclassing the Thread class, or by
passing an instance of a class that implements the Runnable interface as a parameter to a

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/column5

THE IMPERION THREADING SYSTEM

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

thread class constructor. Invoking the start() method causes a thread to move into the
ready state. Threads in the ready state are queued for execution but are not running.

Threads have a property, called the Daemon. The term daemon (old English spelling
of demon) is a term in the operating systems field. Some have said that it stands for “Disk
And Execution MONitor”. A daemon is a task or a thread that remains idle until an event
occurs. Daemon tasks are often left idle on an operating system. For example, MacOS X
typically has 41 daemon tasks sitting idle. In comparison, it is not uncommon for RedHat
Linux to have over 100 idle tasks.

Java can start threads or tasks. To start tasks, it is typical to use platform dependent
(i.e., non-portable) code. In Java a daemon thread has special meaning. This meaning
comes from the Sun API. In Java, the daemon thread dies when all non-daemon threads
die. Before it dies, a daemon is said to be lurking. To put it another way, when only
daemons remain in a program, the program exits. For example, a print spool daemon will
wake when it sees a file in its spool directory, it then wakes up and prints the file. The
print daemon goes back to sleep after all the files in its spool directory are printed.
Typically Unix systems run daemon tasks in order to handle requests for services. They
are typically started by single task (called inetd). Examples of elements started by inetd
(or on RedHat Linux, /etc/xinetd.d) include, echo, a daemon that responds to a ping.
There are day daemons, time daemons, login daemons, printing daemons, garbage
collector daemons, etc.

Any thread may be set to be a daemon thread by using the setDaemon(true)
invocation. However, this can cause an IllegalStateException if the thread is currently
alive. Thus, the time-window to safely set the daemon property lies between the
construction of and the starting of a thread. The following example prints out a threads’
string representation, its name, and its daemon state:

1. class TestThread extends Thread {

2. public void run() {
3. while (true) {
4. System.out.println("Priority=\t" +
 getPriority());
5. System.out.println("toString=\t"+toString());
6. System.out.println("getName=\t"+ getName());
7. System.out.println("isDaemon=\t"+isDaemon());
8. System.out.println("isAlive=\t"+isAlive());
9. try {Thread.sleep(10000);}
10. catch (InterruptedException e) {}
11. }
12. }
}

To run an instance of the TestThread, you must make an instance of the TestThread and
start it.

TestThread tt = new TestThread();
tt.start();

THE CURRENT THREAD MODEL

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 59

The following will be printed every 10 seconds at the console:
Priority= 5
toString= Thread[Thread-2,5,main]
getName= Thread-2
isDaemon= false
isAlive= true

Line 9 puts the thread to sleep for 10,000 milliseconds (10 seconds). Thread.sleep takes a
long integer because 32 bits does not have enough range to represent long time periods.
For example, there are 2log2 1000*60*60*24() = 226 milliseconds in a day. A signed 32-bit
integer overflows in 231 −1 milliseconds, (3.5 weeks). A long, 64-bit integer will
overflow in 292.4 billion years. The Suns’ corona will have engulfed the Earth in only 10
billion years (by which time, even online journals will be out of print) [Lyon 1999].
Working in milliseconds is counter-intuitive for most people and ignores the nanosecond
resolution available in modern high performance operating systems and CPUs. To
address this concern, a double precision float is use to represent the time, in seconds, for
Imperion threads. This is translated into the Thread.sleep method, which still takes time
in milliseconds, at present. There is already a proposal on the table for high-resolution
clocks for real-time threads, available at http://www.rtsj.org/. Even so, the present use of
a double precision number to represent time does not add any precision to the sleep
method, at the moment. The Thread.sleep method can throw an InterruptedException if
the thread is interrupted while it is sleeping. Otherwise it will exit normally.

Killing a thread is problematic. The stop, resume and suspend methods have become
deprecated because they are considered unsafe. Suspend is inherently deadlock-prone and
stopping a thread can cause instance corruption by releasing all the locks on the resources
needed by the thread operation. Since the state of the resources cannot be predicted,
program execution can’t reliably proceed. The run-time errors that may result can
manifest themselves at any time in the future. To more deeply understand why this is
true, we need to examine the life cycle of a thread, as shown in Figure 1.

new Thread

ready!

t.start()

running
t.run()

dead

run
method
returns

blocked

t.sleep(), t.wait()

t.notify()
notifyAll()

Figure 1. The Life Cycle of a Thread

THE IMPERION THREADING SYSTEM

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

Figure 1 shows that when the run method returns, the thread becomes dead. Thus, if we
kill a thread while it is running, we cannot be assured that it is finished with whatever it is
doing. If the thread is blocked when we kill it, it may be waiting for a resource to become
available, and it will continue processing when it wakes up. For example, suppose my
interest computation is held up because someone is making a transaction with an ATM. If
I interrupt the interest computation with an asynchronous stop invocation, then the
interest could be lost.

To see how deeply the thread life cycle is embedded in the language, we need look
no further than the implementation of the thread life-cycle methods. A blocked thread can
be restarted by invoking the notify method. The notify method is defined in the Object
class. The notify method is used to notify an object of a change in condition. The methods
wait, notify and notifyAll are methods defined in the Object class. The wait method causes
the thread of execution to block execution until its notify method is invoked by another
thread. The wait method can take three forms:

wait();
wait(long milliseconds);
wait(long milliseconds, int nanoseconds);

To more deeply understand why it is so important to allow threads to die only when their
run methods end, we must see how race conditions between threads can occur. Race
conditions occur when two or more threads try to access the same memory at the same
time. In order to make code thread-safe, we have to ensure that certain operations happen
all at once (these are known as atomic operations). To create atomic operations, we use
the synchronized keyword.

The synchronized keyword may be applied to any reference data-type. For example,
suppose there are several threads that are trying to perform an output operation to the
PrintStream instance contained in the System class (i.e., System.out). If the threads all
output to System.out asynchronously with respect to one-another, then they will tend to
over-write one another, intermixing each-others’ output. The solution is to place a lock on
the System.out resource using synchronized. The code will have the form:

synchronized(System.out) {
 System.out.println(...);
...
}

As another example, suppose that we are programming a banking system. When someone
adds money to the bank, we execute:

public void addMoney(BankAccount ba, double dollars) {
 System.out.println(“this is going to lock the account”);
 synchronized(ba) {
 ba.addMoney(dollars);
 }
 System.out.println(“the lock is released”);
}

The lock implements a form of mutex (mutual exclusion). Should the resource that is
locked become unavailable (or blocked) it then becomes a single-point of failure. Imagine

THE CURRENT THREAD MODEL

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 61

if such a single point of failure existed in a mission-critical sub-system (like the
communications port between the tail-section and cockpit of an air frame). All threads
that depended on the correct operation of the port would become deadlocked. The
deadlock condition occurs when two or more threads are unable to make progress, due to
a dependency on an unavailable resource. This could easily happen if a thread is
suspended in the middle of executing on a synchronized resource. If deadlock occurs in a
mission critical system, it might result in a mission failure.

To implement atomic execution on a block of code, consider making the entire
method synchronized. For example:

1. class Animation implements Runnable {
2. public void synchronized run() {
3.
4. try {
5. Thread.wait();
6. }
7. catch (InterruptedException e) {
8.
9. }
10. }
11. }

Line number 5 is used to give other threads a chance to run. During the execution of the
run method, no other threads may execute.

It is also possible to synchronize on the current instance. For example:
synchronized(this) {

}

Synchronizing on the current instance is considered less clear than synchronizing at the
method level [Campione and Walrath].

2 IMPERION THREADS

This section presents an approach to running threads by creating a new, more feature-rich
and more reliable thread container, called the RunJob. A RunJob instance contains an
instance of a thread. The RunJob contains enough information to start and stop the thread,
and to have the thread run any number of times, with a given delay between executions.
A RunJob has an implementation of a run method and so knows how to run itself. Thus
making use of the command design pattern. The command design pattern places an
instance of a command into an instance of another class and calls the issuer. For example,
a button can have the role of the issuer, holding a reference to an instance of a command.

The RunJob uses the façade design pattern since it provides a simpler interface to the
Thread class. It also uses the decorator design pattern in that it is adding responsibilities
to the Thread class. Since the RunJob makes use of both design patterns, we have named
it the decorator-façade pattern.

The Imperion RunJob has an overloaded constructor. The most general one follows:

THE IMPERION THREADING SYSTEM

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

public RunJob(double seconds,
 boolean wait,
 int count,
 boolean isDaemon)

An instance of the RunJob runs every so many seconds. If wait is true then the RunJob
will not start unless the start method is invoked, otherwise the RunJob starts right away.
If the count is present, then the job only executes count times. The isDaemon method
marks this RunJob as either a daemon RunJob or a user RunJob. The Java Virtual
Machine exits when the only RunJobs running are all daemon RunJobs and all the threads
are daemon threads. Stopping the job yields CPU resources to other threads. The
isDaemon property can only be set at construction time and is immutable during the life
of the RunJob. This avoids a source of run-time exceptions.

We define the RunJob class as one that contains a CommandThread instance. It
works by implementing the Runnable interface in a callback mechanism and invokes the
run method in the RunJob at given intervals. The run method is left undefined and this
causes the RunJob class to be abstract. The following example prints the date and time
every two seconds:

 public static void main(String args[]) {
 // Anonymous inner class
 // That uses the command pattern
 // It also uses decorator-facade pattern
 new RunJob(2) {
 public void run() {
 System.out.println(
 new java.util.Date());
 }
 };
 }

The following example will wait for the start method to be invoked before starting the
RunJob. It will then run every 1.5 seconds:

RunJob rj = new RunJob(1.5,true) {
 public void run() {
 System.out.println(
 new java.util.Date());
 }
 };
 rj.start();

The following example starts the RunJob right away, then stops and restarts the job. It
will only run 5 times before the job dies, even if the job is restarted. Thus, the RunJob
instance tracks the number of times it has been run.

IMPERION THREADS

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 63

RunJob rj = new RunJob(1.5, false, 5) {
 public void run() {
 System.out.println(
 new java.util.Date());
 }
 };
 rj.stop();
 rj.start();
 }

The astute reader will notice that anonymous inner classes are used to define the RunJob.
This is deliberate. Anonymous inner class bodies are generally kept short, to improve
readability (and to help to separate the thread logic from the business logic). Also, the
anonymous RunJob classes promote the isomorphic mapping between instances of the
RunJob and instances of a thread. Having one instance of a class that implements
runnable for each instance of a thread is a well-known strategy for creating threads that
have their own instance variable. In comparison, having a single runnable instance passed
to multiple threads can allow all the threads to freely manipulate variables in the runnable
instances, leading to potential inconsistencies [Sandén 2004].

To better understand the rationale for the Imperion threading system, it is necessary
to understand the history of the thread and some of the shortcomings that it has. In the
standard method of using a thread a deadlock-prone method for suspending and resuming
a thread can easily be implemented with code in the following format:

private volatile Thread t;
private boolean threadSuspended;

 public void doProcess() {
 if (threadSuspended)
 t.resume();
 else
 t.suspend(); // DEADLOCK-PRONE!
 threadSuspended = !threadSuspended;
 }

Thus, it was typical to suspend and restart threads before the resume and suspend
methods became deprecated. The Sun suggested alternative is to use code of the form:

public synchronized void doProcess() {
 threadSuspended = !threadSuspended;
 if (!threadSuspended)
 notify();
 }

It is up to the programmer to add the following code to the "run loop":
 synchronized(this) {
 while (threadSuspended)
 wait();
 }

I take issue with this approach. First, the programmer has to remember to do something
(which means that there will be occasions when the programmer forgets to do
something). Second, the rationale may be clear to the author of the code, but not to the
maintainer of the code (who may remove the synchronized invocation and find that no

THE IMPERION THREADING SYSTEM

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

harm was done, this time). Finally, there is an additional cost of synchronization that is
imposed by such an implementation. The synchronization is required in order to avoid
race conditions.

The RunJob, as implemented in Imperion, treats a stop invocation as non-urgent. The
containing thread is always allowed to finish its present command before a flag is
checked and the thread stops, leaving instances in known states. Further, the start method
makes a new thread instance, reusing the old implementation for the thread command, but
resetting the state to the old state (i.e., it tracks the number of times the old thread was
run, stores its priority, name, daemon property, etc). As a result we are encumbered with
the overhead of making a new instance and setting it to the old thread member variable.
This trades the overhead of synchronization for the overhead of creating a new thread.
The question of which takes longer really depends on how much work is being done in
the synchronized method. The overhead for making a new instance of a thread should at
least be a fixed one.

3 WHAT’S THE ASSOCIATION BETWEEN THE RUNJOB AND
THE THREAD?

There is a composition association between the RunJob and the Thread classes. That is,
the RunJob uses a Thread to run the contained command.

Using the Facade design pattern we are able to map several common components to
take advantage of the Runnable interface, as shown in Figure 1.

Figure 2. The RunJob Associations
At the heart of the RunJob is the innerCommandThread class that invokes the call-back
run method in the Job class:

WHAT’S THE ASSOCIATION BETWEEN THE RUNJOB AND THE THREAD?

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 65

private class CommandThread extends Thread {
 RunJob job = null;

 CommandThread(RunJob job) {
 this.job = job;
 }

 private boolean isCountDone() {
 if (count == Integer.MIN_VALUE)
 return false;
 return numberOfTimesRun > count;
 }

 public void run() {
 while (cowsComeHome) {
 numberOfTimesRun++;
 if (isCountDone()) return;
 job.run();
 try {
 Thread.sleep(ms);
 } catch (InterruptedException e) {
 }
 }
 }
 }

Invoking a wait (or sleep) method inside of a synchronized block is likely to result in a
deadlock that can come from holding the lock for an indefinite period of time on some
resource. The synchronized blocks of an Imperion thread will always be inside of the
primary iteration block, whose end task is to run a non-synchronized sleep. This should
help to avoid some deadlocks.

4 WHY USE COMPOSITION RATHER THAN EXTENSION?

Several of the methods in the Thread class can throw exceptions if they are misused.
Overriding these methods is not an option, as several are declared as final. Further, the
RunJob adds new responsibilities that the Thread class was never designed for (i.e., being
restartable, being able to track the number of times the run method is invoked, etc.).

More insidious is the need to materially alter the interface of the Thread class in
order to hide some of the methods. It is a syntax error for a sub-class to make the
visibility of shadowed methods more restrictive. Finally, there is no good way to un-
deprecate a method, like the stop method in the Thread class, except by re-implementing
it in the containing class.

Threading logic is often added on an as-needed basis. In fact, the RunJob is really
just a collection of handy thread features that enable the command and control of a
thread. Is adding another class for wrappering a thread invocation really needed?

THE IMPERION THREADING SYSTEM

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

In my view there are compelling reasons to hide the complexity of thread logic
needed to stop and start threads while maintaining some semblance of state, and to make
the thread logic as easy as possible for the programmer to maintain. For instance, the
following RunColorButton class automatically changes its background color in order to
alert the user of its importance:

public abstract class RunColorButton
 extends RunButton {
 private RunJob j = new RunJob(1, true) {
 public void run() {
 setBackground(
 MathUtils.getRandomColor());
 }
 };

 public RunColorButton(String s) {
 super(s);
 j.start();
 }
 private boolean running = true;
 public void toggle() {
 if (running){
 running = false;
 stop();
 return;
 }
 running = true;
 start();
 }

 public void stop() {
 j.stop();
 }

 public void start() {
 j.start();
 }
}

The above code automatically handles the starting and stopping of the background color
change, by reusing the logic in the RunJob class. If this complexity were not hidden from
view, the code would more than double in size. Even worse, it would contain code that
was practically duplicated in other classes.

Figure 3 The flashing color panel

WHY USE COMPOSITION RATHER THAN EXTENSION?

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 67

The code for implementing the color panel follows:

public class ColorPanel extends JPanel {
 public static void main(String args[]) {
 class ColorFrame extends ClosableJFrame {
 ColorFrame() {
 super("Colors!");
 Container c = getContentPane();
 c.setLayout(new FlowLayout());
 c.add(new ColorPanel());
 setSize(200, 200);
 show();

 }
 }
 new ColorFrame();

 }

 RunJob job = new RunJob(1, true) {
 public void run() {
 Color randomColor = MathUtils.getRandomColor();
 setBackground(randomColor);
 setForeground(randomColor);
 }
 };

 ColorPanel() {
 super();
 setLayout(new FlowLayout());
 add(new RunColorButton("[ggo") {
 public void run() {
 job.start();
 toggle();
 }
 });
 add(new RunColorButton("[wstop") {
 public void run() {
 job.stop();
 toggle();
 }
 });
 }
}

The color panel shows that the buttons not only stop and start their own colors from
changing, but that of the containing panel as well. The RunJob simplifies the use of
threading and its ease of use actually encourages the use of threading.

THE IMPERION THREADING SYSTEM

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

5 CONCLUSION

The use of the command and facade design patterns to simplify thread usage is not new
[Lyon 2004]. However, the combination of the facade and command patterns, along with
the goals of improved reliability and ease of use are new. The danger of run-time
exceptions is greatly reduced with the Imperion threading system. This is due, in part, to
the guarding of the input. For example, it causes a run-time exception to alter the daemon
parameter after starting a thread. As a result, the daemon parameter can only be set in the
constructor of a RunJob, thus eliminating a source of a run-time exception. Also guarded
is the input to the priority setting method. RunJob thread properties can fall out of sync
with one another if the security manager blocks the setting of a property.

A grouping of a thread logic framework into the RunJob factory methods improves
maintainability and readability. The use of the anonymous inner classes promotes short
method bodies (since people don’t generally like to see long anonymous inner classes).
The short method bodies, in turn, promote method forwarding to business logic
(improving code reuse and promoting the separation of thread code and business logic).

One of the drawbacks of the Imperion system is that the RunJobs map their actions
to only a single listener (themselves). This would seem, on the surface, to be a big
limitation. For example, what if many instances are interested in the thread’s execution? I
suggest that if this occurs, a new class is needed with a new responsibility that involves
the observer-observable design pattern.

Having instances listen to their own event is an easy limitation to live with. In fact, I
contend that this is preferable, as it limits inter-object associations, which is, in my view,
a primary metric of object-oriented complexity.

The Imperion project is an open-source project freely available at
http://www.docjava.com.

REFERENCES

[Camp1996] Campione and Walrath, The Java Tutorial, Addison Wesley, 1996.

[Lyon 1997] Douglas A. Lyon and H. Rao, Java Digital Signal Processing, M&T
Press, 1997. Available from http://www.docjava.com.

[Lyon 2004] Douglas A. Lyon, Java for Programmers, Prentice Hall, 2004. Available
from http://www.docjava.com.

[Lyon 2004b] Douglas A. Lyon, “Project Imperion: New Semantics, Facade and
Command Design Patterns for Swing”, in Journal of Object Technology,
Publication Pending.

http://www.docjava.com
http://www.docjava.com
http://www.docjava.com

CONCLUSION

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 69

[Sand 2004] Bo Sandén, “Coping with Java Threads”, in IEEE Computer, April 2004,
V. 37, N. 4, pp. 20-27

About the author

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

http://www.docjava.com
mailto:lyon@docjava.com

THE IMPERION THREADING SYSTEM

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

Appendix A. – The Java Doc

What follows is the javadoc for the RunJob:

 public abstract class gui.run.RunJob implements java.lang.Runnable
Constructors public RunJob(double seconds)

 public RunJob(double seconds, boolean wait)
 public RunJob(double seconds, boolean wait, int count)
 public RunJob(double seconds, boolean wait, int count, boolean isDaemon)
Run the RunJob every seconds. If wait is true then do not start the RunJob until the start
method is invoked. Otherwise, start right away. If the count is present, then the job only
executes count times. IsDaemon marks this RunJob as either a daemon RunJob or a user
RunJob. The Java Virtual Machine exits when the only RunJob running are all daemon
RunJobs and all Threads are daemon threads.

Methods public int getNumberOfTimesRun() - The number of times the RunJob was run.
 public void setPriority(int priority) - Changes the priority of this RunJob. This may
result in throwing a SecurityException. Otherwise, the priority of this RunJob is set to the
smaller of the specified new Priority and the maximum permitted priority of the RunJob's
thread group. If the priority is smaller than MIN_PRIORITY then it will be set to
MIN_PRIORITY. If the priority is greater than MAX_PRIORITY then it will be set to
MAX_PRIORITY. This avoids illegal argument exceptions at run-time.
Parameters priority - priority to set this RunJob to
Throws SecurityException - if the current RunJob cannot modify its thread.
 public final int getPriority() - Returns this RunJob's priority.
 public void start() - Start are restart a RunJob that was stopped.
 public void setName(String name) - Changes the name of this RunJob (and thread
upon which the RunJob is based, to be equal to the argument name. First the checkAccess
method of this thread is called with no arguments. This may result in throwing a
SecurityException.
 public java.lang.String getName() - Gets the name of this RunJob (and the thread
upon which the RunJob is based First the checkAccess method of this thread is called with no
arguments. This may result in throwing a SecurityException.
 public void stop() - Stops the RunJob by causing a thread death. A start() invocation
Will make a new thread and restart the RunJob.
 public boolean isDaemon() - Tests if the RunJob is a daemon RunJob.
 public static void main(String[] args) – A test method.
 public boolean isAlive() - Tests if this RunJob is alive. A RunJob is alive if it has been
started and has not yet run for the requisite number of times.
 public java.lang.String toString() - Returns a string representation of this RunJob,
including the RunJob's name, priority, and thread group to which the RunJob's thread
belongs.

Fields public static final MIN_PRIORITY - The minimum priority that a RunJob can have.
 public static final NORM_PRIORITY - The default priority that is assigned to a RunJob.
 public static final MAX_PRIORITY - The maximum priority that a RunJob can have.

