

1

Abstract— This paper describes an on-going project known

as the Initium RJS (Remote Job Submission) system. The
system mixes Java and native technologies to create a CPU-
scavenging, hetrogeneous, screen-saver-based grid computing
system.

Web start technologies, along with a unique upload and
deployment technique, enable the semi-automatic installation of
screen-savers. The Initium Wizard makes use of static
dependency analysis to generate a jar file that minimizes the
number of included classes. It prompts the programmer for
security parameters that enable the automatic signing of the jar
file for the purpose of authentication. Initium generates a Java
Network Launch Protocol file (JNLP file) and automatically
uploads both the JNLP and jar files to the web server.

The signing of a jar file enables screen-saver initiated web-
start clients to execute a Java application in a trusted and
distributed manner. Trusted jar files execute outside of the
“sandbox”. This supplies an autonomic feature that enables
CPU scavenging by the grid.

A screen-saver technology controls a Webstart application.
The Webstart application uses a multi-cast query to locate a
look up server (LUS). The LUS uses RMI/SSL to contact a Web
Sever (WS) that collects grid information and dispatches jobs.
The LUS sends results to the WS for later harvesting by the
grid user.

We are interested in Screen-savers because they represent a
minimally-invasive technology for volunteering CPU services. A
computer that lacks a screen saver has a utilization that is
typically between 40 and 60 hours out of a 168-hour week (i.e.,
35% of the time). As Java programmers, we have found no
work in the area of Java-based screen-savers with an eye
toward grid computing, and thus we feel our efforts in this area
are novel.

Java provides a heterogeneous compute environment and, by
extension, a screen-saver framework ported to a variety of
platforms should enable a heterogeneous volunteer army of
CPUs upon which a grid may scavenge. We address several sub-
problems related to this effort, including deployment, security
and discovery.

Initium is a Latin word that means: “at the start”. It is part of
an on-going project at both the DocJava Inc. Skunk works and
Fairfield University.

Manuscript received June 4, 2006.
Dr. Lyon is Chairman of the Computer Engineering Department at

Fairfield University, Fairfield, CT 06824 USA phone: 203-641-6293; fax:
203-877-4187; e-mail: lyon@docjava.com.

Pawel Krepsztul is with Pepsi Bottling Group, Inc., 1 Pepsi Way
Somers, NY 10589 USA; e-mail: Pawel.Krepsztul@pepsi.com).

Francisco Castellanos is with the Computer Engineering Department at
Fairfield University, Fairfield, CT 06824 USA.

Index Terms— Distributed Computing, GridComputing,
Java, Object-Oriented Programming, RMI, Screen Savers

I. INTRODUCTION
This paper describes the middleware needed to deploy jobs

to non-geographically co-located clusters with decentralized
look-up severs. The system includes a hybrid screen-saver
system that installs on multiple platforms (Mac, Windows
and Linux). The Screen-Saver (SS) helps with the CPU
scavenging. We have named our framework the Initium
Remote Job Submission (RJS) system. Initium generates a
minimal-sized, signed jar file [Lyon 2005c][1]. A
Computation Server (CS), (a remote computer running the
Initium Compute Server Software), runs the jar. A Web
Server (WS) has a Java Network Launch Protocol (JNLP) file
that references the jar file on the WS. The signed jar file
contains a job for the CS, known as the computation jar. A
Look Up Server (LUS) is an application that runs on a server
within a LAN and provides resource management. The LUS
pushes the JNLP link to an available CS. The CS executes
the JWS job and transmits the answer back to the LUS using
RMI over SSL (RMI/SSL). The CS registers with the LUS
using multi-cast IP packets. The Web Start-initiated LUS
then updates its list of computation servers.

The Initium Wizard (IW) deploys the screen-savers to the
WS so that people who wish to volunteer their computers
into the grid may do so with reduced effort. The grid
programmers who wish to upload their Java application into
the Initium RJS system also use the IW.

The motivation for addressing the deployment of Java is
that deployment appears to be the weak link in the grid
computing development chain. From the user point-of-view,
a computer needs to be available when the user needs it. Our
goal is to provide a minimally invasive CPU scavenging
technology. The IRJS screensaver activates during user-
computer quiescence. The converse is also true, when the
period of user-computer quiescence ceases, the screensaver
terminates any currently running compute jobs, releasing the
computer back for general use. Such a program constitutes a
first step toward utilizing otherwise idle compute resources in
a grid computing system.

Initium uses a push technology (SCP) to deploy
applications to the WS. The SS uses Java Web Start (JAWS)
to download and run them. In this way, computers that are
behind a firewall and are otherwise unreachable can use the
Initium system.

In order to make sure that the client has all the classes

A Heterogeneous Screen-Saver for CPU
Scavenging

Douglas A. Lyon, Senior Member, IEEE, Pawel Krepsztul, and Francisco Castellanos

2

needed to run the application, Initium does static dependency
analysis on the Java byte codes.

The following sections describe the target system
requirements, the jar packing process, resource management,
security, screen savers and the RJS middleware sub-system.

II. TARGET SYSTEM REQUIREMENTS
Java Webstart installation is a prerequisite for participation

in the Initium RJS grid. We also require that the grid
programmer have a password to the Initium RJS WS and the
ability to upload, using SCP (i.e., transmit port 22 traffic to
the WS).

Normally, a user can install a screen-saver. Screen-savers
(under MS Windows) go in the Windows32 system directory.
Sometimes system administrators deny access to this
directory and this is a limiting factor. Linux and MacOsX do
not have this limitation.

Another limitation is in network communications.
Companies sometimes filter web downloads and requests
through a logging web-proxy server, designed to monitor web
usage. The browser automatically obtains the proxy
configuration for web access. JAWS does not accomplish this
task easily. For target machines behind a proxy web server,
the user must alter the options on the JAWS Management
Console. The question of how to automate this set-up
remains open. The user must often enter these parameters by
hand (i.e., the user is performing a cumbersome and error-
prone network-administration task). So far, best practice is to
educate the user about proxy web-server set-ups, as a routine
part of deployment! To learn more about networking
properties see [Sun 2004a][2].

The afore-mentioned problem represents an impediment to
deployment and remain open. We theorize that the JXTA
framework might help solve the problem, but have not
investigated it, yet.

III. PACKING THE JAR FILE
One sub-problem in remote job submission is to trim the

job down into a small, self-contained, signed jar file. The
Initium RJS system makes used of static dependency analysis
(SDA) in order to reduce the size of the file. We show that
this is a deep problem in grid computing, as improperly
configured resources cause a job to fail after deployment into
a grid. Such failure can be hard to debug and correct.

The question of how effective SDA can be remains open.
We have conducted a study of 130 deployed web start
applications, available for evaluation at
http://www.docjava.com.

Fig. 1. Jar size vs. Jar Number.
Fig. 1 shows the size of the jar file, in bytes. The largest

jar is 2.7 MB, the smallest 2.3 KB and the average is 458
KB. Thus, on average, we have been able to achieve a
compression ratio of almost 6:1 (with a maximum of over
1000:1).

Compression ratios for jar size reductions are hard to
predict. More onerous is that SDA can fail to work properly.
It is hard to do static dependency analysis in a language that
can dynamically load classes based on the contents of a
string. For example:
Class c =

Class.forName(“theClassWeMissed”);
is missed by the SDA and causes a

ClassNotFoundException at run time. In our project,
Class.forName occurs in 34 files out of 1,585 files (1 file in
46). Further, for smaller projects, there may be little benefit
to packing optimally for size. Thus, SDA is not for every
application.

The SDA is now a “smart” linker, but it has limits. We use
our domain knowledge about different applications to decide
what resources should and should not be included. For
example, most sane implementations of the Java virtual
machine have API’s available that include all classes in
java.lang. However, some implementations (e.g. micro
editions that run on PDA’s and cell phones) lack javax.swing.
Thus, we direct the SDA not to include the swing classes as a
part of a standard deployment, by default. However, if our
assumptions regarding the run-time environment prove
erroneous, our deployment will fail with a
classNotFoundException thrown at run-time.

Other, less standard resources are collected and stored in a
series of support jar files that reside on the web server. This
too, poses significant deployment issues, which we shall
address, below.

In the case of reflection (which is able to find classes from
a string), SDA is not technically sufficient. To address this
concern, we theorize that dynamic dependency analysis
(DDA), or, at the very least, a scan of all SDA invocations to
Class.forName(String s) would be needed to help the SDA.
At least that would give us the needed class files. The
problem is, the system only loads class files, not resources
(like icons, etc.).

If you use the part and package mechanisms of Java web
start to declare what packages are included and in what jar

3

files they reside, you should be able to skip downloading of
any jars declared as lazy. This should work, in theory.
However, in practice, it does not work (as of JDK1.5, or our
latest attempt with JDK1.6), and without jar Indexing
implemented, there is no way to prevent all jars from
downloading. The reason why is that the class loader cannot
know where to look for a resource when confronted with a
list of jars.

Under JDK 6, part and package mechanisms are supposed
to be working (and perhaps this is true, just not for us!). The
theory is that the new indexing option of the jartool enables
the construction of a master index. This index contains a list
of all resources in all jars. The class loader loads this first and
uses it to locate resources at run-time. Summary: if the first
eager jar contains a proper jar Index of the complete set of
jars, then if all of the other jars are marked lazy, they will
only be downloaded when the JNLPClassLoader requests a
resource or class in them. To understand the importance of
the situation, consider the following JNLP test file:
<jnlp

href="bookExamples.ch24Reflection.Load
TestLarge.jnlp"

codebase="http://show.docjava.com:8086/b
ook/cgij/code/jnlp/">

 <information>

<title>bookExamples.ch24Reflection.Loa
dTestLarge</title>

<vendor>DocJava, Inc.</vendor>
 <homepage

href="http://www.docjava.com"/>
 <icon

href="http://show.docjava.com:8086/con
sulti/docjava.jpe"/>

 <offline-allowed />
 </information>
<security>
 <all-permissions />
</security>
<resources>
<j2se version="1.5+" />
<jar

href="bookExamples.ch24Reflection.Load
Test.jar" />

(40 jar hrefs later)…
</resources>
<application-desc main-

class="bookExamples.ch24Reflection.Loa
dTest" />

 </jnlp>
The lazy directive tells the webstart client that it should

only load the 22 MBs worth of jars if it needs them (add
another 10 MBs worth of jars if you want voice synthesis).
The above loads eagerly, and a slow down-load kills fast
start-up. The LoadTest.jar is less than 3K bytes. The lazy-tag
bug work-around is to strip out the unneeded jar files, by
hand, and create a leaner JNLP file (this error-prone and
tedious, get-er-done activity appears to be industry-standard
practice!). For example:
<jnlp

href="bookExamples.ch24Reflection.Load
Test.jnlp"

codebase="http://show.docjava.com:8086/b
ook/cgij/code/jnlp/">

<information>

<title>bookExamples.ch24Reflection.LoadT
est</title>

 <vendor>DocJava, Inc.</vendor>
 <homepage

href="http://www.docjava.com"/>
<icon

href="http://show.docjava.com:8086/con
sulti/docjava.jpe"/>

<offline-allowed />
 </information>
<security>
 <all-permissions />
 </security>
<resources>
 <j2se version="1.5+" />
<jar href=
"bookExamples.ch24Reflection.LoadTest.ja

r" />
 </resources>

 <application-desc main-

class="bookExamples.ch24Reflection.Loa
dTest" />

</jnlp>
The reader can try this at home using:
http://show.docjava.com:8086/book/cgij/c

ode/jnlp/bookExamples.ch24Reflection.L
oadTest.jnlp

Now the pathological advisory devises a counter example.

Try the "same" program using:
http://show.docjava.com:8086/book/cgij/c

ode/jnlp/bookExamples.ch24Reflection.L
oadTestLarge.jnlp

The hand-edited JNLP file downloads 200 times faster, but
suffers from an ad-hoc/manual synthesis technique. Thus, we
have sacrificed speed for reliability (which we judge to be a
poor trade-off). We assert that correct and automatic
packaging is critical to deployment-scheme success. It is not
rational to expect grid-program authors to hand-edit JNLP
files without error. The resulting exceptions are sure to be
cryptic to most programmers.

This problem is not just endemic of Java operating
environments. We have often seen students who were unable
to demo a program because they forgot a shared library (i.e.,
a DLL) from their home system.

On the bright side, once downloaded, the jar files they
need not be downloaded again (unless they change). On the
other hand, all the jars change at least once per year, since
certificates used to sign jars expire after one year.

We created a master index of each jar file, along with its
contents, using:
jar i catalog.jar *.jar

This created a file, in the jar file, called INDEX.LIST. A
new jar file, added to the head of the JNLP, has an eager
download:
<resources>
 <j2se version="1.5+" />
 <jar

href="bookExamples.ch24Reflection.Load
Test.jar" />

 <jar href="libs/catalog.jar"
download="eager"/>

However, we find that this does not speed start-up either.
For example, the hand-optimized JNLP file ran in just 3
seconds from the start of a click (using a 100 Mbps LAN

4

from a 2.7 GHz Linux box). The new catalog instrumented
load tester ran after 27 seconds, each jar downloaded even
though they were not required. An upgrade to the newest beta
2 version of JDK 1.6 did not help matters at all.

As bug remains, our present effort takes the approach of
implementing our own catalog synthesizer and catalog
reader. The next step in the research agenda is to integrate
this into the JNLP synthesis stage. We suspect that
comparison between required resources and given jar
libraries can help to synthesize correct JNLP files,
automatically. However, this line of exploration is not
complete and thus, the problem remains open.

IV. RESOURCE MANAGEMENT

Decoupling data from source code can be a fruitful source
of fragility. For example, suppose that you write a program
that seeks to make use of an icon in an interface. In order to
load the icon, you write:
LookAndFeel.makeIcon(getClass(),

"icons/ColorIcon.gif"));
Now suppose the GIF “ColorIcon” icon file is relocated,

relative to the root of the source code. This can easily happen
during the process of distribution or development. Even
worse, resource deficiencies cause run-time errors (perhaps
days or even weeks after deployment).

While SDA can identify most of the needed classes, it
cannot identify the resources needed by the classes.
Resources for a modern application are typically data files
(i.e., sound, data-bases, images, image sequences, 3D data,
etc.).

Initium has a technique for integrating programs and their
resources. The goal is to distribute the programs to a variety
of platforms without losing the resources that they need in
order to run. Programs so integrated are less fragile than their
non-integrated counterparts. The technique uses a semi-
automatic source code synthesizer, XML-based serialization
and a base-64 GZIP encoded string format.

The approach is suitable for small data objects (i.e., icons,
short audio signals, native libraries, etc.). One drawback of
the technique is that an added step is required during program
development in order to integrate resources into the code.
Another drawback is that integrating resources into the
source code can dramatically increase the size of the class
files. On the other hand, once the class files are loaded, the
resources are available in memory (and hence, quickly
accessible).

By integrating resources with the source code, the
compiler makes sure that the resources are present. In this
way, we trade-off a run-time error for a compile-time error.

The result is a self-contained resource without the normal
source of fragility (i.e., source relocation). Hence, we no
longer have a program that requires files to be located in
particular places on the disk. This works well for short data
files. However, longer data files lead to longer strings and
this results in a compilation error (a “constant string too
long” error).

A resource manager combats the error by automatically
sensing an updated jar file on the web. The jar file contains
data (with no executable code) and downloads into a
specified location on disk, after prompting the user for
permission. The question of how to resolve this issue, in a
more automatic way remains open.

The JNLP native tags address the question of how to deal
with native libraries. As an example, consider the
JAddressBook application, capable of dialing the phone via a
serial-port based modem. Modern macs have no serial port
and thus a USB to serial adapter is used. The present
implementation uploads multi-platform based native method
serial port drivers, along with their relevant JNLP entries. An
excerpt from the JNLP file follows:
<resources os="Mac OS X" >
<jar href=
 "libs/rxtx/mac/RXTXcomm.jar"

download="eager" />
<nativelib href=

 "libs/rxtx/mac/native.jar"
download="eager"/>

</resources>
<resources os="Linux" >
<jar href="libs/rxtx/linux/RXTXcomm.jar"

download="lazy" />
 <nativelib

href="libs/rxtx/linux/native.jar" />
</resources>
<resources os="Windows XP" >
<jar href="libs/windows/RXTXcomm.jar"

download="eager"/>
<nativelib

href="libs/windows/native.jar" />
</resources>

This defeats the notion of having a single, integrated jar
file with all the resources embedded. In order to bring that
back into the fold, a means is needed to gain access to the
java.library.path at run time, so that native methods can be
placed in the proper place, with their versions controlled. In
order to provide write access to the library path property, we
make use of reflection to alter the visibility of the member
variable. Hence the Ugly Gaudy Hack (UGH) :
public static void ugh(){
Class loaderClass = ClassLoader.class;
Field userPaths =
loaderClass.getDeclaredField("sys_path
s");

userPaths.setAccessible(true);
userPaths.set(null, null);
userPaths.setAccessible(true);
userPaths.set(null, null);

}
A code inspection of the core Java API shows that altering

the java.library.path will otherwise make no difference on
which native libraries are loaded (without UGH). Now that
we have UGH control over the java.library.path, we install
bundled native method resources into writable locations.
Thus, the native method is UUEncoded into a Java string and
compiled as a part of the code. For example:
static String librxtxSerialDotsoName =

"librxtxSerial.so";
static String librxtxSerialDotso =
"H4sIAAAAAAAAAO19DXRURdJoJwQJEJ2AqKgoI4K

CQggR/wAlhAwQTWAMiaKiw5CZZAa
SmXF+" +.....

5

public static void writeLibrary() throws
IOException {

ByteArrayOutputStream baos = new
ByteArrayOutputStream();

ObjectOutputStream oos = new
ObjectOutputStream(baos);

oos.writeObject(Base64.decodeToObject(li
brxtxSerialDotso));

oos.close();
Futil.writeBytes(SafeCommDriver.getRxtxL

ibFile(), baos.toByteArray());
}

The resource encoder is a part of the Initium RJS system,
and helps to automate the process of deployment. The
drawback is that the code grows by the size of the native
libraries that it must now carry. For the serial port libraries,
that is about 56 KB per platform.

V. THE THAWTE WEB OF TRUST

In order for Java Web Start (JAWS) to give unrestricted
permission for a Java program to execute, it must use a
“signed” jar file. A signed jar file authenticates the code
originator. This does NOT prevent the author from writing
harmful code. On the other hand, if you trust the author to
write non-harmful code, you may feel safer about running the
authors’ programs.

In order to sign a jar file, you need a digital certificate. A
Certification Authority (CA) issues certificates after a proper
background check. Running applications with un-trusted
signatures (i.e., a signature that is not verified by a known
CA) will initiate a dialog: “It is highly recommended not to
install and run this code”.

Grid operators want assurance that a program is safe.
Proper attribution to the program author does not ensure
safety, but it does assign responsibility. In the event, the grid
application contained damaging code, the compute servers on
the grid become infected faster than normally propagated
computer contagions. Such a program places the entire grid
as risk.

Grid computing services have a choice. One approach is to
require that every user of the grid obtain a certificate. When
a new certificate appears on the grid, the computer servers
(when in screen-saver mode) will then query the CS owner if
the application is to be trusted. We find this to be a bit of a
showstopper. Another approach is to sign the jar file with our
own certificate. As an alternative, the Jparss approach is to
issue a temporary certificate to a user that has a certificate
issued by a valid CA [Chen][3].

Still another approach is the signing of applications that
are unsigned, in the WS. The basic idea is that the grid
operator knows the user, since they already have an account.
We have yet to find another grid system that has taken this
approach. Perhaps the most obvious reason is that it places
the credibility of the signer on the line. If you sign off on a
Trojan horse, no one will trust your grid again (trust is not a
coin that is easily minted). On the other hand, if you require
that every programmer get a certificate (as well as an
account) you make participating in the grid that much more

difficult. Thus, there is a trade-off of security versus
usability.

At present, the question of how to best handle the
authentication of grid programmers remains open. It is one
thing to sign applications for students or employees. It is
quite another to sign applications for people you have never
met. The former case is risky; the later case is grievously
unsafe.

VI. HOW DO YOU GET A CERTIFICATE?

The steps needed to obtain a free personal e-mail

certificate from Thawte start with a visit to
https://www.thawte.com/email/index.html#. A free certificate
will not show your name when you sign your jar files. JAWS,
for example, will show your name as: “Thawte Freemail
Member”. A new certificate will cause the web start
program, launched from the screen saver, to pause and ask if
the certificate is trusted. The certificate identifies you as a
generic “Thawte Freemail Member”. If you want the
certificate to identify you, by name, then the grid
programmers needs to join the “Freemail Web of Trust”
membership, described in the following section.

Thawte has issued a new API available to certificate
resellers (like DocJava, Inc.). This new API holds the
promise of further enabling the automation of certificate
signing and issuance. The question of how to make use of the
new API remains open.

VII. FREEMAIL WEB OF TRUST

To obtain a certificate that authenticates your identity (by
using the best efforts of the CA (Certificate Authority), the
grid programmer joins the Web Of Trust (WOT). There are
two ways in which to join the WOT, the free way and the
non-free way. The free way requires that you meet with
“Web of Trust” notaries. They will require two forms of
identification and will vouch that you are who you say you
are.

The second (non-free) way to join the WOT is to obtain a
“Remote Authentication” (RA). RA requires you to meet
with two trusted third parties. Examples include a bank
manager, a practicing attorney or a CPA. A bank manager
must be the manager of a branch of a registered banking
institution

There is a $25 fee for using RA and, once authorized, you
become a notary yourself. We elected to pay the fee and went
to two different notaries at two different local banks.

The delay in getting the verification process done is about
6 weeks. This is a lot of overhead to ask of the grid
programmers.

VIII. GETTING YOUR NEW CERTIFICATE
Downloading the new certificate requires a manual

procedure that includes a visit to the CA web page. The

6

Initium keywizard has a means of automating parts of the
process, including a method for importing certificates into
the key store.

A toolkit called the KeyUtils class has a cleanThawtes
procedure that automates the processing of certitificates
returned by Thawte [Dallaway][4]. As a part of the Initium
keywizard, cleanThawtes was wrappered with a GUI.

Key management is tedious and error-prone. The Initium
key wizard handles a series of different situations. For
example, when no “.keystore” file appears in the users’
home, the program will prompt you for a key store file. If
you do not have one, the program will offer to make one for
you, adding a self-signed certificate. The program also offers
to create a certificate request file, thus easing key
management, a little.

The question of how to make the key management easier
remains open. The idea of allowing users with accounts to
submit unsigned jobs to the server is gaining increased
popularity. Perhaps if they purchase access to the grid with a
credit card, they are trustworthy enough.

IX. SIGNING JAR FILES
Initium programmatically signs jar files for the grid

programmer. This is a far more difficult problem than it
would first appear. There has been some excellent work on
the programmatic signing of jar files. Scott Oaks has some
code for signing jar files [Oaks 2001][5]. However, it is not
compliant with the JDK tool for signing jar files (called
jarsigner). In fact, Scott confirms this, claiming that
programmatic signing of jar files is “problematic” since none
of the classes that sign the jar files is public [Oaks 2004][6].

Raffi Krikorian has an excellent article on signing jar files
programmatically, however, it has several problems with the
code [Krikorian][7]. First, the code would not compile
cleanly, even after applying the bug fix mentioned at
http://www.oreillynet.com/cs/user/view/cs_msg/4433.
Second, run-time errors appear in the code, preventing actual
signing from occurring. Contacting the author did not yield a
bug fix. As a result, the Initium wizard makes used of the
sun.util.Jarsigner for jar file signing.

X. JNLP SYNTHESIS AND DEPLOYMENT

The Initium wizard generates a Java Network Launch
Protocol (JNLP) file. A JNLP file contains several
parameters, including the file name, path name, class name,
resource requirements, title, vendor, homepage, etc. It is both
tedious and error-prone for the programmer to have to write
these JNLP files. It is much easier, for the programmer, to
invoke a simplified interface that synthesizes the JNLP file
automatically.

Initium uses secure copy protocol (SCP) to upload the
JNLP file (along with the signed jar) to a web server. This
enables deployment from anywhere on the Internet, provided
the SCP port is open.

a) Fig. 2. Initium Dialog
Fig. 2 shows an image of the Initium dialog, prompting the

user for various parameters. Most of the parameters remain
the same from one run to the next. Thus, they are stored in
the user preferences, so that their entry is retained. All the
parameters needed to deploy the JNLP file, sign the jar file,
and perform the SCP upload are entered via the Initium
dialog. Other dialogs present when class path issues arise.

XI. SCREEN-SAVERS
This section describes Java-based screen-savers for

Microsoft Windows, Linux and MacOSX, for enabling a
Java-based grid-computing environment.

A screen-saver is a program that activates during a period
of user-computer quiescence. Detection of this quiet time
enables the use of otherwise wasted CPU cycles. When the
period of user-computer quiescence ceases, the screen saver
terminates any compute jobs and releases the computer back
for general use. Such a program constitutes a first step toward
utilizing otherwise idle compute resources in a grid
computing system.

We are motivated to study screen-savers because they
represent a minimally-invasive technology for volunteering
compute servers. Typically, utilization occurs between 40
and 60 hours out of a 168-hour week. This represents
approximately 35% utilization. Our theory is that a screen-
saver based cycle scavenging will improve this number
dramatically.

We are also motivated to provide this in a Java-based
environment in order to capitalize on Java’s ability to

7

execute the same program on many different platforms. This
makes a larger universe of grid-compute servers available
without requiring changes to the computational program.

In order to implement a screen-saver, we implemented a
renderFrame method that is called by the screen-saver
framework [JDIC][8].

The alternative to creating a Macintosh-based screen-saver
is to run X-windows under the Macintosh. Our general
feeling was that this is an atypical use of the Macintosh, and
we preferred a solution that makes use of the native window
manager (quartz) for the Macintosh. The code for writing
screen-savers is widely known [Christensen][9]. Our
contribution is in the integration of the screen-savers with the
CS.

An example of a simple screen-saver follows:
 Package

org.jdesktop.jdic.screensaver.bouncing
line;

 public class BouncingLine extends

SimpleScreensaver {
 public void init(){…}
 public void paint(Graphics g) {…}
 public void destroy() {…}
 …
}

In the BouncingLine class, the paint method erases the
previous painted line and draws the new line. For example:
public void paint(Graphics g) {
 Component c =

getContext().getComponent();
 int width = c.getWidth();
 int height = c.getHeight();

 // Erase old line:
 g.setColor(c.getBackground());
 g.drawLine(p1.x,

 p1.y, p2.x, p2.y);

 // Move points and

 // bounce off walls:
 bounce(p1, dir1,

 width, height);
 bounce(p2, dir2,

 width, height);

 // Draw new line:
 g.setColor(lineColor);
 g.drawLine(p1.x, p1.y,

 p2.x, p2.y);
 }

Two other callback methods include init and destroy,
invoked when the screen-saver starts and stops. The init
method is invoked upon screen-saver start up. An example
implementation follows:
public void init(){
 ScreensaverSettings settings =

 getContext().getSettings();
 Component c =

 getContext().getComponent();
 int width = c.getWidth();
 int height = c.getHeight();
 randomizePoint(p1, width, height);
 randomizePoint(p2, width, height);
 dir1 = new Point(

 randomVector(), randomVector());
 dir2 = new Point(

 randomVector(), randomVector());

 String colorOption =
 settings.getProperty("color");

We have created a web start method for automatically
deploying and installing the screen-saver. The screen saver is
beamed over via the web start application and place in the
proper location for user screen-savers (e.g., on a Mac, this is
~/Library/Screensavers/). We detect the operating system and
CPU type, before the transfer. We have routines for
determining if the machine is a PPC Mac, Intel Mac, x86
Linux or MS Windows. Support for multiple machines is
both tedious and time-consuming. The web start application
launched by the screen-saver framework is a compute server.
To demonstrate how error-prone such code can be, consider
that MS Windows stores its screen-saver in a different place
for each minor version release. For an example of how this
influences the code, consider the following:
public static String

getScreenSaverHome() {
 final String system32 =

"c:\\windows\\system32";
 final String winNt =

"c:\\winnt\\system";
 final String system =

"c:\\windows\\system";
 if (OsUtils.isWindowsXp())

return system32;
 if (OsUtils.isWindowsNt())

return winNt;
 if (OsUtils.isWindows2000())

return winNt;
 if (OsUtils.isWindows98())

return system;
 if (OsUtils.isWindows95())

return system;
 System.out.println("er!:could

not identify OS:" +
OsUtils.getOsName());

 return system32;
 }

Thus, the windows home for Windows NT is different
from XP and Windows 98. Naturally, there are different
locations for Unix and Mac OS too. In short, there are no
standard locations for screen-savers.

8

Fig. 3. RJS Screen-Saver

After installation, the user selects the new screen-saver,
just like any other, as shown in Fig. 3. After determining the
location of the WebStart client application on the users’
machine the screen-saver uses a URL to start the job via an
invocation to the Runtime. These efforts are detailed in [Lyon
et Al. 2006(a,b,c)][10][11][12].

Constructing a native-method framework for controlling
web-start applications from a screen-saver was both painful
and educational. Screen-savers are surprisingly difficult to
design, correctly. They consume a great deal of grid
development time and require climbing a steep learning
curve that encompasses multiple languages and platforms.
Further, development and support of these programs requires
extensive cross-platform testing. It is little wonder that the
Java grid computing community has almost totally ignored
screen-savers, before now.

XII. MIDDLEWARE
This section describes the middleware needed to deploy

jobs to non-geographically co-located clusters with
decentralized look-up severs.

A Web Server (WS) has a Java Network Launch Protocol
(JNLP) file that references a signed jar file. The computation
jar contains a job for the computation server. The LUS sends
back answers to the server using RMI over SSL (RMI/SSL).
When a CS starts, it registers with a LUS. The LUS then
updates its list of computation servers in the cluster. Look-up
servers start via Java Web Start. The LUS, then proceeds to

delegate tasks to new registered CS. Fig. 4 depicts the events
mentioned.

Fig. 4 IRJS System events
All LUS – CS communication is on the LAN behind the

firewall. Most grid systems use SSL for authentication, but
by default do not establish encrypted communication in a

secure manner [Globus 2][13]. Our approach requires that we
encrypt all WS-LUS communication via a session key. In

order to establish the session key, WS and LUS must agree
on a shared key without sending any secret data in the clear.
To do this, we use the RSA key exchange algorithm for SSL

key exchange. In RSA key exchange, the WS encrypts a
number of random bytes with the LUS's public RSA key and

they both use this shared secret to create the session keys.
The Message-Digest 5 (MD5) algorithm ensures message

integrity. The MD5 algorithm is intended for digital signature
applications, where a large file must be "compressed" in a

secure manner before being encrypted with a private (secret)
key under a public-key cryptosystem such as RSA

[Rivest][14]. The CS receives a URL to a JNLP file and
downloads the Java Web Start “job” in order to compute it.
The owner of the CS must accept the job owner certificate.
Once the certificate is trusted, all jobs signed by it execute

automatically.

RSA algorithms ensure secure communication and the
MD5 message digest ensures that no one has altered the data
in transit.

An alternative approach to security might use the Kerberos
network authentication protocol [Kerberos][15] or SSH
protocol [OpenSSH][16]. However, such tools are
vulnerable, as the attackers can gain access to user's
password as it is typed [Basney][17].

RJS architecture uses Java Web Start technology and is
operating system independent. Java Web Start provides the
power to launch full-featured Java applications with a single
click without going through complicated installation
procedures [Sun 2004b][18]. The system has three major sub-
systems: the Web Server, Look-up Server and Computation
Server as shown in Fig. 5. Different computers can run all
three systems [Lyon et Al. 2006d][19]

9

Fig. 5 RJS data flow

XIII. RELATED WORK
Grid Computing is not new, nor for that matter is grid

security. The use of grid computing on a heterogeneous
network is also not new. What is new is our use of Java Web
Start to distribute jobs on the grid. This opens the door to
grid computing on a heterogeneous network for Java
programmers.

Globus uses the Grid Security Infrastructure (GSI, Globus
Project Toolkit 3.0) to implement grid security [Silva][20].
GSI provides a number of useful services for grids, including
mutual authentication and single sign-on. A central concept
in GSI authentication is the certificate. A certificate identifies
each user of the Grid [Globus][21]. Manipulating grid
certificates using Globus Toolkit 3.0 (GT3) in Windows
environments is awkward. It requires the system
administrator or user to install GT3 on Linux systems in
order to use command line scripts to generate certificates.
Users must move those certificates to their Windows system
[Silva 2][22].

The Cog Kit contains the Globus Toolkit APIs. They
generate user certificates and certificate requests. It can also
sign certificates and create proxies [Globus2][23].

In many ways, our approach is similar to GSI, but we are
using a pure Java implementation. In our judgment, the GSI
technique is very secure; however, it is also cumbersome.

XSOAP and XCAT grid web services use the GSI to
provide Public Key Infrastructure [XSOAP][24]. Also, EU
DataGrid project‘s authentication and delegation is based on
the Globus GSI, which is an extension of the Public Key
Infrastructure [Cornwall][25]. XSOAP and XCAT grid web

services use GSI. As a result, XSOAP and XCAT grid web
services suffer from the same advantages and disadvantages
of GSI.

The JPARSS (Java Parallel Secure Stream for Grid
Computing) system has security features that enable
authentication via a temporary X.509 certificate. Temporary
certificates go to those who hold a certificate issued by a CA
[Chen][26]. The advantage of this solution is one-time
authentication, but still, there is a need for a CA to sign the
temporary certificate. Furthermore, it requires a password to
create X.509 certificate.

Grid Portal Development Kit (not supported anymore) gets
its security using a few simple methods for setting the
username, password and designated lifetime of the proxy
[GPDK][27]. The system is not secure and abandoned.

JGrid introduced an Authentication Service (AS) that
provides short-term certificates for users without their own
certificate. In this case, a user can register with the AS, log in
a custom way, and obtain a private key and certificate.
Therefore, the AS is a CA (Certificate Authority) of the
JGrid, providing short-term credentials [JGrid][28].

JGrid is based on JINI technology. JINI network
technology, which includes JavaSpaces Technology
[Flenner][29] and JINI-extensible remote invocation (JINI
ERI), is an open architecture that enables developers to
create network-centric services that are highly adaptive to
change [Sun2000][30]. The approach of issuing short-term
certificates is similar to JPARSS, thus it shares same
advantages and disadvantages.

Condor provides support for strong authentication,
encryption, integrity assurance, as well as authorization.
Most of these security features are not visible to the user (one
who submits jobs). They use configuration macros that run
by the site [Condor][31]. Since the Condor project uses GSI
for authentication [Condor2][32], it suffers from the same
advantages and disadvantages of GSI.

The Gridbus Project has developed a Windows/.NET-
based desktop clustering software and grid job web services
to support the integration of both Windows and Unix-class
resources for Grid [GRIDBUS][33]. Unlike RJS, the
installation of Gridbus is time intensive. In most of the cases,
compilation of the code is required. Also, before installation,
many prerequisites, such as: IBM TSpace, Globus toolkit 2.4,
MySQL or Microsoft .NET Framework 1.1, are required.

Screen-saver based grid computing systems are not new
(http://boinc.berkeley.edu/) but their use for Java computing
is [SETI][34]. Additionally, some screen-savers, like SETI,
are closed systems in that others can only contribute CPU
cycles (but not programs). Our system differs from SETI
style grid computing in four ways:

1. RJS has binary portability (it is Java-based),

2. RJS enables others to submit jobs to the grid,

3. RJS automatically configures the CS,

4. RJS is secure.

In addition, Java-based screen savers have typically been

10

restricted to MS Windows and Xwindows (UNIX)-based
systems. Our system extends the screen-saver technology to
Macintosh-based systems [JDIC][35].

The creation of key tool API’s is not new either
[BouncyCastle][36]. Verisign has an API, but its’ support has
been withdrawn [Verisign][37]. The interesting thing about
the Verisign API is that it enables users to revoke public keys
at the CA (which is an excellent idea). Thawte now has a
new API for this application. The new Thawte API enables
the automation of Thawte interactions and is a topic of
current research.

There have been articles on the signing of JAWS
applications [Dallaway][38]. There have also been articles on
the signing of Applets [Gallant][39] [Myer][40].

The creation of a key wizard seems like a logical evolution
of the key tool. It is surprising, therefore, that keytool
wizards are so few and far-between. A reason for this is that
Sun has not open-sourced the JKS (Java Key Store) API. On
the other hand, there are open-source versions of a JKS
system [Marshall][41]. We have yet to test this system.

One notable keytool wizard is the BEA systems wizard for
their Weblogic product [BEA][42]. Such systems are closed-
source, expensive and only work on Weblogic.

Programmatic signing is not new [Krikorian][43]. Nor is
the practice of reducing jar size via static dependency
analysis [Sadun][44].

Resource bundling problems are not new [Lyon
2005a][45], nor are the issues of key management and the
integration of deployment with programmatic signing and jar
optimization [Lyon 2005b][46] [Lyon 2004][47]. However,
the integration of key management automation with
automatic deployment, and SDA is new and lowers the
programmer effort needed for web deployment.

XIV. CONCLUSION
The Initium project has uploaded a series of applications

via SCP. Uploading requires a location for the destination
files. Perhaps that is not an optimal situation. Hard-coded
JNLP HREFs change, from time to time, and this can cause
fragility. Probably, a better solution would be to use one of
the server-side technologies available to JNLP systems, such
as JBoss
http://www.developer.com/java/ent/print.php/3343761.

Key-management automation facilitates application
deployment. This is a primary motivation for creating the key
wizard. The automation of key-tool functions is not hard,
given proper error handling and GUI implementation effort.
However, the key-tool API is neither public, nor open-
sourced. The implementation effort required in order to
provide the key-tool function points is substantial.

Even more disconcerting is the general lack of
programmatic support for the retrieval of trusted certificates.
The Thawte API may be of help here. Meanwhile, the user
must still interact with a CA in order to go through a process
of getting a certificate. This limitation is less a technical one
than a security one. Establishing in-house notaries will speed

registration when there are several geographically co-located
programmers present.

Screen-saver computing, in Java, remains an immature
technology. Ports of the SaverBeans development kit are still
not available for the Mac. Our own solution for the Mac is
probably sufficient, for now, however, a unified framework
for all platforms would be preferable.

In summary, grid computing still needs help in providing a
one-stop shop that integrates security, deployment and proper
packaging. A series of wizards can help ease the deployment
and packaging burden. However, there are still deeper
security policies that need to be addressed before grids can be
open global resources.

XV. FUTURE WORK

One area of possible future work is in the area of
programmatic signing of code. It is clear that calling the
sun.util.JarSigner API is not optimal for several reasons: The
class resides in the sun.util package, and this package is not
generally stable (nor even endorsed for general use!).
Further, the sun.util.JarSigner is intended to be used from the
command line. The verification mechanism implemented in
the JarSigner terminates the callers’ thread of execution, an
unwelcome side effect. With JDK1.5, the sun.util.JarSigner
API moved into tools.jar [Sun 2005b][48]. A stable, public
JarSigner API would help automate the signing task.

Certificate management is still complex and impoverished.
If the trust is misplaced, it should be possible to check a list
of bad key risks. A standard for certificate revocation has yet
to be formulated (what if it is lost, or stolen?).

Any entity that signs the code of others is at risk. Thus, it
seems best to issue keys to individuals and to develop a web
of distrust (WOD). If enough notaries in the WOT indicate
that an individual is a bad risk (con-artist, virus author, etc.)
it should be possible to revoke their key. The question of how
to implement this, or even how to check a database of
revoked keys is open. It may be up to the CA to put this into
the API.

The question of how to automate the discovery of the
existence of a firewall, and a proxy server, remains open.
This is critical to the correct configuration of JAWS.

The question of how to scan the Java byte codes for
symbolic references is open. This is important to the correct
operation of the SDA pre-processing feature of the Initium
system. Even with a byte code scanner, SDA can fail to work
properly.

Dynamic dependency analysis (DDA) is an obvious next
step. The question of how to implement DDA remains open.
One possible answer might be to log loaded classes from a
modified class loader, at run-time.

A better class-path management scheme needed to
facilitate robust SDA operation. At present, the GUI prompts
the user for the location of classes that it is not able to
resolve during the SDA phase.

One of the open problems that remain with JAWS is the
set-up problem. Manually setting the proxy web server in the

11

JAWS preferences is both error-prone and tedious for users.
Worse still, is the long download time needed to install the
Java SDK or JRE. Most alarming is the inability to install
these things without an administrator’s password under
Windows. To add insult to injury, Windows requires a reboot
after the installation (at least under Windows Professional).

JXTA may help address the proxy issue, but other
installation requirements (i.e., system-admin privilege,
remain).

We are working to extend the ideas presented in the paper
to help with clusters and grid computing. We have already
deployed prototype RMI applications via the Initium system
and have a full-fledged grid computing system in the works.
The question of how effective this system will be in
automating grid computing remains open.

Finally, the installation of screen-savers on an MS
Windows system that is locked-down remains open. If we
lack write access to the Windows32 directory, then there may
be no way to add a screen-saver.

An added complication to the research is that Oracle has
discontinued support for Java Webstart in Java 11, however
they have encouraged the use of jlink and/or third part
packaging and deployment solutions, which is presently a
topic of current research [49].

ACKNOWLEDGMENT
This research was made possible, in part, by a Faculty
Research Grant from Fairfield University.

REFERENCES
[1] [Lyon 2005c] “Project Initium: Programmatic

Deployment” by Douglas A. Lyon, Journal of Object
Technology, vol. 3, no. 8, September-October 2004, pp.
55-69.
http://show.docjava.com:8086/pub/document/jot/web.pdf

[2] [Sun 2004a] “Networking Properties” by Sun
Microsystems
http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.h
tml

[3] [Chen] "Java Parallel Secure Stream for Grid
Computing" by Jie Chan, Walt Akers, Ying Chen and
William Watson III, High Performance Computing
Group, http://www.jlab.org/hpc/papers/jparss.pdf

[4] [Dallaway] Richard Dallaway, “Java Web Start and
Code Signing”, May 2002
http://www.dallaway.com/acad/webstart/

[5] [Oaks 2001] “Java Security, 2nd Edition” by Scott Oaks,
O’Reilly & Associates, Inc., Sebastopol, CA, 2001.

[6] [Oaks 2004] Private e-mail correspondence with Scott
Oaks, 2004.

[7] [Krikorian] "Programmatically Signing Jar Files" by
Raffi Krikorian, OnJava.com,
<http://www.onjava.com/lpt/a/761> April 12, 2001.

[8] [JDIC] Java.net: “JDIC project home”,
https://jdic.dev.java.net/

[9] [Christensen] “Writing a Screen Saver Module” by
Brian Christensen, April 10, 2001,

http://www.cocoadevcentral.com/articles/000011.ph
p

[10] [Lyon et Al. 2006a] “Initium RJS: Screensaver in Java,
Part 1, MS Windows” by Douglas A. Lyon and
Francisco Catellanos, submitted to the Journal of Object
Technology, vol. 5, no. 4, May-June 2006, pp. 7-16.

[11] [Lyon et Al. 2006b] “The Initium RJS Screensaver:
Part2, UNIX” by Douglas A. Lyon and Francisco
Castellanos, in Journal of Object Technology, vol. 5, no.
6, July-August 2006, pp. 7-15.

[12] [Lyon et Al. 2006c] “A Macintosh Screensaver in Java :
Part3”,by Douglas A. Lyon Pawel Krepsztul and
Francisco Castellanos, in Journal of Object Technology,
vol. 5, no. 7, September-October 2006, pp. 9-17.

[13] [Globus2] Overview of the Grid Security Infrastructure
(GSI),http://www-
unix.globus.org/security/overview.html

[14] [Rivest] "MD5 Algorithm" by Ronald L. Rivest, April
1992, http://www.kleinschmidt.com/edi/md5.htm

[15] [Kerberos] "Kerberos: The Network Authentication
Protocol", http://web.mit.edu/kerberos/www/#what_is

[16] [OpenSSH] OpenSSH, http://www.openssh.org
[17] [Basney] "A Roadmap for Integration of Grid Security

with one time Passwords" by Jim Basney, Von Welch,
Frank Siebenlist, April 18, 2004,
http://www.ncsa.uiuc.edu/~jbasney/grid-otp.pdf

[18] [Sun 2004b] "Java Secure Socket Extension (JSSE)" by
Sun Microsystems, http://java.sun.com/products/jsse

[19] [Lyon et Al. 2006d] “Heterogeneous Autonomic Screen-
Saver CPU Scavenging”, by Douglas A. Lyon, Pawel
Krepsztul, New England ASEE Conference, March 17-
18th, Worcester, MA 2006.

[20] [Silva] "Manage X.509 certificates in your grid with
Java Certificate Services" by Vladimir Silva, ibm.com,
http://www-
106.ibm.com/developerworks/grid/library/gr-jsc/,
October 2003

[21] [Globus] The Globus Alliance, http://www.globus.org
[22] [Silva 2] "Using Java technology with Globus Grid

Security Infrastructure" by Vladimir Silva, ibm.com,
http://www-106.ibm.com/developerworks/library/gr-
ggsi/, September 2003.

[23] [Globus2] Overview of the Grid Security Infrastructure
(GSI),http://www-
unix.globus.org/security/overview.html

[24] [XSOAP] "Grid Web Services: Security in XSOAP and
XCAT", http://www.extreme.indiana.edu/xgws/security/

[25] [Cornwall] "Security in multi-domain Grid
Environments" by Linda Cornwall and team, Kluwer
Academic Publisher, April 15,2004
http://www.urec.cnrs.fr/publications/GridJournal-EDG-
SCG-paper.pdf

[26] [Chen] "Java Parallel Secure Stream for Grid
Computing" by Jie Chan, Walt Akers, Ying Chen and
William Watson III, High Performance Computing
Group, http://www.jlab.org/hpc/papers/jparss.pdf

[27] [GPDK] "Grid Portal Development Kit", DOE Science
Grid, http://www.doesciencegrid.org/gridportal.html

[28] [JGrid] "The security architecture of the JGrid System"
by Mark Magyarodi

12

<http://pds.irt.vein.hu/documentation/JGrid_security.pdf
>

[29] [Flenner] "First Contact: Is There Life in JavaSpace" by
Robert Flenner, http://www.onjava.com/lpt/a/750

[30] [Sun 2000] Technical Session TS1473 "Introducing Java
Web Start: Delivering Java Technology-based
Applications Over the Web" Thursday June 8, 5:15-6:15
p.m.:
http://jsp.java.sun.com/javaone/javaone2000/event.jsp?e
ventId=1473

[31] [Condor] 3.7.3 Security Configuration,
http://www.cs.wisc.edu/condor/manual/v6.4/3_7Security
_In.html

[32] [Condor2] "Condor and the grid" by Karthik Ram
Venkataramani, www.ccr.buffalo.edu/grid/ download/
condor -and-the-grid.pdf

[33] [GRIDBUS] “The Gridbus Middleware 2004 “,
http://www.gridbus.com/middleware/

[34] [SETI] Seti@home,
<http://setiathome.ssl.berkeley.edu/>

[35] [JDIC] Java.net: “JDIC project home”,
https://jdic.dev.java.net/

[36] [BouncyCastle]
http://www.bouncycastle.org/specifications.html, An
open-source API that provides JCE features.

[37] [Versign] “Trust Services Integration Kit 1.7”
http://home.postech.ac.kr/~chokee/cs499/tsik-1.7/tsik-
1.7/api/com/verisign/xkms/tools/XKMSKeyStore.html,
and http://www.verisign.com/static/005314.pdf

[38] [Dallaway] Richard Dallaway, “Java Web Start and
Code Signing”, May 2002
http://www.dallaway.com/acad/webstart/

[39] [Gallant] Michel I. Gallant, “Thawte Code Signing Certs
with Authenticode, Netscape and Sun Signing”,
http://www.jensign.com/JavaScience/Thawte/

[40] [Myer] "Grid watch: GGF and grid security" by Thomas
Myer, 13 May 2004,<http://www-
106.ibm.com/developerworks/library/gr-watch4.html>

[41] [Marshall] Casey Marshall, “An implementation of the
JKS key store” http://metastatic.org/source/JKS.html

[42] [Bea] “The Bea Systems Keytool Wizard”
http://edocs.bea.com/wli/docs70/b2bsecur/keystore.htm

[43] [Krikorian] "Programmatically Signing Jar Files" by
Raffi Krikorian, OnJava.com,
<http://www.onjava.com/lpt/a/761> April 12, 2001.

[44] [Sadun] “The Ant Pack Task Source Code”, by
Christiano Sadun is an open source library available
from http://sadun-util.sourceforge.net/

[45] [Lyon 2005a] “Resource Bundling for Distributed
Computing” by Douglas A. Lyon, Journal of Object
Technology, vol. 4, no. 1, January-February 2005, pp.
45-58.

[46] [Lyon 2005b] “The Initium X.509 Certificate Wizard”
by Douglas A. Lyon, Journal of Object Technology, vol.
3, no. 10, November-December 2004, pp. 75-88.

[47] [Lyon 2004] "The Initium X.509 Certificate Wizard” by
Douglas Lyon, private communication with the author,
November 2004.

http://show.docjava.com:8086/pub/document/jot/initium.
pdf

[48] [Sun 2005b] Private correspondence with Vincent Ryan
<Vincent.Ryan@Sun.COM>.

[49] [Oracle] Java Client Roadmap Update, March 2018.
https://www.oracle.com/technetwork/java/javase/javaclientroadmapupd
ate2018mar-4414431.pdf

Douglas A. Lyon (M’89-SM’00) received the Ph.D., M.S. and B.S. degrees in
computer and systems engineering from Rensselaer Polytechnic Institute
(1991, 1985 and 1983). Dr. Lyon has worked at AT&T Bell Laboratories at
Murray Hill, NJ and the Jet Propulsion Laboratory at the California Institute of
Technology, Pasadena, CA. He is currently the Chairman of the Computer
Engineering Department at Fairfield University, in Fairfield CT, a senior
member of the IEEE and President of DocJava, Inc., a consulting firm in
Connecticut. Dr. Lyon has authored or co-authored three books (Java, Digital
Signal Processing, Image Processing in Java and Java for Programmers). He
has authored over 50 journal publications. Web: http://www.DocJava.com.

Pawel Krepsztul. Earned his Master's Degree in the Electrical and Computer
Engineering from the Fairfield University in August 2005. His research
interests include grid computing. Currently he is employed by Pepsi Bottling
Group in Somers, NY as a software developer.

Francisco Catellanos. Earned his B.S. (Hons) degree in computer science at
Western Connecticut State University. Francisco Castellanos worked at Pepsi
Bottling Group in Somers, NY as a software developer. Currently he is
working on a thesis to complete his M.S. degree in Electrical and Computer
Engineering from Fairfield University. His research interests include grid
computing. He is currently employed by Access Worldwide in Boca Raton,
FL as a software developer.

