
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 3, March-April 2004

Cite as follows: Douglas Lyon: “Asynchronous RMI for CentiJ”, in Journal of Object Technology,
vol. 3, no. 3, March-April 2004, pp. 49-64. http://www.jot.fm/issues/issue_2004_03/column5

Asynchronous RMI for CentiJ
Douglas Lyon, Computer Engineering Department, Fairfield University,
Connecticut, USA

Abstract
CentiJ is a software synthesis system that, until recently, used synchronous, semi-
automatic static proxy delegation to help in the automation of the creation of distributed
Java programs on NOWS (Networks of Workstations). This paper reports our recent
extension to CentiJ so that invocations are asynchronous. Further, we have achieved
transparency with respect to local vs. non-local asynchronous invocations so that
software can be properly tested in a local mode.
Reflection helps in the creation of bridge pattern code (i.e., interfaces and proxies) for
asynchronous message forwarding via RMI.
The CentiJ technique improves programmer productivity by automating the creation of
the housekeeping code. The use of compile-time static delegation enables type-safety.
CentiJ leaves the part of the code that forms the core computation unchanged. It
generates new code that enables asynchronous invocations via the observer-
observable design pattern.

1 INTRODUCTION

RMI supports an object-oriented communication framework for distributed computation
in a heterogeneous network on a remote address space [1][2]. It can be used between
systems written in different languages [3]. Experience has shown that the use of RMI can
require significant programmer effort and the writing of extra source code. The goal of
the CentiJ project is to make RMI easier to use.

CentiJ enables the remote invocation of existing, (i.e., legacy) code. It wrappers the
communications through a remotely invoked bridge. Communications are encapsulated
in the bridge code so that the programmer does not need to modify the legacy code,
opting, instead, for automatic generation of bridge code. The bridge code reuses original
implementations and provides a means of computation distribution.

The RMI Problem

The RMI problem can be broken down into three sub-problems. The first is called the
legacy bridge problem. The second is called the virtual proxy synthesizer problem. The
third problem, which is the focus of this paper, is the asynchronous invocation problem.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_03/column5

ASYNCHRONOUS RMI FOR CENTIJ

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

The legacy bridge problem may be stated as follows: given a large number of
methods in a variety of classes, build a bridge to these methods so that there is a reuse of
the implementations in the existing code. We are subject to the constraint that we cannot
change the existing code. Further we may not even have the existing source code. The
legacy bridge problem is solved by building code that implements the bridge pattern. The
bridge code consists of an interface, or protocol of communication and an
implementation of the communication. Legacy code is often fragile, hard to maintain,
difficult to reverse engineer, unchangeable and sometimes poorly designed. Hence the
constraint that we cannot change the legacy code. Subject to these constraints, CentiJ
builds a bridge between new code and the legacy system. Thus providing a solution to the
legacy bridge problem.

The virtual proxy problem is the second sub-problem solved by CentiJ. With the
virtual proxy, the goal is to method-forward to an existing implementation. CentiJ uses
inputs from the legacy bridge problem and generates code that can be invoked on a
remote address space.

The asynchronous invocation problem can be stated as follows: given a set of
synchronous invocations, with synchronous returns, find a design pattern that enables
asynchronous invocations with asynchronous returns. The alternative is to block the
invokers’ thread of execution.

CentiJ addresses the above problems, by creating an observable virtual proxy. Multi-
threaded invocations to the remote code are executed on the master host. Callback is
performed for each invocation so that returns can be supplied to the observers.

What is wrong with RMI?

RMI code is often written manually. This requires an extensive analysis of the existing
code. Typically, a large number of dependencies between classes complicates the analysis
[4].

To illustrate the problems with RMI, consider the following eight-step procedure for
manually writing an RMI program:

1. Define an interface(s) for the remote class(s). Compile the interface.
2. Create and compile classes that implement the interfaces.
3. Use the Java rmic compiler to create stub class(es) from the implementation

class(es).
4. Create a server application and compile it
5. Start the rmiregistry .
6. Start the server application.
7. Create a client program that accesses the remote interface(s). Compile the client

program.
8. Test the client program.

These 8 steps are critical to the successful completion of the RMI system. Failure for any
single step will result in run-time exceptions being thrown. Additionally, the code is

INTRODUCTION

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 51

encumbered with RMI artifacts that complicate maintenance and make the code less
readable. Other problems will become evident as the example unfolds:
Step 1. Define an interface(s) for the remote class(s). Compile this interface

public interface RemoteHello extends Remote {
 public String getMsg() throws RemoteException;
}

Aside from the fact that all the code is created manually, the API of the getMsg method
now must throw a RemoteException. This is probably not something the original code
had to do.
Step 2. Create and compile classes that implement the interfaces.

public class RemoteHelloImplementation
 extends UnicastRemoteObject
 implements RemoteHello {
 private String msg
 = "Hello world";
 public RemoteHelloImplementation()
 throws
 RemoteException {
 }
 public String getMsg()
 throws RemoteException {
 return msg;
 }
}

Some problems here include all those mentioned in step 1 and a problem unique to
object-oriented languages that lack multiple inheritance (like Java); by subclassing the
UnicastRemoteObject we are no longer able to subclass anything else. In fact, due to the
decreased reliability of RMI, it is probably a good idea to test implementations using non-
remote classes.
Step 3. Use the Java rmic compiler to create stub class(es) from the implementation
class(es). In this step the programmer changes directories to the location of the class files
(unless the class path has been set) then types:

rmic -v1.2 -d . net.rmi.simpleExample.RemoteHelloImplementation

This is bad news for several reasons. First the programmer has to remember to do
something! This is really HARD. Programmers should never be called upon to insert
actions into the programmer cycle (edit, compile, test). Also, if the programmer forgets,
the code will run with old stubs and this can lead to cyptic run-time errors occasionally.
This is the worst kind of unreliability. Finally, if the programmer does not have a correct
classpath, or forgets to change to the correct location for the class files, then the rmic
invocation will fail.
Step 4. Create a server application and compile it. The programmer hand codes the
following program:

ASYNCHRONOUS RMI FOR CENTIJ

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

public class RmiHelloServer {
// before you run this program,
// you must start the rmiregistry
// from the classpath root.
 public static void
 main(String args[]){
 try {
 startServer();
 }
 catch (RemoteException e) {
 e.printStackTrace();
 }
 catch (MalformedURLException e) {
 e.printStackTrace();
 }
}
private static void startServer()
 throws
 RemoteException,
 MalformedURLException {
 println("starting server");
 RemoteHello ro = new
 RemoteHelloImplementation();
 println("binding remote instances");
 Naming.rebind("RemoteHello",ro);
 println("waiting for invocations");
}
public static void
 println(Object o){
 System.out.println(o);
 }
}

The first problem we notice is that a string “RemoteHello” must be correct and bound to
the RemoteHelloImplementation. If this string were typed improperly it results in a run-
time exception being thrown. A different run-time exception is thrown if the programmer
attempts to run RemoteHello without running the rmiregistry first.

Step 5. Start the rmiregistry . In this step, the programmer either sets the class path or
changes to the location of the pre-compiled classes. Then types:

rmiregistry

This step has the same problems as step 3.

Step 6. Start the server application. The programmer types:
java RmiHelloServer

This step also has the same problems as step 3.

INTRODUCTION

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 53

Step 7. Create a client program that accesses the remote interface(s). Compile the client
program.

public class RmiHelloClient {
 private String rmiUrl = null;
 private RemoteHello rh = null;
public RmiHelloClient(
 String location) {
 rmiUrl = location;
 try {
 rh = lookupDelgate();
 } catch (NotBoundException e) {
 e.printStackTrace();
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (RemoteException e) {
 e.printStackTrace();
 }
}
private RemoteHello lookupDelgate()
 throws NotBoundException,
 MalformedURLException,
 RemoteException {
 RemoteHello rh = (RemoteHello)
 Naming.lookup(rmiUrl);
 return rh;
}
public static void
 main(String args[]) {
 try {
 RmiHelloClient rhc =
 new RmiHelloClient(
 "rmi://localhost/RemoteHello");
 rhc.testGetMsg();
 }
 catch (RemoteException e) {
 e.printStackTrace();
 }
}
private void testGetMsg()
 throws
 RemoteException {
 System.out.println(rh.getMsg());
 }
}

The sayHello method, as implemented above, has several problems. First, the remote
location of the server is hard-coded into the main as "rmi://localhost/". That is a
parameter that will have to change, once the location of the remote host is known.
Secondly, there is a lot of housekeeping in the RmiHelloClient. During construction, it
must bind the RemoteHello interface to the remote implementation using a lookup

ASYNCHRONOUS RMI FOR CENTIJ

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

feature. Also, all remote invocations can throw RemoteExceptions at run-time (something
the non-remote code never had to do).
Step 8. Test the client program.

java RmiHelloClient

This last step can fail and emit run-time errors that may be unclear. It also is not the end
of the story. Now suppose that you seek to run the program on a different machine. This
brings us to the deployment issues, which are both difficult and beyond the scope of this
paper.

As we observe the creation of the above RMI code, we can characterize the
invocations as being synchronous invocations with synchronous returns. That is, any
invocation to any method will block the callers’ thread of execution.

2 VARIOUS BRIDGE IMPLEMENTATIONS

This section examines the various implementations of the bridge pattern. The alternatives
are based in delegation. We describe the two types of delegation, dynamic and static.
Dynamic delegation is delegation that is performed at run-time using dynamic class
loading. Static delegation is delegation that is performed at compile time. CentiJ’s static
delegation technique generates Java source code that must be compiled to be used.

bridge
implementations

inheritance

single multiple

delegation

dynamic static

automaticmanual
Figure 1. Various bridge implementations

Figure 1 shows the various bridge implementations. While manual static delegation is the
most common, type-safe implementation of a bridge, it is also the most labor intensive.
The new mode of automatic static delegation alters the economics of static delegation so
that it is both type-safe and low-cost.

3 THE CENTIJ SOLUTION

CentiJ addresses some of RMI’s problems by using reflection to automate several of the
steps described in section 1. Aside from the house keeping (like running RMIC,
generating interfaces and RMI wrappers) the core idea behind CeniJ is that it uses

THE CENTIJ SOLUTION

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 55

delegation. For example, rather than modify an existing HelloWorld program, we pass an
instance of the core-computation class to CentiJ’s generator. For example:

public class HelloWorld {
 public HelloWorld() {
 }
public static void
 main(String args[]) {
 HelloWorld hw =
 new HelloWorld();
 hw.testGetMsg();
 }
public String getMsg() {
 return "Hello world";
 }
public void testGetMsg() {
 System.out.println(getMsg());
 }
}

HelloWorld is simple, well-tested, well-understood, locally-invoked code. It is generally
better software engineering to start with a working local program and keep it,
unmodified, for the purpose of testing. CentiJ automatically generates the needed
interface, along with the stubs. The following shows automatically generated code where
only the public, dynamic methods are message forwarded to the existing HelloWorld
class:

public class RemoteHelloImplementation
 extends UnicastRemoteObject
 implements RemoteHello {
 HelloWorld hw = new HelloWorld();
public RemoteHelloImplementation()
 throws RemoteException {
}
public void testGetMsg() throws RemoteException {
 hw.testGetMsg();
}
public String getMsg() throws RemoteException {
 return hw.getMsg();
 }
}

There is disagreement about what delegation is (and is not). According to one definition,
delegation uses a receiving instance that forwards messages (or invocations) to its
delegate(s). This is sometimes called a consultation [5]. This is the definition that we use
in CentiJ.Variations on delegation give rise to several design patterns. For example, if
methods are forwarded without change to the interface, then you have an example of the
proxy pattern. If you simplify the interface with a subset of methods to a set of delegates,
then you have a facade pattern. If you compensate for changes (i.e., deprecations) in the
delegates, and keep the client classes seeing the same contract, then you have the adapter

ASYNCHRONOUS RMI FOR CENTIJ

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

pattern. Thus, we define static delegation as compile-time, type-safe, message
forwarding from a proxy class to some delegate(s).

Finally, on the client-side, a means for asynchronously invoking methods is needed.
Because we are adding a new responsibility to the proxy class we are making use of the
decorator pattern [6]. The new responsibility of the proxy class is to keep track of those
instances that are interested in the method’s results. Thus the generated proxy class
makes use of the observer-observable design pattern. In order to illustrate the observer-
observable design pattern, we present the following asynchronous version of the
HelloWorld class:

public class ASynHelloWorld extends Observable {
 HelloWorld hw = new HelloWorld();
public ASynHelloWorld() {
}
public void getMsg() {
 Thread t
 = new Thread(new Runnable() {
 public void run() {
 Object o = hw.getMsg();
 setChanged();
 notifyObservers(o);
 }});
 t.start();
}
public void testGetMsg() {
 Thread t
 = new Thread(new Runnable() {
 public void run() {
 hw.testGetMsg();
 }});
 t.start();
 }
}

All returns are communicated via the update method, as defined in the Observer
interface. An example Observer follows:

public class ASynHelloWorldTest
 implements Observer {
public ASynHelloWorldTest() {
}
public void update(
 Observable obs,
 Object arg){
 System.out.println(arg);
}
public static void
 main(String args[]){
 ASynHelloWorld ashw
 = new ASynHelloWorld();

THE CENTIJ SOLUTION

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 57

 ASynHelloWorldTest ashwt
 = new ASynHelloWorldTest();
 ashw.addObserver(ashwt);
 ashw.getMsg();
 ashw.testGetMsg();
 }
}

The main method is used to instance the classes and hook up the observer with the
observable. Thus it is an example of the mediator design pattern [6]. Note that there is no
attempt at transparency in calling the remote code. The core remote implementations
have been left untouched, but invoking them asynchronously requires that we alter the
means by which the methods’ are invoked. The alternative is to block the invoking
methods thread of execution. The following is an example of the asynchronous RMI
version of the asynchronous HelloWorld class. Note that the interface is identical:

public class ArmiHelloWorld
 extends Observable {
 RmiHelloClient rmiHwClient
 = new RmiHelloClient(
"rmi://localhost/RemoteHello");
public ArmiHelloWorld() {}
public void getMsg() {
 Thread t =
 new Thread(new Runnable() {
 public void run() {
 Object o = null;
 try {
 o = rmiHwClient.getMsg();
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 setChanged();
 notifyObservers(o);
 }});
 t.start();
 }
public void testGetMsg() {
 Thread t = new Thread(new Runnable() {
 public void run() {
 try {
 rmiHwClient.testGetMsg();
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }});
 t.start();
 }
}

ASYNCHRONOUS RMI FOR CENTIJ

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

Thus, to modify the client to take advantage of the remote version of this class means that
only the class name be changed:

public class ArmiHelloWorldTest
 implements Observer {
public ArmiHelloWorldTest() {}
public void update(
 Observable obs,
 Object arg){
System.out.println(arg);
 }
public static void
 main(String args[]){
 ArmiHelloWorld ashw
 = new ArmiHelloWorld();
 ArmiHelloWorldTest ashwt
 = new ArmiHelloWorldTest();
 ashw.addObserver(ashwt);
 ashw.getMsg();
 ashw.testGetMsg();
 }
}

The locally invoked, asynchronous classes, have an identical API to the remotely
invoked, asynchronous classes. Thus we have a kind of transparency between the local
and remote versions of the code. This is known as the Liskov principle [7].

4 RELATED WORK

There are several projects that aim at making Java programs parallel. One example is the
Do! project [8]. The Do! project does not use a static refactoring of the code to help with
distributions, instead it uses special kinds of distributed collections to explicitly express
concurrency.

Another tool, Orca, automated distribution decisions using a run-time system for
placement and replication selection for remote jobs [9]. The Ninja project uses clusters of
workstations, active proxies and low-level byte code specialization for fine-grained
parallelism. The Pangaea system uses a static source code analysis and a middleware
back-end to distribute centralized Java programs. J-Orchestra takes the approach of fine-
grained automatic parallelism using byte-code output from the Java compiler. J-
Orchestra, Do!, Orca, Ninja and Pangaea do not attempt to perform any type of
refactoring or code generation. Also, they try to automate the decision for placing
programs on other systems (a decision that is hard to automate). Their fine-grained
approach to automating parallelism does not take into account the programmers’ input
(which often stems from specialized knowledge about the problem domain and code
structure) [10][11][12][13].

RELATED WORK

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 59

RMI automation is not new. JavaParty has been around for some time [14].
However, it requires that the language be modified. Further, it does not gather instances
to build bridges as CentiJ does.

Fanta and Rajlich have also worked on altering existing code, by moving functions
around, expelling them from classes, refactoring properties and updating invocations to
these elements. Moore has also worked on automatic refactoring and method
restructuring. This work refactors expressions from methods. The Guru tool of Moore
automatically refactors common code out of methods into abstract super-classes. For
programming languages that lacks multiple inheritance (like Java) this effort can
adversely affect how methods can be shared [15]. Casais claims that there may not be any
case studies on the automatic reorganization of class hierarchies [16]. Thus, the question
of how the code quality is changed by these systems remains open.

The CentiJ approach to automating the synthesis of bridge code is like the pre-
processor approach of the Jamie system [17]. A problem with Jamie is that it extends the
language by creating a macro-preprocessor. Also, Jamie uses dynamic delegation.

The LAVA language extends Java to provide for delegation. Kniesel says that
current implementations of LAVA have an efficiency that is unacceptable [18][19]. In
comparison, CentiJ’s static delegation is subject to in-line expension, at compile time.
This should generally be faster than dynamic proxies, as it is a pay-now or pay-later
approach. The static compilation costs that CentiJ incurs are paid up-front. In theory,
therefore, with in-lining enabled, there should be no performance degradation (though
this remains to be proven).

Fisher and Mitchell provide a new delegation-based language [20]. The primary
advantage of the Fisher-Mitchell system is its ability to infer type, and it’s ability to
resolve method names at compile-time. They had to devise a new language for this. In
comparison, CentiJ works by API extension, rather than by creating a new language. An
API extension is easier to deploy into an existing environment than a new language.

Delegation has been cited as a mechanism to obtain implementation inheritance via
composition [21] [22]. Lieberman introduced delegation in a prototype-based object
model in 1986 [23]. He indicated that delegation is considered safer than inheritance
because it forces the programmer to select which method to use when identical methods
are available in two delegate classes. Systems, like Kiev, extend the Java language so that
it has multiple inheritance of implementation http://www.forestro.com/kiev/kiev.html.
Such language extensions are non-standard and not portable.

Reverse engineering programs, such as Lackwit, are able to discover inheritance
relationships with greater ease than composition associations [24]. That is because the
inheritance association implies a specialization semantic. On the other hand, composition
association scales better than single inheritance.

Message forwarding is an implementation sharing mechanism [25]. Experts have
disagreed on this point, saying that delegation is a form of class-inheritance (since the
execution context must be passed to the delegate). I take the opposite view, as class-
inheritance type of sharing of context involves name sharing, property sharing and

http://www.forestro.com/kiev/kiev.html

ASYNCHRONOUS RMI FOR CENTIJ

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

method sharing. Sharing via delegation is instance sharing. The semantics of instance
sharing enable a control of the coupling between instances. This provides a mechanism
for reuse without introducing uncontrolled cohesion (which increases brittleness in the
code) [26].

Tim Lavers published a technique for automatically generating RMI source code
[27]. It is very close to what CentiJ presents except that it does not gather the instances to
build a bridge class, and makes use of dynamic proxy invocation. Also, it does not
support asynchronous invocations.

In summary, all the refactoring systems reviewed in this section (except [26]) not
only need to read the source code, but they are like the Elbereth system in that they alter
source code [4]. In the literature that we have reviewed, we have yet to find a means for
automatically creating the bridges created by CentiJ. A macro system (or templates)
would be a logical means of providing this ability, but this would require a modification
of Java.

Methods for automatically generating adapters are not new. In fact, C++ has had a
template feature for years [28]. Java has a template feature, called generics as part of the
draft release of JDK 1.5. The question of which is better, adding some API calls to
generate source code, or using generics, remains open.

Asynchronous RMI is not new. Rajeev et al. explored it in their ARMI mechanism.
Their approach is different from CentiJ’s in that they do their callbacks directly from the
server. In comparison, CentiJ’s callbacks are local. Further, ARMI uses the Future class
that inserts a return value when it becomes available. It is up to the client to poll the
Future instance to determine when a result is present, thus the system is not based in
notifications, like CentiJ’s [29].

The Reflective Remote Method Invocation (RRMI) system of Thiruvathukal et al. is
very close to the CentiJ approach. Like CentiJ it makes use of reflection and provides a
mechanism for asynchronous invocation. Unlike CentiJ, RRMI uses dynamic proxies,
requiring run-time reflection to do the remote invocation. Worse, still, the strings that
describe the method names become embedded in the invoking program. This appears to
be both manual and error prone. It also not type safe. Finally, their code examples contain
many RMI artifacts, are surrounded by try-catch blocks. On the other hand, they do use
notifications, like CentiJ does, in order to obtain their results [30].

The DeJay system calls remote objects in a asynchronous manner, like CentiJ does.
However, it relies upon a polling mechanism to determine when a result is ready.
Additionally, DeJay uses a compiler for its code pre-processor. The question of which is
better, the use of a special compiler (dejayc) or an API extension (like CentiJ does)
remains open [31].

CONCLUSIONS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 61

5 CONCLUSIONS

CentiJ does asynchronous method forwarding across a transport layer using automatically
generated code. It provides locally invocable versions of the asynchronous code, using
the observer-observable design pattern. The local version of the code has an API that is
close to the remote version of the code, and this helps with local testing, before
deployment. It also helps to isolate client code from RMI artifacts.

CentiJ uses delegation with a static binding. This enables inlining of code. Thus
static delegation does not suffer from the performance degradation of dynamic
delegation.

In brief:
1. Dynamic delegation is more automatic than static delegation.
2. Dynamic delegation is not type-safe, but static delegation is.
3. Automatic static delegation is almost as automatic as dynamic delegation, and just

as type safe as static delegation.
The choice between static and dynamic delegation is a choice between safety and
flexibility. [32]. Thus, CentiJ is a proxy generator that can work without source code
from the core computation (using reflection). CentiJ is an automatic system, and this can
lead to a more reliable means of deployment.

The question of how to select a class for remote invocation remains open.
The question of how the code quality is changed by CentiJ remains open.
CentiJ uses a contract network protocol. Such a protocol defines a static interface

that could help keep API deprecations from propagating to existing code. The question of
how well this will work in the face of API deprecations is a topic of future research.

Distributed computation on an unreliable network is an open problem. Also open is
the problem of how to best dynamically load balance a computation. It is well known that
screen saver-type volunteer computations can be successful; however writing portable
screen savers in Java is not easy. This is true, in part, because the screen saver must
detect when the machine is not in use (a platform specific activity, a present).

REFERENCES

[1] Doug Lea, Concurrent Programming in Java, Design Principles and Patterns,
Addison Wesley, Reading, MA. 1997.

[2] Jennings, N., and Wooldridge, M. (2000) “Agent-Oriented Software Engineering”.
In Handbook of Agent Technology (ed. J. Bradshaw) AAAI/MIT Press. (to appear)
http://citeseer.nj.nec.com/wooldridge99agentoriented.html

http://citeseer.nj.nec.com/wooldridge99agentoriented.html

ASYNCHRONOUS RMI FOR CENTIJ

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

[3] Aleksander Slominski, M. Govindaraju, D. Gannon and R. Bramley, “SoapRMI
C++/Java 1.1: Design and Implementation”, pre-print http://citeseer.nj.nec.com/
467360.html

[4] W. Korman and W. G. Griswold. “Elbereth: Tool support for refactoring Java
programs”. Technical report, University of California, San Diego Department of
Computer Science and Engineering, May 1998.
http://citeseer.nj.nec.com/korman98elbereth.html

[5] Günter Kniesel: “Implementation of Dynamic Delegation in Strongly Typed
Inheritance-Based Systems”. Technical report IAI-TR-94-3, Oct. 1994, University
of Bonn, Germany. http://citeseer.nj.nec.com/kniesel95implementation.html

[6] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns,
Addison-Wesley, Reading, MA. 1995.

[7] A. C. Myers, J. A. Bank, and B. Liskov: “Parameterized Types in Java”, In: Proc. of
24th POPL, pages 132-145, 1997

[8] P. Launay, J.-L. Pazat. “A framework for parallel programming in Java”. In
HPCN'98, LNCS, April 1998 http://citeseer.nj.nec.com/launay97framework.html

[9] Bal, H.E., et al. “Performance Evaluation of the Orca Shared-Object Systems” ACM
Trans. CS, Vol. 16, No. 1 (1998) pages. 1-40.

[10] Eli Tilevich, “J-Orchestra: Automatic Java Application Partitioning”, pre-
publication http://citeseer.nj.nec.com/473381.html

[11] Andre Spiegel. Pangaea: “An automatic distribution front-end for Java”. In Fourth
IEEE Workshop on High-Level Parallel Programming Models and Supportive
Environments (HIPS '99), in Proc. IPPS/SPDP '99, San Juan, Puerto Rico, USA,
April 1999. IEEE. http://citeseer.nj.nec.com/spiegel99pangaea.html

[12] Andre Spiegel, “Automatic Distribution in Pangaea”, CBS 2000, Berlin, April
2000. See also http://www.inf.fu-berlin.de/~spiegel/pangaea/

[13] Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David Culler, N.
Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Josheph, R. H. Katz, Z. M. Mao, S.
Ross, and B. Zhao. “The Ninja Architecture for Robust Internet-Scale Systems and
Services”. Special Issue of Computer Networks on Pervasive Computing, 2000. (to
appear). http://citeseer.nj.nec.com/gribble00ninja.html

[14] Michael Philippsen and Matthias Zenger. “JavaParty - transparent remote objects in
Java”. Concurrency: Practice and Experience, 9(11):1125--1242, November 1997.
see http://citeseer.nj.nec.com/philippsen97javaparty.html, http://wwwipd.ira.uka.de/
JavaParty/tour.html

[15] I. Moore. “Automatic inheritance hierarchy restructuring and method refactoring”.
In Proceedings of the Conference on Object Oriented Programming Systems,
Languages and Applications, pages 235--250, October 1996. SIGPLAN Notices,
31(10). http://citeseer.nj.nec.com/moore96automatic.html

http://citeseer.nj.nec.com/467360.html
http://citeseer.nj.nec.com/467360.html
http://citeseer.nj.nec.com/korman98elbereth.html
http://citeseer.nj.nec.com/kniesel95implementation.html
http://citeseer.nj.nec.com/launay97framework.html
http://citeseer.nj.nec.com/473381.html
http://citeseer.nj.nec.com/spiegel99pangaea.html
http://www.inf.fu-berlin.de/~spiegel/pangaea/
http://citeseer.nj.nec.com/gribble00ninja.html
http://citeseer.nj.nec.com/philippsen97javaparty.html, http://wwwipd.ira.uka.de/JavaParty/tour.html
http://citeseer.nj.nec.com/moore96automatic.html

CONCLUSIONS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 63

[16] E. Casais, “Automatic reorganization of object-oriented hierarchies: a case study”,
Object Oriented Systems, 1 (1994), pp. 95-115

[17] John Viega and Bill Tutt and Reimer Behrends, “Automated Delegation is a Viable
Alternative to Multiple Inheritance in Class Based Languages”, CS-98-03,
Microsoft Corporation, Feb., 1998, http://citeseer.nj.nec.com/3325.html

[18] Günter Kniesel: “Delegation for Java: API or Language Extension?”. Technical
report IAI-TR-98-5, May, 1998, University of Bonn, Germany.
http://citeseer.nj.nec.com/kniesel97delegation.html

[19] Günter Kniesel, “Type-Safe Delegation for Run-Time Component Adaptation”, in
R. Guerraoui (Ed.): Proceedings of ECOOP99. Springer LNCS 1628.
http://citeseer.nj.nec.com/kniesel99typesafe.html

[20] K. Fisher and J. C. Mitchell. “A Delegation-based Object Calculus with Subtyping”,
in Proc. of FCT, volume 965 of Lecture Notes in Computer Science, pages 42-61.
Springer-Verlag, 1995. http://citeseer.nj.nec.com/104746.html

[21] Henry Leiberman. ”Using prototypical objects to implement share behavious in
object-oriented systmes”, in Object-oriented Programming Systems, languages and
Applications Conference Proceedings, pages 214-223.

[22] Johnson and Zweig. “Delegation in C++”, in Journal of Object-Oriented
Programming, 4(11): 22-35, November 1991.

[23] Henry Leiberman. “Using prototypical objects to implement share behavious in
object-oriented systms”, in Object-oriented Programming Systems, languages and
Applications Conference Proceedings, pages 214-223.

[24] O'Callahan,R., and Jackson, D., “Lackwit: A program understandingtool based on
type inference”, in Proceedings of the 1997 International Conference on Software
Engineering (ICSE'96) (Boston, MA, May 1997), pages 338-348.
http://citeseer.nj.nec.com/329620.html

[25] Günter Kniesel, private e-mail communications, kniesel@cs.uni-bonn.de, 2001

[26] D. Bardou and C. Dony. “Split Objects: A Disciplined Use of Delegation Within
Objects”, in Proceedings of OOPSLA'96, San Jose, California. Special Issue of
ACM SIGPLAN Notices (31)10, pages 122-137, 1996. http://citeseer.nj.
nec.com/bardou96split.html

[27] Tim Lavers, “Java Tip 108: Apply RMI autogeneration”,
http://www.javaworld.com/javaworld/javatips/jw-javatip108.html

[28] Bjarne Stroustrup. The C++ programming Language, Addison-Wesley, Reading,
MA. 1991.

[29] Rajeev R. Raje, Hoseph I. William, and Michael Boyles. “An Asynchronous
Remote Method Invocation (ARMI) Mechanism for Java”. ACM
http://citeseer.nj.nec.com/467569.html

http://citeseer.nj.nec.com/3325.html
http://citeseer.nj.nec.com/kniesel97delegation.html
http://citeseer.nj.nec.com/kniesel99typesafe.html
http://citeseer.nj.nec.com/104746.html
http://citeseer.nj.nec.com/329620.html
mailto:kniesel@cs.uni-bonn.de
http://citeseer.nj.nec.com/bardou96split.html
http://citeseer.nj.nec.com/bardou96split.html
http://www.javaworld.com/javaworld/javatips/jw-javatip108.html
http://citeseer.nj.nec.com/467569.html

ASYNCHRONOUS RMI FOR CENTIJ

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

[30] George K. Thiruvathukal, Lovely S. Thomas, and Andy T. Korczynski. “Reflective
remote method invocation”. Concurrency: Practice and Experience, 10(11-
13):911-926, September-November 1998. http://citeseer.nj.nec.com/thiruvathukal
98reflective.html

[31] Marko Boger, Frank Wienberg, and W. Lamersdorf. Dejay: “Unifying concurrency
and distribution to achieve a distributed Java”, in Proceedings of TOOLS Europe
'99, Nancy, France, June 1999. Prentice Hall. http://citeseer.nj.nec.com/
boger99dejay.html. See http://www.dejay.org for more details.

[32] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. “Type Inference of SELF:
Analysis of Objects with Dynamic and Multiple Inheritance”. In ECOOP '93
Conference Proceedings, pages 247-267. Kaiserslautern, Germany, July 19.

About the author

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

http://citeseer.nj.nec.com/thiruvathukal98reflective.html
http://citeseer.nj.nec.com/thiruvathukal98reflective.html
http://citeseer.nj.nec.com/boger99dejay.html
http://citeseer.nj.nec.com/boger99dejay.html
http://www.dejay.org
mailto:Lyon@DocJava.com
http://www.DocJava.com

