
Macintosh Technical Notes

#154: Displaying Large PICT Files

See also: QuickDraw
Technical Note #21—Internal Picture Format
Technical Note #35—DrawPicture Problem
Technical Note #88—Signals

Written by: Rick Blair July 1, 1987
Updated: March 1, 1988

Now that we have scanners and other massive-picture producing types of
applications,, there is a need to address the problem of how to display a PICT
format object that is bigger than a current PICT resource is allowed to be.
Note that this technique applies equally well to version 1 and version 2
(word-opcode) pictures as produced by the Macintosh II.

Future Compatibility

Think of the handle returned by a GetResource (‘P ICT’, ID) as a “handles in the more
general sense of being an abstract “tag”—something that. the ROM routines can use to
draw the picture with. Don’t assume that the entire picture has been read into memory or
that you can directly read any bytes beyond the basic icture record structure
(picSize followed by picErame). Someday we may provide a mechanism for the
resource to be disk- instead of memory-based. The QuickDraw bottleneck procedures
will know how to get data from and put data into the pictures in any case.

Spooling from a PICT file

In order to display pictures of arbitrary size, your application should be able to import a
QuickDraw picture from a file of type PICT. This is the file produced by a “Save as..
from MacDraw with the PICT option selected.

What follows is a small program fragment that demonstrates how to spool in a picture
from [the data fork of] a PICT file. The picture can be larger than the historical 32K
resource size. See technical note #88 if you are unfamiliar with the Signal mechanism.
We assume that a Cat chSignals has been done before GetandDrawPlCTFile Is
called.

Technical Note #154 page 1 of 5 Displaying Large PICT Files

I...- VW I - IIIIfJI

(the following variable must be at the top level)

qiobaiRef INTEGER; {refNum of the file to read from)

(the following procedure must be at the top level)

PROCEDURE GetPICTData(dataPtr: Ptr; bytecount: INTEGER);
(replacement for the QuickDraw bottleneck routine)

VAR
err : OSErr;
longCount : LONGINT;

BEGIN
longCount : bytecount;
err :— FSRead(globaiRef,longcount,dataPtr);
(can’t check for an error because we don’t know how to handle it)

END;

CONST
abortPlCT 128; (error code if DrawPicture aborted)

PROCEDURE GetDrawPICTFiJ.e; (read in a PICT FILE selected by the user)

VAR
wher : Point; (where to display dialog)
reply : SFReply; (reply record)
myFileTypes : SFTypeList; {more Standard FILE good.ies}
numFileTypes: INTEGER;

savedProcs : QDProcsPtr;
myProcs : QDProcs; (use CQDProcs for a color window)

xnyPicture : PicHandle; (we need a picture handle for DrawPicture)
longCount : LONGINT;
xnySOF : I.ONGINT;
myFilePos : LONGINT;

BEGIN
wher.h : 20;
wher.v : 20;
numFileTypes : 1; (display PICT files)
myFileTypes[O) : ‘PICT’;
SFGetFile (wher, ‘‘ ,NIL, numFileTypes,myFileTypes,NIL, reply);

IF reply.good THEN BEGIN
SetStdPracs(myProcs); {use SetStdCProcs for a CGrafPort)
myProcs.getPicProc : tGetPtCTData;
savedProcs :— thePort.grafProcs; (set the grafProcs to ourS)
thePort’.grafProcs :— @myProcs;

myeicture : Picflandie (NewHandle (SizeOf (myPicture)));

Signal (FSOpen (reply. fname, reply. vRefNum, globaiRef));
Signal(GetEOF(globalRef,myEOF)); (get EOF for later check)

Technical Note #154 page 2 of 5 Displaying Large PICT Files

jtv ig.LODd.Ler, rs romtart, J.Zfl; (Sicip header)

(read in the (obsolete) size word and the picFrazI
longCount : SizeOf (myPicture);
Signal (FSRead(gJ.obalRef, longCount, Ptr(myPicture’)));

DrawPicture (myPicture,myPicture .picErame); (draw the picture)

Signai(GetFPos(globalRef,filePos)); (get position for check)
Signal (FSClose (globaiRef));

DisposHand.le (Handle (myeicture));

thePort.qrafProcs : savedProcs; {restore the procs)

(Check for errors. If there wasn’t enough room,}
(DrawPicture will abort; the FILE position mark)
(won’t be at the end of the FILE.
t filePos <> myEOF THEN Signal(abortPlCT);

END; (IF reply.good}
END; 1 GetDrawPlCTFile}

MPW C Example

/*rep1acepent for the QuickDraw bottleneck routine*/
pascal void GetPICTData (dataPtr,byteCount)
Ptr dataPtr;
short bytecount;

1* GetPICTData *1
OSErr err;
long longCount;

longcount byteCount;
err — FSRead(globalRef,&longCount,dataPtr);
/*Canlt check for an error because we don’t know how to handle it*/

1* GetPICTData *1

/*error code if DrawPicture aborted*/
Mefine abortPtCT 128

OSErr GetDrawPtCTFile() /*read in a PICI’ FILE selected by the user*/

1* GetDrawPlCTFile *1

Point wher; /*where to display dialog*/
SFReply reply; /*repjy record*/
SFTypeList myFileTypes; /*more Standard FILE goodies */
short riumFileTypes;
OSErr err;
QDProcsetr savedProcs;
QDProcs lflyPrOCS;/*Use CQDPrOCS for a color window*/
P icHandle myP icture;

/* need a picture handle for DrawPicture/
long longCount,myEOF, filePos;

Technical Note #154 page 3 of 5 Displaying Late PICT Files

wner.L1 zu;
wher.v 20;
numFileTypes — 1;

/*djsplay PlC? files*/
myFiieTypes(0] ‘PlC?’;
SFc3etfile (wher, ‘‘ ,nii, numrileTypes,myFileTypes,ni.1, &reply);

if (repiy.good)

SetStdProcs (&myProcs);
/*use SetStdcProcs for a CGrafPort*/
xnyProcs.getPicProc GetPtCTData;
savedProcs (*qd.thePort) .grafProcs;
/*set the grafProcs to ours’/
(*qd.thepo) .grafProcs — &myProcs;

myPicture (Picliandle) NewHand.le (sizeof (Picture));

err FSOpen (& reply. fName, reply. vRefNum, &globalRef);
if (err != noErr) return err;

err — GetEOF (globaiRef, &myEOF);
/*get EOF for later check*/

if (err !— noErr) return err;

err — SetEPos (globaiRef, fsFromStart, 512) ; /*skip header*/
if (err != noErr) return err;

/*read in the (obsolete) size word and the picFrame*/
longcotmt sizeof(Picture);
err FSRead(globalRef, &longcount, (Ptr) *myPjture);

if (err !— rioErr) return err;

DrawPicture (myPicture, & (**mypicture) . picFraine); /*draw
the picture*/

err — Getrpos(globalRef,&filepos);/*get position for
check*/

if (err ! noErr) return err;
err — FSClose(globalRef);
if (err != noErr) return err;

Disposliandle((Handle)myPicture);

(*qd.theport) .grafProcs savedprocs;/*restore the
procs/

/*Check for errors. if there wasn’t enough room, /
/*Drawpjcture will abort; the FILE position mark*/

/*won’t be at the end of the FILE.*/

if (filePos !— aiyEOF) return abortPlCT;
else return noErr;

/*jf (reply.good) a!

1* GetDrawPICTFile *1

Technical Note #154 page 4 of 5 Displaying Large PICT Files

IVIUI 1211 rIl.Lule .ø4JIIl1JQLlLøIIIL7

Many applications already support PICT resources larger than 32K. The 128K ROMs
(and later) allow pictures as large as memory (or spooling) will accommodate. This was

• made possible by having QuickDraw ignore the size word and simply read the picture
until the end-of-picture .opcode was reached.

For maximum safety and convenience, let QuickDraw generate and interpret your
pictures.

While Apple has provided you with the data formats that allow you to read or write
picture data directly, we recommend that you always let DrawPicture or OpenPicture
and ClosePicture process the opcodes.

One reason to read a picture directly by scanning the opcodes would be to disassemble
it to, for example, extract a Color QuickDraw pixel map to save off in a private data
structure. This shouldn’t normally be necessary.

If you do look at the picture data be sure and check the version information. You may
want to put up an alert in your application that indicates to the user when a picture was
created using a later version of the picture format than your application recognizes,
letting them know that some elements of the picture cannot be displayed. If the version
information indicates a QuickDraw picture version later than the one recognized by your
application, your program should skip over the new opcodes and only attempt to parse
the ones it knows.

As with reading picture data directly, it is best to use QuickDraw to create data in the
PICT format. If you do need to create PICT format data directly, it is essential that you
use the latest opcode specifications and that you thoroughly test the data produced on
both color and black and white Macintosh machines. Contact Macintosh Developer
Technical Support if you are not sure that you have the latest specifications.

Apple does not guarantee that a picture which wasn’t produced by QuickDraw will work

Technical Note #154 page 5 of 5 Displaying Large PICT Files

