APPLE
PROGRAMMER'S -
AND DEVELOPER'S -
ASSOCIATION

PICT File
®Format Notes

APDA# KMBPFN

Macintosh File Format
& Picture Structure
for
Graphic Applications

July 15, 1987

Apple Technical Publications

'Copyn'ght © 1987 Apple Computer, Inc. All rights reserved

Contents

Page Tide

About These Notes
Supplemental Reference Documents
Terminology
A Standard Format: The Advantage to You Asa Developer
Use of QuickDraw Picture Format for Image Data
Key Differences Between Version 1 & 2 Pictures
Picture Parsing
How QuickDraw Defines a Picture
Picture Spooling
Spooling a Picture from Disk
Spooling a Picture to a File
Drawing to an Offscreen Pixel Map to Get Interactive Performance
A New Set of grafProcs Routines
10 An Eye Toward Compatibility
10 Picture Format

WORNNOAVULL A WLWWR

12 picComments

12 Sample PICT File

13 PICT Opcodes

19 The New Opcodes - Expanded Format

Figures & Tables

Page Title

4 Figure 1. PICT File Format

14 Table 1. Data Types

15 Table 2. PICT Opcodes

19 Table 3. Data Format of Version 2 PICT Opcodes
21 Table 4. Data Types Found within New PICT Opcodes Listed in Table 3

About these notes

Apple’s main objective in releasing this information is to create a development environment that
will ensure compatibility with existing products and spawn new graphics-oriented tools. These

Page 2 Supporting QuickDraw Pictures

Supplemental reference documents
The Applc publications listed below are suggested reading to help understand QuickDraw pictures:

« Inside Macintosh, Volumes I & IV contain detiled information about QuickDraw

« Inside Macintosh, Volume V (currently in prefiminary release); contains detailed
information about Color QuickDraw

¢ Macintosh ’I‘eéhnical Notes #21 describes the internal format of the version 1 QuickDraw

picture data structure

* Macintosh Technical Notes #27 describes the PICT file format
* Macintosh Technical Notes #120 describes drawing to an offscreen buffer

* Macintosh Technical Notes #154 describes how to display large PICT files

Terminology

The following terms are used throughout this document.

QuickDraw picture:

PICT file type:

PICT resource type:

opcode:

graphic primitive:

A variable-sized QuickDraw data structure, consisting of picture
opcodes and data, that is used to store graphics primitives for later
playback. A version 2 picture can contain color information.

A data-fork file that contains a 512 byte header, followed by a

QuickDraw picture.
This is a resource which contains a QuickDraw picture (vefsion 1 or2).
A pre-defined number within the QuickDraw picture that the

QuickDraw function DrawPicture uses to determine what object to
draw or what mode to change for subsequent drawing.

A data structure that specifies the geometry of basic graphical
shapes, such as lines, arcs, ellipses, and rectangles.

Supporting QuickDraw Pictures Page 3

A standard format: the advantage to you as a developer

One of the outstanding features of the Macintosh computer has been the ease with which the user
accesses graphic data created by different applications. Apple supports the PICT data file as the
vehicle for importing and managing scanned bitMaps and pixMaps into Apple/third party
applications. Developers interested in creating or modifying their applications to be compatible
with Apples’s graphic products should specify bit map or pixel map dara using the QuickDraw
picture structure described in this document. The graphic information can then be saved as a PICT
dara file. Because Apple supports this file format and picture structure, any application that
recognizes the PICT file format should be able to read, display, and modify graphic data created by
other Macintosh applications.

The PICT file (defined in Macintosh Technical Note #27) is a dara fork file with a 512-byte
header, followed by a picture (see Figure 1). This data fork file contains a QuickDraw (and now,
Color QuickDraw) data structure within which a graphic application (using standard QuickDraw
calls) places drawing primitives to represent an object or image graphic data. In the QuickDraw
picture format, pictures consist of opcodes followed by picture data.

PICT file
(type=PICT)

Data fork |Resource fork

512-byte
header

picSize
—picFrame

opcode This fork is

—picture data| empty in

* PICT files

opcode

_picture data|
EndOfPicture

Figure 1. PICT file format.

With the introduction of Macintosh II, the QuickDraw picture structure has been extended to
include new color graphics opcodes, as well as enable future expandibility. The new opcodes
solve many of the major problems encountered by developers in using PICT files. For example, it
is now possible to specify the resolution of bitmap data. Color can also be specified, but only
chunky pixels (contiguously stored pixel components) are currently recognized by Color
QuickDraw. Your application only needs to generate or recognize the chunky pixel format. This
format is indicated by an image or pixMap with a cmpCount =1. _

Most existing applications work fine, without modification, with version 2 pictures. On a
Macintosh II, version 2 pictures will draw in color (if drawn directly to the screen). Currently,
they will print using the old QuickDraw colors. Eventually, new print drivers will be able to take
advantage of the new color information.

Page 4 Supporting QuickDraw Pictures

On a Macintosh 512 enhanced, Macintosh Plus, and Macintosh SE, a patch in the System file
beginning with version 4.1 provides QuickDraw with the capability to convert and dispiay version
2 pictures. The original Macintosh and Macintosh 512 cannot display version 2 pictures.

Applications that generate pictures in the QuickDraw picture format are free to use any or all
available features to support their particular needs. Some. will use only the pixMap primitive. You
may wish to include comments in the picture that are pertinent to the needs of your application. In
general, put a minimal amount of information in your PICT files and avoid redundancy. It is
reasonable for receiving applications to ignore picture opcodes that are not needed.

For those developers interested in generating picture data on non-Apple CPUs, the QuickDraw
internal opcodes are included at the back of this document. For example, the university community
may wish to generate ray-traced images on mainframes and display them in the Macintosh
environment through use of the PICT file format and QuickDraw picture structure.

Use of QuickDraw Picture Format for Image Data

For developers, there are advantages to using the QuickDraw picture format to display images in
their graphics applications: '

* Because the PICT structure is supported by Apple at the system level, it will always be
considered in upgrade paths to new architectures.

* Establishing a standard format for image data has enormous advantages for software
developers interested in graphic data interchange between applicatons. If, for example, all
scanner peripherals support PICT as the graphic data file format, the task of importing data
would then be reduced to parsing a single file format.

Key differences between version 1 & 2 pictures
The major differences between version 1 and 2 pictures are listed below.

* version 1 opcodes are a singie byte; version 2 opcodes are 2 bytes in length. This means
that old opcodes in a version 2 picture take up two bytes, not one.

* version 1 data may start on byte boundaries: version 2 data is always word-aligned.

* in version 2, the high bit of the rowBytes field is used to indicate pixMap instead of
bitMap; pixData then replaces bitData. '

* all unused version 2 opcodes, as well as the number of data bytes associated with each,
have been defined. This was done so that picture parsing code can safely ignore unknown
opcodes, enabling future use of these opcodes in a backward-compatible manner.

Picture parsing

The first 512 bytes of a PICT data file contain application-specific header information. Each
QuickDraw (and Color QuickDraw) picture definition consists of a fixed-size header containing
information about the size, scaling, and version of the picture, followed by the opcodes and picture
data defining the objects drawn between the OpenPicture and ClosePicture calls.

Supporting QuickDraw Pictures Page 5

When the OpenPicture routine is called and the port is an old grafPort, a version 1 picture is
opened. When the OpenPicture routine is called and the port is a CGrafPort, then a version 2
picture is opened. If any fields in the grafPort are different than the default entries, those fields that
are different get recorded in the picture.

Version 4.1 of the Macintosh System file incorporates a patch to QuickDraw that will enable
QuickDraw (on machines with 128K or larger ROMs) to parse a version 2 PICT file, read it
completely, attempt to convert all Color QuickDraw color opcodes to a suitable black-and-white
representation, and draw the picture in an old grafPort. If you are trying to display a version 2
picture on a Macintosh without the system patch, QuickDraw won't be able to read (or display) the
picture data but it shouldn't crash your machine.

On the Macintosh II, old pictures can also be played back in new grafPorts. You should only use
old drawing commands in old pictures. In new pictures, old and new drawing commands can be
intermixed.

How QuickDraw defines a picture

The Pascal record structure of version 1 and 2 pictures is exactly the same. In both, the picture
begins with a picSize, then a picFrame (rect), followed by the picture definition data. Since a

picture may include any sequence of drawing commands, its data structure is a variable-length
entity. It consists of two fixed-length fields followed by a variable-length field:

TYPE Picture = RECORD

picSize: INTEGER; ({low order 16 bits of picture size:
this is not useful information}
picFrame: Rect; {picture frame, used as reference for

scaling when the picture is drawn}
{picture definition data}
END;

To maintain compatibility with the original picture format, the picSize field has not been changed in
version 2 pictures. However, the information in this field is only useful if your application
supports version 1 pictures not exceeding 32K bytes in size. Because pictures can be much larger
than the 32K limit imposed by the 2-byte picSize field, use the GetHandleSize call to determine
picture size if the picture is in memory or the file size returned in pBFGetinfo if the picture resides
in a file.

The picFrame field is the picture frame that surrounds the picture and gives a frame of reference for
scaling when the picture is played back. The rest of the structure contains a compact representation
of the image defined by the opcodes. The picture definition data consists of a sequence of the
opcodes listed in Table 2, each followed by zero or more bytes of data. Every opcode has an
implicit or explicit size associated with it that indicates the number of data bytes following that
opcode, ranging from 2 to 2 32 bytes (this maximum number of bytes applies to version 2 pictures
only). :

Page 6 Supporting QuickDraw Pictures

Picture spooling

In the past, images rarely exceeded the 32K practical limit placed on resources. Today, with the
advent of scanners and other image input products, images may easily exceed this size. This
increase in image size necessitates a means for handling pictures that are too large to reside entirely
in memory. One solution is to place the picture in the data fork of a PICT file, and spool itin as
needed. To read the file, an application need simply replace the QuickDraw default getPicProc

Spooling a picture from disk

In order to display pictures of arbitrary size, an application must be able to import a QuickDraw
picture from a.file of type PICT. (This is the file type produced by a Save as... from MacDraw
with the PICT option selected.) “What follows is a small program fragment that demonstrates how
to spool in a picture from the data fork of a PICT file. The picture can be larger than the historical
32K resource size limitation.

Note: To better understand how 1o provide additional error
checking during picture spooling, refer 1o Macintosh Technical
Notes #154, “Displaying Large PICT Files” .

{ the following variable and procedure must be at the main level of the program }
VAR
globalRef: INTEGER:

PROCEDURE GetPICTData(dataPtr: Ptr: byteCount: INTEGER); { replacement for
getPicProc routine

VAR

err : INTEGER:

longCount: LONGINT;
BEGIN

longCount := byteCount; | longCount is a Pascal VAR parameter and

must be a LONGINT }

err := FSRead(globalRef,longCount,dataPtr);

{ ignore errors here since it is unclear how to handle them }
END;

Supporting QuickDraw Pictures Page 7

PROCEDURE GetandDrawPICTFile; { procedure to draw in a picture from a PICT file
. selected by the user }
® o

wher: Point; { where to display dialog }

reply: SFReply; { reply record }

myFileTypes: SFTypeList; { more of the Standard File goodies }
NumFileTypes: INTEGER:

err: OSExrr;

myProcs: QDProcs; (use CQDProcs for a CGrafPort (a color window) }
PICTHand: PicHandle; { we need a picture handle for DrawPicture |}
longCount: LONGINT;

myPB: ParamBlockRec:;
BEGIN

wher.h := 20;
wher.v := 20;

Page 8 : Supporting QuickDraw Pictures

NumfileTypes := 1; { Display PICT files }
myFileTypes{0] := 'PICT':;
SFGetEile(wher,",NIL,NumEileTypes.myFileTypes,NIL,reply):
IF reply.good THEN BEGIN

err := FSOpen(reply.fname,reply.vrefnum,globalRef):

SetStdProcs (myProcs); { use SetStdCProcs for a CGrafPort }
myWindow".grafProcs := @myProcs:;
myProcs.getPicProc := @GetPICTData;

PICTHand := Picﬂandle(NewHandle(SizeOf(Picture))): { get one
the size of (size word + frame rectangle) }

{ skip (so to speak) the MacDraw header block }

err := SetFPos(globalRef, fsFromStart,512);

longCount := SizeOf (Picture);

{ read in the (obsolete) size word and the picture frame }
err := FSRead(globalRef,longCount,Ptr(PICTHand“));

DrawPicture(PICTHand,PICTHand“.picFrame);

{ inside of DrawPicture, QD makes repeated calls to getPicProc
to get actual picture opcodes and data. Since we have
intercepted GetPicProc, QD will call myProcs to get
getPicProc, instead of calling the default procedure }

err := FSClose(globalRef);

myWindow”.grafProcs := NIL;:
DisposHandle (Handle (PICTHand)) ;

END; { IF reply.good }
END;

Spooling a picture to a file B

]

Spooling a picture out to a file is equaily straightforward. By replacing the standard putPicProc
with your own procedure, you can create a PICT file and spool the picture data out to the file.

Supporting QuickDraw Pictures : Page 9

Drawing to an offscreen pixel map to get interactive
performance

With the advent of high resolution output devices such as laser printers, the need has arisen to
support bit-map images at resolutions higher than those supported by the screen. In order to speed
up the interactive manipulation of high-resolution pixel-map images, developers may want to first
draw them into an off-screen pixel map at screen resolution and retain this screen version as long
as the document is open.

Note: You can use the formula shown under the section on
"Sample PICT file" to calculate the resolution of the source data.
How to draw into an offscreen pixMap is described in Macintosh
Technical Note #120.

A new set of grafProcs routines

The entire opcode space has been defined or reserved, as shown in Table 2, and a new set of
routines has been added to the grafProcs record. The purpose of these changes is to provide
support for anticipated future enhancements in a way that will not cause old applications to crash.
How this works is that when Color QuickDraw encounters an unused opcode, it calls the new
opcodeProc routine to parse the opcode data. By default, this routine simply ignores the data,
since no new opcodes are defined (other than HeaderOp, which is also ignored).

Color QuickDraw has replaced the QDProcs record with a CQDProcs record. In a new grafPort,
you should never use the SetStdProcs routine. If you do, it will return the old QDProcs record,
which will not contain an entry for the stdOpcodeProc. If you do not use the new SetStdCProcs
routine to parse the unused opcodes, the first color picture that you try to display may crash your
system. :

Extensions to the QDPROCS record

opcodeProc EQU $34 [pointer]
newProcl EQU §$38 [pointer]
newProc2 EQU 3$3C [pointer]
newProc3 EQU 340 [pointer]
newProc4 EQU $44 [pointer]
newProc35 EQU = $48 [pointer]
newProcH EQU $4C [pointer]
CQDProcsRec EQU $50 size of QDProcs record

Page 10 Supporting QuickDraw Pictures

An Eye Toward Compatibility

Many applications already support PICT resources larger than 32K. The 128K ROMs (and later)
allow pictures as large as memory (or spooling) will accommodate. This was made possible by
having QuickDraw ignore the size word and simply read the picture undl the end-of-picture opcode
is reached.

For maximum safety and convenience, let QuickDraw generate and interpret your
pictures.

While Apple has provided you with the data formats that allow you to read or write picture data
directly, we recommend that you always let DrawPicture or OpenPicture and ClosePicture process
the opcodes.

One reason to read a picture direcdy by scanning the opcodes would be to disassemble it to, for
example, extract a Color QuickDraw pixel map to save off in a private data structure. This
shouldn't normally be necessary, uniess you are working with an application running on a CPU
other than the Macintosh. You wouldn't need to do it, of course, if you were using Color
QuickDraw. '

If you do look at the picture data, be sure and check the version information. You may want to
include an alert (dialog box) in your application that indicates to the user when a picture was
created using a later version of the picture format than currently recognized by your application,
letting them know that some elements of the picture cannot be displayed. If the version information

indicates a QuickDraw picture version later than the one recognized by your application, your
program should skip over the new opcodes and only attempt to parse the opcodes it knows.

As with reading picture data directly, it is best to use QuickDraw to create data in the PICT format,
If you do have a need to create PICT format data directl , it is essential that you understand and
follow the format presented in Table 2 and thoroughly test the data produced on both color and
black and white Macintosh machines. - S T

Apple does not guarantee that a picture which wasn’t produced by QuickDraw will
work.

Picture Format

This section describes the internal structure of the QuickDraw picture, consisting of a fixed-length
header (which is different for version 1 and version 2 pictures), followed by variable-sized picture
data. Your picture structure must follow the order shown in the examples below.

The two fixed-length fields, picSize and picFrame, are the same for version 1 and version 2
pictures.

picSize: INTEGER; (low-order 16 bits of picture size)
picFrame: RECT: {picture frame, used as scaling reference}

Following these fields is a variable amount of opcode-driven data. Opcodes represent drawing

commands and parameters that affect those drawing commands in the picture. The first opcode in
any picture must be the version opcode, followed by the version number of the picture.

Supporting QuickDraw Pictures Page 11

Pi Definition; Version 1
Picture Header - fixed size of 2 bytes:

$11 BYTE {version opcode}
$01 BYTE (version number of picture}

Picture Definition Daza - variable sized:

opcode BYTE {one drawing command}
data .

opcode BYTE {one drawing command}
data . . .

SFF {end-of-picture opcode}

In a version 1 picture, the version opcode is $11, which is followed by version number $01.
When parsing a version 1 picture, Color QuickDraw (or a patched QuickDraw) assumes it is
reading an old picture, fetching a byte at a time as opcodes. An end-of-picture byte ($FF) after the
last opcode or data byte in the file signals the end of the data stream. '

Picture Definirion: Version 2

Picture Header - fixed size of 30 bytes:

$0011 WORD {version opcode}

S02FF WORD {version number of new picture}
$0C00 WORD {reserved header opcode}

24 bytes of data {reserved for future Apple use}

Picture Definition Data - variable sized:

opcode WORD {one drawing command)
data .

opcode WCRD {one drawing command}
data . . .

$00FF " WORD {end-of-picture opcode}

In a version 2 picture, the first opcode is a two-byte version opcode ($0011). This is followed bya
two-byte version number ($02FF). On machines without the 4.1 System File, the first $00 byte is
interpreted as a no-op and is skipped, then the $11 is interpreted as a version opcode. On a
Macintosh II (or a Macintosh with System File 4.1 or later), this identifies the picture as a version
2 picture, and all subsequent opcodes are read as words (which are word-aligned within the
picture). On a Macintosh without the 4.1 System patch, the $02 is read as the version number, then
the $FF is read and interpreted as the end-of-picture opcode. For this reason, DrawPicture :
terminates without drawing anything. .

For future expandibility, the second opcode in every version 2 picture must be a reserved header
opcode, followed by 24 bytes of data that are not used by your application..

Page 12 Supporting QuickDraw Pictures

picComments

If your application requires capability beyond that provided by the picture opcodes, the
picComment opcode allows data or commands to be passed directly to the output device.
picComments enable MacDraw, for example, to reconstruct graphics primitives not found in
QuickDraw (e.g., rotated text) that are received either from the clipboard or from another
application. picComments are also used as a means of communicating more effectively with the
LaserWriter and with other applications via the scrap or the PICT dara file.

Because some operations (like splines and rotated text) can be implemented more efficiently by the
LaserWriter, some of the picture comments are designed to be issued along with QuickDraw
commands that simulate the commented commands on the Macintosh screen. If the printer you are
printing to has not implemented the comment commands, it ignores them and simulates the
operations using the accompanying QuickDraw commands. Otherwise, it uses the comments to
implement the desired effect and ignores the appropriate QuickDraw-simulated commands.

Note: The picture comments used by MacDraw are listed and
described in Macintosh Technical Note #27.

If you are going to be producing or modifying your own picture, the structure and use of these
comments must be precise. The comments and the embedded QuickDraw commands must come in
the correct sequence in order to work properly.

Note: Apple is currentiy investigating a method to register
picComments. If you intend to use new picComments in your -
application, you must contact Apple’s Developer Technical Support
to avoid conflict with picComment numbers used by other
developers.

Sample PICT file

An example of a version 2 picture data file which can display a single image is shown on the
following page. Applications that generate picture data shouid set the resolution of the image
source data in the hRes and vRes fields of the PICT file. We recommend, however, that you
calculate the image resolution anyway using the values for srcRect and dstRect according to the
following formulas:

horizontal resolution (hRes) = width of srcRect x 72
width of dstRect

vertical resolution (vRes) = height of srcRect x 72

height of dstRect

Supporting QuickDraw Pictures Page 13

PICT file example

Page 14

PICT Opcodes

The opcode information in Table 2 (on pages 15-
application-generated PICT files. Your a

Size Name Description
(irL_bytes)
2 picSize low word of picture size
8 picFrame rectangular bounding box of picture, at 72 dpi
Picture Definition Dara:

2 version op version opcode = $0011

2 version version number = $02FF

2 Header op header opcode = $0C00

4 size total size of picture in bytes (=-1 for v.2 pictures)
16 fBBox fixed-point bounding box (=-1 for v.2 pictures)
4 reserved reserved for future Apple use (=-1 for v.2 pict.)
2 opbitsRect BitMap opcode = $0090

pA rowBytes integer, must have high bit set to signal pixMap
8 bounds rectangle, bounding rectangle at source resolution
2 pmVersion integer, pixMap version number

2 packType integer, defines packing format

4 packsize Longint, length of pixel data

4 hRes fixed, horizontal resolution (dpi) of source data
4 vRes fixed, vertical resolution (dpi) of source data

2 pixelType integer, defines pixel type

2 pixelSize integer, number of bits in pixel

2 cmpCount integer, number of components in pixel

2 cmpSize integer, number of bits per component
4 planeBytes Longlnt, offset to next plane

pmTable color table =0
pmReserved reserved =0

4 ctseed Longlnt, color table seed

2 transindex integer, index of transparent pixels

2 ctSize integer, number of entries in CTTable

(ctSize+1) * § CTTable color lookup table data
8 srcRect rectangle, source rectangle at source resolution
8 dstRect rectangle, destination rectangle at 72 dpi resolution
2 mode integer, transfer mode
sec Table 4 pixData pixel data
2 endPICT op end-of-picture opcode = SOOFF

19) is provided for the purpose of debugging

pplication should generate and read PICT files oniy by
using standard QuickDraw or Color QuickDraw routines (OpenPicture, ClosePicture).

Supporting QuickDraw Pictures

The data types listed below are used in the in Table 2 opcode definitions. Data formats are

. described in /nside Macintosh,Volume I.
Table 1. Data types
Type Size
v1 opcode 1 byte
v2 opcode 2 bytes
integer 2 bytes
long integer 4 bytes
mode 2 bytes
point 4 bytes
0..255 1 byte
-128..127 1 byte (signed)
rect 8 bytes (top, left, bottom, right: integer)
poly 10+ bytes
region 10+ bytes
fixed-point number 4 bytes
pattern 8 bytes
rowbytes 2 bytes (always an even quantity)

Valid picture opcodes are listed in Table 2. New opcodes or those altered for version 2 picture
files are indicated by a leading asterisk (*). Refer to /nside Macintosh, volume V for specific
details on the new Color QuickDraw routines. The unused opcodes found throughout the table are
. reserved for Apple use. The length of the data that follows these opcodes is pre-defined, so if they
‘ are encountered in pictures, they can simply be skipped. By defauit, Color QuickDraw reads and
then ignores these opcodes.
Notes For Table 2:

1. The opcode value has been extended to a word Jor version 2 pictures. Remember, opcode
size = 1 byte for version 1.

2. Because épcodes must be word aligned in version 2 pictures, a byte of 0 (zero) data is
added after odd-size data.

3. The size of reserved opcodes has been defined. They can occur only in version 2 pictures.
4. All unused opcodes are reserved for future Apple use and should not be used.

3. For opcodes $0040 - $0044: rounded-corner rectangles use the setting of the ovSize point
(refer to opcode $000B)

6. For opcodes $0090 and $0091 : daza is unpacked. These opcodes can only be used for
rowbytes less than 8.

7. For opcodes $0100 - 37FFF: the amount of data for opcode $nnXX = 2 * nn bytes

Supporting QuickDraw Pictures Page 15

Table 2. PICT opcodes

Opcode Name Description Data Size

(in bytes)
$0000 NOP nop 0
$0001 Clip clip region size
$0002 BkPat background pattern 8
$0003 TxFont text font (word) 2
$0004 TxFace text face (byte) 1
$0005 TxMode text mode (word) 2
$0006 SpExtra space extra (fixed point) 4
$0007 PnSize pen size (point) 4
$0008 PnMode pen mode (word) 2
$0009 PnPat pen pattern 8
$000A FillPat fill pattern 8
$000B OvSize oval size (point) 4
$000C Origin dh, dv (word) 4
$000D TxSize text size (word) 2
$000E FgColor foreground color (long) 4
$000F BkColor background color (long) 4
$0010 TxRado numer (point), denom (point) 8
$0011 Version version (byte) 1
$0012 *BkPixPat color background pattern variable: see Table 3
$0013 *PnPixPat color pen pattern variable: see Table 3
$0014 *FillPixPat color fill pattern variable: see Table
$0015 *PnLocHFrac fractional pen position 2 ~
$0016 *ChExtra extra for each character 2
$0017 *reserved for Apple use opcode 0
$0018 *reserved for Apple use opcode 0
$0019 *reserved for Apple use opcode N .0
$001A *RGBFgCol RGB foreColor ‘ variable: see Table 3
$001B *RGBBkCol RGB backColor variable: see Table 3
$001C *HiliteMode hilite mode flag 0
$001D *HiliteColor RGB hilite color variable: see Table 3
$001E *DefHilite Use default hilite color 0
$001F *OpColor RGB OpColor for arithmetic modes variable: see Table 3
$0020 Line pnLoc (point), newPt (point) 8
$0021 LineFrom newPt (point) 4
$0022 ShortLine pnLoc (point, dh, dv (-128. . 127) 6
$0023 ShortLineFrom dh, dv (-128.. 127) 2
50024 *reserved for Apple use opcode + 2 bytes data length + data. 2+ data length
$0025 *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$0026 *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
50027 *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$0028 LongText xLoc (point), count (0. .255), text. 5 +text
$0029 DHText dh (0. .255), count (0. .255), text 2 +text
$002A DVText dv (0. .255), count (0. .255), text 2 + text
$002B DHDVText dh, dv (0. .255), count (0. .255), text 3 +text
$002C *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$002D *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$002E *reserved for Apple use opcode + 2 bytes data length + data 2+ dara length

Page 16

Supporting QuickDraw Pictures

Table 2. PICT opcodes (continued)

Supporting QuickDraw Pictures

Opcode Name Description Data Size
(in_bytes)
$002F *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$0030 frameRect rect 8
$0031 paintRect rect 8
$0032 eraseRect rect 8
$0033 invertRect rect 8
$0034 fillRect rect 8
$0035 *reserved for Apple use opcode + 8 bytes data 8
$0036 *reserved for Apple use opcode + 8 bytes data 8
$0037 *reserved for Apple use opcode + 8 bytes data 8
$0038 frameSameRect rect 0
$0039 paintSameRect rect 0
$003A eraseSameRect rect 0
$003B invertSameRect rect 0
$003C fillSameRect rectangle 0
$003D *reserved for Apple use opcode 0
$003E *reserved for Apple use opcode 0
$003F *reserved for Apple use opcode 0
$0040 frameRRect rect (see Note # 5 on page 13) 8
$0041 paintRRect rect (see Note # 5 on page 13) 8
$0042 eraseRRect rect (see Note # 5 on page 13) 8
$0043 invertRRect rect (see Nore # 5 on page 13) 8
$0044 fillRRect rect (see Nore # 5 on page 13) 8
$0045 *reserved for Apple use opcode + 8 bytes data 8 ’
$0046 *reserved for Apple use opcode + 8 bytes data 8
$0047 *reserved for Apple use opcode + 8 bytes data R
$0048 frameSameRRect rect 0
$0049 paintSameRRect rect 0
$004A eraseSameRRect rect 0
$004B invertSameRRect rect 0
$004C fillSameRRect rect 0
$004D *reserved for Apple use opcode 0
$004E *reserved for Appie use opcode 0
$004F *reserved for Apple use opcode 0
$0050 frameQval rect 8
$0051 paintQOval rect 8
$0052 eraseOval rect 8
$0053 invertOval rect 8
$0054 fillOval rect 8
50055 *reserved for Apple use opcode + 8 bytes data 8
$0056 *reserved for Apple use opcode + 8 bytes data 8
$0057 *reserved for Apple use opcode + 8 bytes data 8
$0058 frameSameQval rect 0
$0059 paintSameQval rect 0
$00SA eraseSameOval rect 0
$005B invertSameOval rect 0
$005C fillSameOval rect 0

Page 17

Table 2. PICT opcodes (continued)

Opcode Name Description Data Size

(in bytes)
$005SD *reserved for Apple use opcode 0
$00SE *reserved for Apple use opcode 0
$005F *reserved for Apple use opcode 0
$0060 frameArc rect, startAngle, arcAngle 12
$0061 paintArc rect, startAngle, arcAngle 12
$0062 eraseArc rect, startAngle, arcAngle 12
$0063 invertArc rect, startAngle, arcAngle 12
$0064 fillArc rect, startAngle, arcAngle 12
$0065 *reserved for Apple use opcode + 12 bytes 12
$0066 *reserved for Apple use opcode + 12 bytes 12
$0067 *reserved for Apple use opcode + 12 bytes 12
$0068 frarneSameArc rect 4
$0069 paintSameArc rect 4
$006B invertSameArc rect 4
$006C fillSameArc rect 4
$006D *reserved for Apple use opcode + 4 bytes 4
$006E *reserved for Apple use opcode + 4 bytes 4
$006F *reserved for Apple use opcode + 4 bytes 4
$0070 framePoly poly polygon size
$0071 paintPoly poly polygon size
$0072 erasePoly poly polygon size
30073 invertPoly poly polygon size
30074 fillPoly poly polygon size
30075 *reserved for Apple use opcode + poly
$0076 *reserved for Apple use opcode + poly
$0077 *reserved for Apple use opcode word + poly
50078 frameSamePoly (not yet implemented - same as 70, etc.) 0
$0079 paintSamePoly (not yet implemented) 0
$007A eraseSamePoly (not yet implemented) 0
$007B invertSamePoly (not yet implemented) 0
$007C fillSamePoly (not yet implemented) 0
$007D *reserved for Apple use opcode 0
$007E *reserved for Apple use opcode 0
$007F *reserved for Apple use opcode 0
$0080 frameRgn rgn region size
$0081 paintRgn rgn region size
$0082 eraseRgn rgn region size
$0083 invertRgn rgn region size
$0084 fillRgn rgn region size
$0085 *reserved for Apple use opcode + rgn region size
$0086 *reserved for Apple use opcode + rgn region size
$0087 *reserved for Apple use opcode + rgn region size
$0088 frameSameRgn (not yet implemented - same as 80, etc.) 0
$0089 paintSameRgn (not yet implemented) 0
$008A eraseSameRgn (not yet implemented) 0

Page 18

Supporting QuickDraw Pictures

Table 2. PICT opcodes (conrinued)

Opcode Name Description Data Size

(in bytes)
$008B invertSameRgn (not yet implemented) 0
$008C fillSameRgn (not yet implemented) 0
$008D *reserved for Apple use opcode 0
$S008E *reserved for Appleuse opcode 0
$008F *reserved for Apple use opcode 0
$0090 *BitsRect copyhbits, rect clipped variable: see Table 3
$0091 *BitsRgn copybits, rgn clipped variable: see Table 3
$0092 *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$0093 *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
50094 *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$0095 *reserved for Apple use opcode + 2 bytes dara length + data 2+ data length
$0096 *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$0097 *reserved for Apple use opcode word + 2 bytes data length +data 2+ data len gth
$0098 *PackBitsRect packed copyabits, rect clipped variable: see Table 3
$0099 *PackBitsRgn packed copybits, rgn clipped variable: see Table 3
$009A *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$009B *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$009C *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$009D *reserved for Apple use opcode + 2 bytes data length + data 2+ darta length
$009E *reserved for Apple use opcode + 2 bytes data length +data 2+ data length
$009F *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
$00A0 ShortComment kind (word) 2
$00A1 LongComment kind (word), size (word), data 4+data
$00A2 *reserved for Apple use opcode + 2 bytes data length + data 2+ data length
SO00AF *reserved for Apple use ;)pcodc + 2 bytes data length + data 2+data length
$00BO *reserved for Apple use opcode 0
$00CF *reserved for Apple use 6pcode 0
$00D0 *reserved for Apple use opcode + 4 bytes data length + data 4+ data length
SOOFE *reserved for Apple use 6pcode + 4 bytes data length + data 4+ dara length
$00FF opEndPic end of picture 2
$0100 *reserved for Apple use opcode + 2 bytes data 2
$O1EF *reserved for Apple use 6pcodc + 2 bytes data 2
Supporting QuickDraw Pictures Page 19

Table 2. PICT opcodes (continued)

Opcode Name Description Data Size
(in bytes)
$0200 *reserved for Apple use opcode + 4 bytes data 4
T$0BFF *reserved for Apple use 6pcodc + 4 bytes data 2
$0C00 HeaderOp opcode 24
$0CO1: *reserved for Apple use opcode + 4 bytes data 24
$TFO0 *reserved for Apple use opcode + 254 bytes dat 254
T$71-'.-'FF *reserved for Apple use ;)pcodc + 254 bytes data 254
$8000 *reserved for Apple use opcode 0
$80FF *reserved for Apple use ;)pcode 0
$8100 *reserved for Apple use opcode + 4 bytes data length + data 4+ data length
$FFFF *reserved for Apple use opcode + 4 bytes data length + data 4+ data length

The new opcodes - expanded format
The expanded format of the version 2 PICT opcodes are shown in Table 3 below.
Table 3. Data format of version 2 PICT opcodes

Opcode Name Description

$0012 BkPixPat color background pattern

$0013 PnPixPat ; color pen pattern T e
$00 14 FillPixPat color fill pattern

if patType = ditherPat
then
PatType: word; { pattern type =2 }
PatlData: Pattern; { old pattern data }
RGB: RGBColor; { desired RGB for pattern }

else
PatType: word; { pattern type =1 }
PatlData: Pattern; { old pattern data }
pixMap: { pixMap format shown below }
colorTable: { color table format shown below }
pixData: { pixData format shown below
end; ' -

Page 20 Supporting QuickDraw Pictures

Table 3. Data format of version 2 PICT opcodes (continued)

Opcode Name Description
$0015 PnLocHFrac fractional pen position
pnlocHFrac; word: { see Inside Macintosh for format }
If pnLocHFrac < 1/2, itis always put to the picture before each text drawing operation.
$0016 ChExtra extra for each character
chExtra: word; { see Inside Macintosh for format }

After chExtra changes, it is put to picture before next text drawing operation.

$001A RGBFgCol RGB foreColor

$001B RGBBkCol RGB backColor

$001D HiliteColor RGB hilite color

$001F OpColor RGB OpColor for arithmetic modes
RGB: RGBColor; { desired RGB for fg/bk }

(see Inside Macintosh, Volume V for data structure)
$001C HiliteMode hilite mode flag
4 No data. This opcode is sent before a drawing operation that uses the hilite mode.
$001E DefHilite Use default hilite color

No data. Set hilite to default (from low memory).. s Ak o35 st

The next four opcodes (30090, $0091, $0098, $0099) are modifications of existing (version 1)
opcodes. The first word following the opcode is the rowBytes. If the high bit of the rowBytes is
set, then it is a pixMap containing multiple bits per pixel; if it is not set, it is a bitMap containing
one bit per pixel. In general, the difference between version 1 and 2 formats is that the pixMap
‘replaces the bitMap, a color table has been added, and pixData replaces the bitData.

Note: Opcodes $0090 and 0091 are only used for rowbytes less

than 8.
$0090 BitsRect copybits, rect clipped
pixMap: { described in Table 4)
colorTable: { described in Table 4 }
srcRect: Rect; { source rectangie }
dstRect: Rect; (destination rectangle }
mode: Word; { transfer mode (may include new transfer modes))
PixData: { described in Table 4 }

Supporting QuickDraw Pictures Page 21

Table 3. Data format of version 2 PICT opcodes (conrinued)

Opcode Name Description
$0091 BitsRgn copybits, rgn clipped
pixMap: { described in Table 4 }
colorTable: { described in Table 4 }
srcRect: Rect; { source rectangle)
dstRect: Recy; (destination rectangle }
mode: Word; { transfer mode (may include new transfer modes) }
maskRgn: Rgn; { region for masking }
PixData: { described in Table 4}
$0098 PackBitsRect packed copybits, rect clipped
pixMap: { described in Table 4 }
colorTable: { described in Table 4 }
srcRect: Rect; (source rectangie }
dstRect: Rect; { destination rectangle }
mode: Word; { ransfer mode (may include new transfer modes) }
PixData: { described in Table 4 }
$0099 PackBitsRgn packed copybits, rgn clipped
pixMap: { described in Table 4 }
colorTable: { described in Table 4 }

srcRect: Rect;
dstRect: Rect;

mode: Word;
maskRgn: Rgn;
PixData:

{ source rectangle }

{ destination rectangle)

{ ransfer mode (may include new transfer modes) }
{ region for masking }

{ described in Table 4 }

Table 4. Data types found within new PICT opcodes listed in Table 3

Opcode Name

Description

pixMap = baseAddr: long;

rowBytes: word;
Bounds: rect;

version: word;
packType: word;
packSize: long;

hRes: fixed;
vRes: fixed;
pixelType: word;
pixelSize: word;
cmpCount: word;
cmpSize: word;
planeBytes: long;
pmTable: long;
pmReserved: long;

end;

Page 22

{ unused =0 }

{ rowBytes w/high byte set }

{ bounding rectangle }

{ version number=0 }

(packing format =0 }

{ packed size =0 }

{ horizontal resolution (default = $0048. 0000) }
{ vertical resolution (defauit = $0048.0000) }

{ chunky format =0 }

{ # bits per pixel (1,2,4,3) }

{ #components in pixel =1 }

{ size of each component = pixelSize for chunky)
{ offset to next plane =0 }

(color table =0 }

{ reserved =0 }

Supporting QuickDraw Pictures

Table 4. Data types found within new PICT opcodes listed in Table 3 (continued)

Opcode Name

Description

colorTable = ctseed: long;
transindex: word;
ctSize: word;

end;

{ id number for color table =0 }

(flagsword =0 }

(number of ctTabie entries-1 }

{ ctSize + 1 color table entries }

{ each entry = pixel value, red, green, blue: word }

pixData: If rowBytes < 8 then data is unpacked
' data size = rowBytes*(bounds.bottom-bounds.top);
If rowBytes >= 8 then data is packed.
Image contains (bounds.bottom-bounds.top) packed scanlines.
Packed scanlines are produced by the PackBits routine.
Each scanline consists of [byteCount] [data].
If rowBytes > 250 then byteCount is a word, else it is a byte.

end;

Supporting QuickDraw Pictures

Page 23

