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ABSTRACT

This paper provides a capsular introduction to
the theoretical framework and experimental applica-
tions of the Polar Exponential Grid (PEG) transfor—
mation, in the context of image analysis. The PEG
transformation is an isomorp7iic (l) representation
of the image intensity array that simplifies, and
potentially offers new insights about, a variety of
tasks in computational vision. We describe the PEG
transform representation; we briefly survey its
functional precursors in optical computing and
image processing. Fe then give an example of PEG-
based image analysis for rotation-and-scale variant
template matching and, present the PEG transform as
a motif for a class of problems in stochestic esti-
mation of object boundaries.

INTRODUCTION TO THE POLAR
EXPONENTIAl GRID (FEC)

Retropect lye

This paper addresses the related questions of
novel focal-plane geometries and new sensory data
representations to expedite tasks in low-level
image analysis. The Cartesian grid structure of
most image sensors is the happenstance of techno-
logical coriventin in ihtegrated circuit engineer-
ing and machine architecturS. We seek to under-
stand if potential alternatives to the accepted-

standabd offerimproved system throughput for
machine wision.Tserendipitt might such.al±erne-
tive data representations offer clues to new

lulage procedsing aomputdr architectures deviant
from the norm and fetter suited tc imageg vis-a-vis 2—0 signal processing parse?

Our interest in this problem was motivated by
our earlier dtudies (2; 3) in theory, models, and
parallel algorithm design for high speed image seg-
mentation As we shall later discuss, our wOrk
therein dealt with extraction of simple-object
boundaries from noise-degraded imagery. In this,
and a for more general class of computational
viaios roblems,one must deal with problems ni
able c.cJect scale, oriSntation, aspect, Ccc ilumi--

nation/radiation,among others. We in paatcuLac
sought an alternative to Cartesian arday inago
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representation that would provide some invariance
against the first two problems commonly encountered
in overhead views typical of production line robot-
ics and terrestiel surveillance problems. We con-
sidered not only potentially new ways of aedniring

sensory data, but the implications the corollary
image representation would have for the structure

of our segmentation algorithids. A prerequisite for
any new representation was that it be isomorpEio(i)
to the sensory data: that is, in the sense of our

segmentation algorithms, an image representation
other than the convontional intensity array must be
attribute-preserving. This meant Ice our needs,
and to serve a far broader class of 2-0 and 3-0
segmentation problems, a new representWtion should
be iconic versus symbolic, and preserve both global

image topology and local geometry (viz. , angles and
sense of rotation). Further requirements particu-
lar to our view of 2-0 segmentation were that the
new image representation should: 1) be a natural
motif for the pseudo- 1-dimensional functional
daacrioione appropriate to some c es of caoed
boundaries (5); and 2) provide a format fod a scale-
invariant (resolution-preserving) boundary descnip-
tioiì. "l' is very desirable in the formulation of
a Class of effective stochastic boundary esti-
mators (h-, also zef. 83 in 2). 2Y'overcornes for
some epplications theoretical problems In boundary
modeling and, ameliorates model implementation
probletis of spatial quantization error.

PEG Geometry and Precursors in Image Processing and
Display

The Polar Exponential Grid transformation is
described by Fig. 1. The relationship between the

grid and its •data representation is a conformal

mapping(6);this point is most important because
it obtains the aformentioned requirement of nvari-
ant global topology and local•geometry in the
mapping of sensory data to its representation.
Waimad and Chaikin in their study (7) of a more
general class of iconic image-representations that
include the PEG, have begun to explore some of the
imlictions of conformal computational geometry
far its dual applications to image analysis and
car- graphics. In particular, their work along
-0-nec recognizes the potentially attractive

-a of special. purrose machine architecsnres
i- from conformal ta-ta representatim-s,
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It should be apparent at this point that PEG
transformation reduces scale and rotation variants
to translations in the isomorphic representation.

Further, for pixel edge-element-based boundary de-
scriptions, the PEG representation is resolution-
preserving; also, vis-a-vis the sensory data, the
image representation is comatic. FOr 2—0 linear
filtering operations on its representation, the PEG
mapping is one of a class of invertible transforma-
tions that meet the definition of the Coordinate
Transform Processor (9) depicted in Fig. 2. Robbins
and Huang (10), and Sawchuk (.11,12) exploited
the PEG transformation in this context to effect

space-variant filtering procedures for digital
restoration from comatic aberration, and motion
blur. A continuous paradigm to the PEG representa-
tion has received recent consideration in the con-
text of coherent optical computing by Casasent and
Psaltis (13). Their work has conceptual ties to
that of ours and that of Weiman and Chaikin, in
that Casasent and his colleagues seek among others
a correlator architecture that is robust against
variations in input image scale and rotation.
Their proposed system achieves this by concat-
enated operations on image Fourier amplitude
spectra. As alluded in (7), this strategy does not
maintain isomorphism due to loss of phase informa—
tiori.

EXPERIMENTAL RESULTS

In this section we present results for select-
ed experiments in PEG-based image analysis; more
extensive reports follow in (l'4, 17). We first
outline an autocorrelation study which is illustra-
tive of attentive(foVei) PEG vision. We then
discuss in more detail the application of PEG
representation to stochastic boundary estimation.

PEG Transforms and Template Registration

Fig. 3a) is an example of PEG transformation
and data reconstruction (16) applied to the Gener-
al Motors Corp. "bin-of-parts" data base. It was
earlier noted that the PEG representation is a
natural framework for fast linear scale-and-rota-
tion cross—correlation. Fig. yb) depicts results
for a 2-0 autocorrelation study on an object (inse
extracted from the data base. The autocorrelation
function can be seen to have a well-defined princi-
pal maximum for both shift coordinates. Meaningful
cross-correlation tests presume the ability to

translationally center, viz. , foveate on, the

object. This is a subtle issue with implications
to both 2- and 3-dimensional segmentation; we
explore this question in refs. (15) and (17) (see
also ref. 8) and offer related remarks in the next
subsection.

Simple-Obj ect Segmentation

In references (2, 3) e introduced a new
class of parallel-window estimator for simple—
object boundary extraction from noisy data. A
representative algorithm, the Pca'aliel Hierarchical
Ripple Filter, was demonstrated for application to
a Cartesian array representation of the sensory
data. Here, we demonstrate application of this
algorithm to the PEG representation.
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Our approach to boundary extraction derives
from Cooper (2, refs. (3, 4]), and earlier, Nahi
(ibid., ref. [ 8 ]). Stochastic models, e.g.
Fig. 4, are defined for the data generation pro-
cesses; then, boundary identification is realized
as a search of the boundary edge-element parameter
space to obtain a maximum a posteriori likelihood
estimate for the data—and-boundary model joint
probability functional. An exhaustive boundary
search is computationally prohibitive for even
small (32 x 32) data bases. Thus, a focus in the

practical implementation of MLE boundary finding
has been identification of viable suboptimal non-
exhaustive search strategies and, their theoretical
(4) and experimental (2 - 4) extension to concur-
rent computation.

The PHRF boundary estimator is a hierarchical
resolution concurrent search algorithm. It parti-
tions an (N' x N') data base to windows (N x N)
whose edge dimensions are on the order of the
boundary model correlation length. The algorithm
conducts statistically independent, progressively
resolved searches of each partition, and at higher
(br the highest) resolutions infers statistical
correlation of adjacent boundary estimates by
concurrently smoothing across window partitions
after independent search. The PHRF converges in
log-time vis-a-vis search at full resolution.

Fig. 5 represents a scenario and experimental
results for PHRF realization in the PEG representa-
tion. Arguments for such a PEG—based versus
Cartesian PHRF realization are as follows:
First, PEG boundary representation is resolution-
preserving in scale vs. equi-resolved; thus, it
provides a motif for a boundary search whose
computational complexity is logarithmic vs. linear
in domain dimensionality. Second, consider the
result of Fig. 5 d): an interesting class of

object images, a. g. computed-tomography organ
scans, biological cells, clouds, FLIR targets,
etc. are amenable to modeling in the PEG repre-
sentation as cyclostationary 1-D processes. Taken
in context with the first point, this suggests pos-
sibilities for a new class of highly structured
(real-time implementable) robust boundary estima-
tors. Finally, isomorphism of the PEG representa-
tion guarantees that segmentation procedures which
derive from local geometric cOnstraints will remain
-translationally invariant in the PEG representation.
Contrasted with the previous point which addressed
attentive vision, this point argues for the com-
putational equivalence of segmentation in the
central and peripheral fields of the PEG represen-
tation. Control issues of hierarchical machine
vision that bear on this PEG attentive (foveal) -

global (peripheral) paradigm to biological vision
are discussed in refs. (15) and (17). Such
questions are apropos to the aforementioned prob-
lem of translational template registration. In
essence, we believe that inroads to efficiently

solving segmntation problems will come not onl
from appreciation Of the control structures in-
volved, but also from insights provided by the
computational geometry of isomorphic representa-
tions (1, 8, 15).
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We have presented experimental examples of
image aOalysis in the context of a new sensory data
represeOtation, the Polar ExponentIal Grid. Spe-
cifically, we have introduced a new class of bound—
ary finding algorithm that has attributes of speed
and robtlstness for large area search. We have
made recommendations for further study of this
problem. In generality, we argue for the philoso-
phy that substantial progress in machine vision
will arise not only brough g iiaton f sym-
tems , but also through fundamentally different
ways of representing sensory information and devel-

aping computational paradigms to exploit these
represeOtations. This in turn suggests considera—
tion of new devices and machine architectures for
vision. To offer advantages over the prevailing
technological metaphors for biological vision, these
isomorphic equivalents must make image and scene
represeotation more pars imonius of both structure
and computation. We believe that PEG representa-
tion is the kernel of one such new approach to
machine vision.
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Figure 1 the Polar Exponential Grid and its representation; a lower bound is
et on radius because of the singularity at r = 0. After ref.(7).

Figure 2 Coordinate Transform Processor(after ref.(9)). u,v correspond to
angle and ln-radius of the Polar Exponential Grid. Linear shift-invariant fil-
tering is performed on the PEG representation. x, are the image display recon-
struction. Applications are discussed in refs.(1O—12); see also refs.(14-16)
for experimental examples.
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GEOMETRICAL GEOMETRICAL
TRANSFORMATIO14 TRANSFORMATION

Figure 3 an experimental demonstration of PEG representation and image recon—
struction(ref.(16)). Note the comatic loss of resolution in peripheral field
of reconstruction. The rightmost figure depicts an autocorrelation study on
the inset data base: horizontal axis is rotation; vertical axis is scale. In-
tensity is directly proportional to the local value of the autocorrelation
function; the center of the intensity map corresponds to perfect registration.
The superposed plot is autocorrelationvs. angle at 1:1 scale,i.e.,intensity
along the horizontal axis. note: plot and map are not co-centered on horizontal
axis(see scale marks for plot at bottom of picture).
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Fjre 4 digitized data generation models for PHRF stochastic boundary esti-
mation. Parameters r. ,r0 t are the interiör,exterior region expectation values
for the picture funcon . . n. is an additive uncorrelated Gaussian noise
field. Signal-to-noise is dfin as the ratio of (r.—r to the standard
deviation of n. • The boundary is modeled as a K-th Markov process,for
whioh a state K sequentially connected edge elements. The figure illustrates
possible state transitions from t. t. for a 7-th order model. Local boundary
curvature is measured by angle th,whoe distribution one designs to reflect
expectation of the local boundary structure. Here, boundary cost is designed
to monotonically increase with theta,viz.,the estimator will reflect a global
bias for boundaries of low curvature. After refs (2,3),

____________ boundary model

t_, t,_j_t,_4 I I

— 7'
,2
7., A

Figure experimental results for PEG-based Parallel Hierarchical Ripple Filter
operatiôn:

a) 2:1 s/N circle—with-projection data base
b) partitioned PEG representation
c) parallel search of partitions in progress
d) contour estimate
e) reconstructed PEG image and estimated
f,g) applications to boundary finding in

tank image,and to cloud imago,per )

image model

lk k

/

boundary
forward -looking- infrared(FLIR)
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