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Abstract _ *
Picture Graphs, Grammars, and Parsing
Alan C. Shaw . "ok
Cornell University
Ithaca, N.Y. 14850

This paper is concerned with the syntactic description
and analysis of pictures when graphs are employed as the
primary description formalism. The present state of develop-
ment, a number of significant open problems, and the advantages
and limitations of this approach are discussed under the follow-
ing three headings:
(a) representation of pictures by graphé,
(b) graph languages and grammars, and
(c¢) parsing of graphs and pictures.
In (a) we investigate transformations from pictures to graphs
based on n-ary relations (n>1) that exist among picture com-
ponents, both at the primitive pattern level and among higher
level subpictures; n-ary relations are reduced when n>2 or
expanded when n=1 to binary relations. Several grammatical
schemes for generating graph descriptions are then evaluated with
respect to their descriptive adequacy, complexity, and practical
and theoretical tractability. Syntax-directed analysis of graphs
and pictures is treated from two points of view - how to parse
efficiently and how to enlist the descriptive mechanism as an
aid in the difficult lower level pattern recognition tasks,
The 1atter_point is particularly emphasized with the aim of
promoting a more systematic approach to contextual recognition.

* This work was supported in part by The National Science
Foundation grant GJ-108.

** Department of Computer Science
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Picture Graphs, Grammars, and Parsing

Alan C. Shaw

I. Introduction
This paper examines the use of graph representations

"structured" pictures.

for the description and analysis of
Examples of structured pictures are particle trajectories
produced in high energy particle physics experiments, circuit

schematics, flow charts, organic chemistry molecules, archi-

tectural drawings, some biomedical pictures, and natural scenes.

.

A linear list of the features, primitives, or objects con-
tained in one of these pictures is usually not an adequate

description; it is the relationships among the components

that often provide the key to understanding and that require

extended processing beyond standard pattern classification.
It is convenient to define pictures independently of

any specific viewing or generation machine (e.g. flying spot

scanner or plotter). At the lowest and most primitive level,

we can use an extension of Rosenfeld's picture function

(Rosenfeld, 1969;pp.1-2):

A picture o is a vector-valued function f of several real

variableévz; i.e.

£(x) = (£7(8),. .., £, (%)) x = (xy5.005% ),

where k is the number of attributes of a, f represents the
: i . .

This research was supported in part by the National Science
Foundation, Grant GJ-108.



h . .
value associated with the it attribute, n is the dimension

of a, and x is a point in n-space. Typical attributes are
intensity or '"gray level", colour, and opaqueness or trans-
parency. n = 2, 3 is the normal situation but higher dimen-
sions or n = 1 need not be excluded.

Descriptions at higher levels serve several purposes.
They define encodings and classifications of pictures that
allow humans and machines to comprehend and conveniently process
them; from a slightly different point of view, they-permit a
useful articulation of the interesting parts of pictures while
eliminating "noisy" or irrelevant components. Descriptions
may also be employed to drive picture analyzers or generators.
In the analysis case, this implies the existence of a grammar
or set of rules that define the picture class of interest.‘

Picture analysis then becomes a problem of deriving descriptions

while generation involves the evaluation of descriptioms.
The possible levels of description can be arranged in
a hierarchy, where level i+l is derived from level i by some
set of picture processing operations: -

Level O: io(g), the lowest level mathematical description
as discussed above.

Level 1: il(g), a machine's view of f..
This is normally a quantization of 20
over a regular array.
Level 2: f_(x), the result of "preprocessing" f..
__2__ . —
: Noise removal ard image enhancement are -
typical preprocessing goals. '

Level 3: {F.,}, a set of the features F, of f,.
. i =
Examples are line segments ana edges.



Level 4: '{Pi}, a classification of all the primitive
objects Pi in the picture represented
by Level 3.

Level 5: .{Ri}, the relations Ri existing among the
primitives.

Levels 6-m: higher level groupings and their relation-
ships.
Level m+l: C, the highest level.

This generally consists of a simple classi-
fication C.

The hierarchy is illustrated in Fig. 1. We are mainly interested
in describing pictures at levels 4 to m+l and employing these
descriptions as an aid in transforming pictures from level i
to i+l or i+l to i for i=0,1,...,m. .

Most description schemes that have been implemented or
proposed use a generative grammar of some form which defines
a picture language; this approach has been termed "linguistic"
because of the analogy to natural and programming language
specification and analysis. Picture grammar and language
notations have been based on arrays, list structures, (relation,
object list) pairs, predicate calculus, set theory, and graphs
(Miller and Shaw, 1968; Fu, 1970).

Graph representations have been particularly attractive
because of the natural interpretation of graphs in terms of
objects, relations, and concatenations, and because of the
large body of graph theory and algorithms that is availaﬁie.

In the n:xt section, we investigate the general problem of
representing pictures by graphs. Section IITI examines the

virtues and limitations of several graph languages and grammars



that have been developed. The following section discusses
algorithms for parsing graphs and pictﬁres emphasizing problems
of efficiency and the use of contextual information. Throughout
the paper, we list a number of problems and direbtions for future

research.

ITI. Representation of Pictures by Graphs

The composition of a picture o can often be specified
hierarchically as a set S of subpictures, the relationships
among the elements of S, and a number of attribute-value pairs
for o and each subpicture. (The notation of Evans(1969) is
complete in this sense). An n-ary relation R (n>1) satisfied

by the objects X X will be denoted R(X Xn) ; an

R ERREE

attribute-value pair will be designated by <a,v>.

Consider the subscripted variable A, of Fig. 2, inter-

N

preted as a picture a. One possible description of o is:

o = {A,N} where SUBSCRIPT(A,N)
A = {pp,,DP,,H,DM,,DM,} where
A
CAT(DP,,DP,) A CAT(DP, ,H) A CAT(DP,,DM,)
A A
CAT(DM, ,DM,) A CAT(H,DM,)
N =

{Vl,DM,Vz} where CAT(V,,DM) A CAT(DM,V,)
Let each object above have an ordered pair of points <t,h>
by which it may be connected to other objects; then CAT(X,Y)
means that BX is concatenated to EY . t and h will be referred
to as the tail and head points respectively.

There are several ways to map the description to a graph.

The most common and straightforward representation is a labelled

node-oriented directed graph, where nodes represent objects and

—ed
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edges denote (binary) relations* (Fig. 3 (a) ). The unlabelled
edges describe the "contains" relation C; for example, C(a,A)

means that thevobject ¢ contains A. (It is this relation that

may define the levels in a description hierarchy). Note that

all edges and nodes are implicity or explicity labelled ("coloured'")
and that the root and interior nodes decompose into graphs at

lower levels. An edge-oriented graph can also be used in many
cases (Fig. 3 (b) ). Nodes represent the tail and head points

of concatenation, each object is denoted by a labelled directed
edge pointing from its tail node to its head node, and all (binary)
relations other than concatenation are treated as "invisible"
objects and defined as edges. Here it is not necessary to

label the nodes. While the latter type of graph is less

general than the node-oriented form and leads to ambiguous
interpretations in some instances - for example, if we had
CAT(X,Y), CAT(W,Y), C(X,A), and C(W,B) - , it has the virtues

of simplicity and processing convenience for those pictures

where component concatenations are the primary relations

(Shaw, 1969a, 1970).

The above example was contrived to involve only binary
relations. However, picture descriptions frequently also
require the expression of unary relations (properties) and
nFary relations for n>2. For example, it might be more

useful to describe an "A" as:-

*
If a relation is symmetric, it can be designated by an
undirected edge.



(1) A = {Ll,L Ls} where TRIANGLE(LZ,LB,L4)

2°L32 Ly
A HORIZONTAL(L3) A ABOVE(LB,LZ) AN
where the ternary relation TRIANGLE is satisfied by the

lines L L and L4, and L, has the property relation

2’ 73 3

HORIZONTAL. A graph-representable description is obtained
by mapping all relations to binary ones. A unary relation
R(X) can be changed to the binary onéti(X,A) where A denotes
the "null" object. R(Xl,...,Xn) (n>2) can be transformed to

a composition of binary relations, for example,

Rl(Xl’RZ(XZ""’R (X X)...)), or to a conjunction of

n-1%0-1°%,

binary relations Rl(X

X12) A'R2(X ) A LLL A Rk(X ),

2°L3>

transformed into either the following equivalent relations:

k1°%k2
L4) could be

11° 21°%22
or to a combination of these. TRIANGLE(L

CAT(L,,Ly) A CAT(L,,L,) A CAT(LA,LZ) or
A(L,4,CAT(L,,L,))
where A(X,Y) means that the line X is connected to form a
triangle with the object Y consisting of two concatenated
segments. Replacement of - an n-ary relation with binary ones
using composition requires the introduction of more levels
(more C(X,Y) relations) in the description; description (1)

could be mapped to:

(2) A = {Ll,L3,ANGLE,L5} where A(LB,ANGLE) A HORIZ(L3,A)
A ABOV(L3,ANGLE) A
= A
ANGLE ‘{LZ,L4} where CAT(LZ,LA) -

The node-oriented graph of (2) is given if Fig. 4. To complete

the graph descriptions, <a,v> pairs may be associated with each

- oae
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object or higher level structure and included as part of the
node or edge label. TFor example, "A" might have the attributes
<HEIGHT,0.75">,<WIDTH,0.5">. 1In summary, we can completely
describe any picture as a labelled directed graph by mapping
all relations to binary ones and labelling the nodes and edges
with relations, object names, and <a,v> pairs.
Two disadvantages of this approach are:
1. it is sometimes awkward to describe pictures by binary
relations only, and -
2. the graph representation can be unnecessarily complex
when compared with other description metﬁods.
The examples given by Minsky'(1961) are a good illustration
of the second point. There are 8 closed curves XO,...,X7
which are related according to the following description :l
(3) 8 (X, > (8 (X ,¥+(X,,%3)),0(X,,V(Xs,%,,%5))))
where 0(X,Y) means Y is inside of X,
+(X,Y) means that Y is to the right of X,
+(X,Y) means that Y is below X, and

V(X,Y,Z) means that Y is to the right of X
and Z is underneath and between them.

The corresponding graph is awkward and messy compared with (3).
We have also assumed that descriptions can always be arranged
in a "tree" hierarchy. This is not always possible as the

following example demonstrates:



Let a picture consist of 4 objects A,B,C,D with the relations
R,(A,B), R,(C,D), R,(A,C), R,(B,D), R (W,X), and R6(Y,z},
where W = {A,B}, X = {¢,D}, Y = {A,C}, and z = {B,D}. Fig. 5
portrays the relatiomns.

The characterization of pictures by graphs seems natural and
useful when the subpictures within a level in a description
hierarchy are significantly related to one another apd when
there do not exist many interlevel relations. In this case,
graph manipulation algorithms, and the model and results of

graph theory can be (and have been) applied successfully in

several theoretical studies and experiMents in picture processing.

Section III and IV mention some of these applications. It

is, however, still not generally clear under what circumstances
graph representations are useful, nor is it evident - despite
the examples in this section - how to generally transform a

picture to a graph.

IIT Graph Languages and Grammars

Both é set of pictures and a set of graphs may often be
described by a grammar G generating a graph language L(G);
each sentence x € L(G) specifies, up to isomorphism, a
unique graph By which in turn, is an abstract representation
of a set P of one or more pictures. The purpose of such
a grammar zre:
1. to precisely define, by fiﬁite means, an infinite set

of graphs (and pictufes),
2. to impose a hierarchic structure on each x € L(G), gx,

and member of Pg (i.e. the C(X,Y) relation), and

~ -
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3. to assist in the recognition, analysis, and inter-
pretation of graphs and pictures through syntax-directed
processing;

Several different notations and formalisms for graph
languages and grammars have been developed and applied in
experimental settings. Figures 6, 7, and 8 contain simple
examples of grammars for the most prominent of these. The
notation of Narasimhan (1966), formalized by Feder (1969)
as "plex" grammars, describes the connectivity of picture
components by using explicit lists of labelled concatenation
points in each rule. Each of Feder's grammar rules,in the
context—-free case, is of the form:

A AA > X wx AxA

where x is an ordered list of symbols identifying primitive
objects ;r higher level subpictures, wx is a list of "joints"
or connections among points of elements of x, AxA establishes

a correspondence between points of x and attachment point labels
to be associated with A, and AA specifies a list of attachment
points for A. While the sentences generated by these grammars
are not airectly graphs, they can be so transformed by either
assigning labelled nodes to both objects and concatenation
points as suggested by Pfaltz and Rosenfeld (1969) or by
mapping picture objects to nodes and concatenations to labelled
edges (Fig. 6(b) ). The cited references apply this notation
to the description of English characters, flow charfs, chemical

diagrams, particle trajectories in bubble chambers, and elec-

trical circuits.
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The PDL notation (Shaw, 1969a; Miller and Shaw, 1968)

(Fig. 7) is also based on concatenatioﬁs but uses a set of
binary operators, much like the CAT(X,Y) of the last section
to specify connections; the original notation restricted each
primitive object to two concatenation points but this re-
striction was eliminated in further work (Shaw, 1969b). 1In
the figuré, the network component o could be, for example,

an electrical circuit element such as a resistor; thé operator +
indicates head to tail concatenation in a PDL‘description, *
defines both a tail to tail and a head to head connection, and
higher level structures described by ( S1 e ?2 ) have tails
and heads defined recursively as tail(Sl) and head(Sz)
respectively. A complete set of operators for local tail/head
concatenations, tail/head reversal, and "rewriting'" over the
graph is specified in PDL; the notation allows the description
of any directed edge-labelled graph. PDL has been applied to
roughly the same sets of pictures as the plex grammars (but
not to chemical diagrams yet) as well as pages of text and
spark chambers photographs.

The web grammars of Pfaltz and Rosenfeld (1969) (Fig. 8)
explicitly employ node labelled graphs ("webs") in the re-
writing rules; each production describes the rewriting of a
graph o into another graph B and also contains an "embedding"
rule E which specifies the connections of B to its surrounding
graph (host web) when o is rewritten. In the above reference,

web grammars were presented for directed trees, directed two-

terminal series-parallel networks (TTPSN's), directed triangles

«~ .

od
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of graphs, and "Pascal's triangles"; iater work has contained
grap g

o

grammars for various classes of planar graphs and simulated

” neural nets (Montanari, 1969; Pfaltz, 1970). The formalism

of web grammars has been mathematically analyzed to a greater
extent than any of the others mentioned above and seems theo-
retically more pleasing. All of the notations appear to be
formally equivalent but this fact has not been provén; it is
not difficult, however, to map fDL grammars into plex grammars
and plex grammars into web grammars.

The main limitations of Feder's description scheme are the
awkwardness of the connection point lists a;d the difficulty
of specifying relations other than cdncatenation. The virtue
of the PDL scheme is its simplicity but it too suffers from
several defects. The notation is edge-oriented and the dis-
cussion of this type of representation given in the last sec-
tion is applicable. Nodes can also be labelled in PDL but
not in a very clean manner. Relations are described through the
use of "blank" primitives which is adequate, at least, for
simple relations and graphs but can be ambiguous in more
general situations. The PDL scheme, as defined, used a
context-free grammar form which could generate non-graphs;
this problem can probably be resolved by allowing a straight-
forward form of context-sensitive rule. Both of the above
notations are linear strings and it may be argued that a
multi-dimensional notation would be more natural. Finally,

the authors of these schemes have concentrated primarily on

picture description and analysis, as opposed to a deeper theo-
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_retical study of their formalisms; more work is required in
this latter area;

Web grammars are the most recent of the notations. As
séecified, they are node-oriented with no labels on edges
which means thét only one relation can be specified; however,
it appears as if the rules and embeddings could be extended
to include labelled edges. The embedding part of each grammar
rule has been given in a mixture of set theory and English;

a formal language for describing these embeddings would be
useful. At this poiﬁt, it is not clear how convenient web
grammars will be for describing pictures; some picture and
graph classes seem to require grammars that ;re not as natural
as, for example, PDL grammars. The last two points are il-
lustrated by the examples in Figures 7 and 8.

None of the schemes provide facilities for expressing
relations, other than the C(X,Y), among higher level sub-
pictures. Attributes are not included in any geﬁeral way but
these could be obtained by associating an interpretation or
"semantic" rule with each grammar rule (e.g. Knuth, 1968).

The next section examines graph languages and grammars in the

context of picture analysis.

IV Parsing of Graphs and Pictures

The analysis of a set of pictures or graphs described
by a grammar G can be formulated as a parsing and graph-
matching process. The parse of a graph g occurs by attempting
to find a sentence x € L(G) such that 8y is isomorphic to g;

a picture o is parsed by looking for an x € L(G) such that
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@ € P . On a successful parse, the resulting x € L(G)

and thz sequence of grammar rﬁles that derive x comprise a
syntactic description and classification of the input graph
and/or picture. The rationale for this particular model 1is
that it offers a systematic method for picture analysis that
is amenable to mechanization.

The analysis of sentences in a linear string language
can be inefficient (even in the context-free case) when it
cannot be determined whether a substring u which matches the
right part of some rule can be reduced until substrings imme-
diately surrounding u are first examined. The same problem
exists in the graph case and is further complicated by the
multi-dimensional nature of the objects described; in addition,
a combinatorial explosion can occur when determining graph
isomorphisms (the entire n! different matchings of two n
node graphs must be tried in the worst case). Clearly, one
is interested in classifying sets of graphs and pictures in
terms of their underlying grammars and the complexity of the
"machines" required to parse or "accept'" them.

A second point concerning parsing techniques is the issue
of sequential versus parallel processing; There is evidence
of both types in animals. A reasonable conclusion from past
experiments in picture processing in machines and animals is
that recognition of all primitive objects in pictures and pro-

cessing within individual primitives can be done in parallel

but establishing relations among primitives and building higher
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level structures can best be accomplished in a primarily
sequential manner. The main advantage of parallel operations
is, of course, speed*; one of the chief disadvantages, even
at the primitive level, is that it is difficult to use con-
textual infofmation to assist in recognition. A parsing
approach that combines some of the best points of both types
of processing is to analyze seria11§ but attempt several
different parses (paths through the grammar) in pafallel.
Pfaltz (1970) argues for extending the parallel approach as
far as possible thfough a parse and relying on sequential
analysis only when the former '"fails". Future experiences on

.

parallel machines, hopefully, will resolve this controversy.

"who

A final consideration relates to the question of
does the dirty work"; i.e. is the classification of picture
primitives, the "lexical" analysis, to be done within the
parsing system or as a preprocessing phrase? The main argu-
ment for performing this recognition within the parsing is
that the grammar generally contains a wealth of contextual
information that can potentially be employed to simplify
this task; the past and current rationale for doing this
externally is that parallel operations or different grammars
or ad hoc procedures can often be used to perform the re-
cognition more efficiently.

The author (1970) has specified a general parsing algo-
rithm for pictures and graphs based on PDL descriptiomns,
built an experimental system for a subset of PDL, and applied

the latter to the analysis of digitized spark chamber photo-

graphs. The algorithm is analogous to a goal-oriented top- ,

*This assumes that a parallel machine is available.

21
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down linear string analyzer where a tabular or list represent-
ation of the grammar directs the parse; instezd of a single
one-dimensional string pecinter, we employ two graph or
-picture pointers-one for the tail node and one for the head
node. One of the aims of this work is to simplify the prim-
itive pattern classification tasks. During a parse, the
partially completed analysis in conjunction with the con-
catenation operators in the grammar rules tell the syétem
where to look and what to look for; the primitive pattern
recognition part of the system is directed to look for a
particular primitive satisfying given tail/head constraints.
Analysis was successful and efficient (despite the back-
tracking) in the spark chamber application but no systematic
study of other non-trivial classes of pictures or graphs

has been made.

Feder (1969) has applied plex grammars.in an experimental
system and analyzed pictures from classes of "houses," leaf
vein patterns, and bubble chamber trajectories. 1In his system,
a plex language representation of a picture o is first obtained
by analyzing a chain-encoding (Freeman, 1961) of o in terms of
a given set of chain pattern languages. The next stage then
parses the resulting plex according to a given plex grammar.
(The plex grammar notation was put in tabular form and extended
to include both parameters associated with terminal symbols
and relationship subroutines). A top-down sequential scheme
was used here also. Feder's experiments with the bubble chamber
photographs are impressive and further demonstrate the potential

benefits of syntax-directed picture processing; it would be
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interesting to see whether some of the recognition errors could
be reduced if the primitive classification were done within
the plex grammaf parse instead of during a preceding analysis
stage.

The web grammar group has recently published the results
of two experiments in picture and graph parsing (Pfaltz, 1970),
One dealt with graphs of two terminal series parallel»networks'
(TTSPN's) and the other analyzed simulated pictures of neural
networks. In each case, a specific parsing algorithm was
devised based on the web grammar of the picture class. The
parsing scheme for TTSPN's is bottom-up and takes advantage
of the properties of that particular class of graphs; to deter-
mine whether a nodé n 1is part of a reducible subweb, it is
only necessary to examine nodes in the immediate vicinity of
n. The neural network analysis was also bottom-up. Perhaps
the most interesting part of this experiment was the use of
parallel recognition for both primitives and (whenever possible)
the higher level syntactic components. While recognition of
each component of a right paft of a grammar rule can not be
done generally in parallel - Pfaltz illustrates this point
even in the string case (see also Rosenfeld, 1971) - , there
nevertheless still exists much parallelism that can be ex-
pldited.

The above works suggest several important problems that
are unsolved. Of most theoretical and practical significance
is the classification problem mentioned at the end of the

second paragraph of this section. Such a systematic character-
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ization of graphs and pictures should permit one to answer
related questions such as:

What is the context "surrounding'" a particular subgraph

or subpicture o that must be examined before it is known

that o can be reduced as a unit during a parse?,

What parts of the parse for a given grammar and/or language

can be done in parallel?, and

What are the machine time and space requirements to

analyze a given set of pictures or graphs?

Some generalization of the string language notions of "bounded-
context" or "LR(k)" (e.g. Feldman and Gries, 1968), would be
useful. It is perhaps significant to note that none of this
work employs any probability theory or statistics, probably

1

because of the difficulties in formulating and using "stochastic'’

grammars (Fu, 1970).

V Conclusions

" The development of systematic methods for describing and
analyzing structured pictures is still at an early stage. The
work on picture graphs, grammars, and parsing has demonstrated
that many interesting and non-trivial classes of pictures can
be naturally described in terms of graph languages, and that
syntax-directed analysis of pictures and graphs is feasible
and promising. The purpose of this paper has been to examine
past and current work in the field and to suggest problems

for future work.
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Where a Tree Hierarchy is Not Possible.
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(b) Mapping Plexes to Graphs

FIGURE 6

Plex Grammars (Feder,

1969)
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(a) Grammar for Series-Parallel Networks
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(b) Mapping Pictures to PDL to graphs

FIGURE 7%

PDL Grammars (Sshaw, 1969a)
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(a) Web Grammar for TTPSN's (context-sensitive)

(b) Example of a TTPSN

‘FIGURE 8

Web Grammars (Pfaltz and Rosenfeld,

1969)

\/\/\J

{(p,Al)I(p,A) an edge in the host web}

that

Initial ! t, & A 2
> >
Webs ’
" Grammar Rules:
(1) . = —> ; E =
A Al A2
U{(Az,q)l(A,q) an edge in the host web}
.A
(2) . = provided there exists unique p and g such
A <A and (A,q) in the host web;
E = {(p,A)|(p,A) an edge in the host web}
U{(A,q)[(A,q) an edge in the host web}
(3) . = . ; E same as in (2).
A a

(p,A)
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