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Summary

Background and Objectives: Autofluorescence spectroscopy shows promising results
for detection and staging of oral (pre-)malignancies. To improve staging reliability, we
developed and compared algorithms for lesion classification. Furthermore, we exami-
ned the potential for detecting invisible tissue alterations.

Study Design/Materials and Methods: Autofluorescence spectra were recorded at 6
excitation wavelengths from 172 benign, dysplastic and cancerous lesions and from 97
healthy volunteers. We applied Principal Components Analysis (PCA), Artificial Neural
Networks and red/green intensity ratios to separate benign from (pre-)malignant lesi-
ons, using 4 normalization techniques. To assess the potential for detecting invisible tis-
sue alterations, we compared PC scores of healthy mucosa and surroundings/contrala-
teral positions of lesions.

Results: The spectra showed large variations in shape and intensity within each lesion
group. Intensities and PC score distributions demonstrated large overlap between
benign and (pre-)malignant lesions. The Receiver-Operator Characteristic Areas Under
the Curve (ROC-AUCs) for distinguishing cancerous from healthy tissue were excellent
(0.90-0.97). However, the ROC-AUCs were too low for classification of benign vs. (pre-
)malignant mucosa for all methods (0.50-0.70). Some statistically significant differences
between surrounding/contralateral tissues of benign and healthy tissue and of (pre-
Jmalignant lesions were observed.

Conclusions: We could successfully separate healthy mucosa from cancers (ROC-AUC >
0.9). However, autofluorescence spectroscopy was not able to distinguish benign from
visible (pre-)malignant lesions using our methods (ROC-AUC<0.65). The observed signi-
ficant differences between healthy tissue and surroundings/contralateral positions of
lesions might be useful for invisible tissue alteration detection.

4.1 Introduction

Autofluorescence spectroscopy is a non-invasive tool for the detection of alterations in the struc-
tural and chemical composition of cells, which may indicate the presence of pathologic tissue [1-
4]. Autofluorescence of tissues is produced by several endogenous fluorophores. These include
fluorophores from tissue matrix molecules and intracellular molecules like collagen, elastin, keratin
and NADH. The presence of disease changes the concentration of these fluorophores as well as
the light scattering and absorption properties of the tissue, due to changes in amongst others
blood concentration, nuclear size distribution, epithelial thickness and collagen content. It is there-
fore expected that the presence of disease will be identifiably reflected in autofluorescence spectral
shape and intensity.

Early detection of pre-malignant lesions and malignant tumours may reduce patient morbidity
and mortality because treatment at a less invasive stage is more successful, and therefore is of
great clinical importance[5,6]. Unfortunately, (pre-)malignant lesions of the oral mucosa often go
by unnoticed. In high-risk groups, premalignant and malignant lesions are often diagnosed in an
advanced stage. Once the patient or dentist does observe a lesion, it is generally unclear whether
the lesion is benign or (pre-)malignant. Current clinical diagnosis procedure therefore includes a
biopsy. However, determining the optimal, i.e. most dysplastic, location for biopsy is difficult. This
leads to repeated biopsies and to the risk of underdiagnosis, which delays the necessary treatment.
Autofluorescence spectroscopy can be a useful tool for guiding the clinician to the most dysplastic
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location for biopsy.

Autofluorescence spectroscopy is capable of distinguishing (pre-)malignant lesions from healthy
mucosa in the oral cavity[7-12]. In a previous pilot study for the staging of oral leukoplakia per-
formed by our group we obtained a sensitivity of 86% and a specificity of 100% for distinguishing
abnormal from normal tissue. However, the distinction between lesions in general and healthy oral
mucosa 1s not relevant for the clinical question of staging visible lesions and finding the optimal
location for biopsy, since the presence of a lesion is already established by its being noticed.

Therefore, in this study we investigated the potential of autofluorescence spectroscopy for staging
oral lesions in a large patient population. Our primary goal was to separate between benign lesi-
ons on the one hand and dysplastic and malignant lesions on the other hand, since this is one of
the most relevant clinical question. For this classification, we applied 4 different normalization
approaches, including normalization by the spectrum recorded from the contralateral position of
a lesion in the same patient. This normalization was aimed at correcting for interindividual varia-
tions in spectral properties of the mucosa that are irrelevant for our purpose. However, we cannot
be certain that contralateral tissue in patients is normal. The influence of carcinogens like tobacco
and alcohol can cause long-term damage of the oral mucosa (“condemned mucosa”), which can
lead to “field cancerization”[13-16]. Furthermore, our pilot study showed that spectroscopic
changes occur not only at the center and border of lesions, but also in the surroundings, where no
abnormalities are visible[17]. Also, Fryen et al. found keratinization of the borders of tumours,
allowing imaging detection of even small tumours[18]. These findings suggest that the distinction
between healthy and pathologic tissue within a patient is not always well-defined[17]. Therefore,
we also applied 3 normalization methods that did not use the contralateral position spectrum.

Other studies concerning i viwo autofluorescence spectroscopy in the oral cavity have predomi-
nantly been aimed at distinguishing cancerous lesions from healthy tissue, or distinguishing lesions
of any type from healthy tissue [2,8,10,11,19,20]. To allow for a comparison of the results obtai-
ned using our methods with those achieved in the literature, we therefore addressed these ques-
tions as well.

Besides for lesion classification, autofluorescence of oral mucosa is also potentially useful for the
detection of still invisible tissue alterations. However, it is not possible to measure spectra of invisi-
ble lesions to test this hypothesis, since we clearly cannot know where these lesions are present. To
scan the complete oral cavity using point spectroscopy is, for practical reasons, not feasible.
Therefore, we used another approach to establish any spectroscopic evidence of lesion develop-
ment. For this purpose, we assume that the process of lesion transformation can extend to the
mucosa at other locations than the visible lesion. This assumption is again supported by our pilot
study, in which we observed alterations in the autofluorescence characteristics of tissue surroun-
ding lesions, even though the tissue looked healthy to the eye at the position of measurement[17].
We compared autofluorescence spectra of mucosa surrounding or contralateral to a lesion with
healthy oral mucosa spectra to test for any significant differences between different data subsets.

4.2 Materials and methods

Volunteer and patient population

Autofluorescence spectra were collected from 96 healthy volunteers with no clinically observable
lesions of the oral mucosa as described in our previous study, and from 155 patients with oral lesi-
ons after they had given their informed consent. The population included volunteers from the
Department of Oral and Maxillofacial Surgery of the University Hospital of Groningen, as well
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as patients who had been referred to the same department because of an oral lesion. This study
was approved by the Institutional Review Board of the University Hospital of Groningen.

Experiments

Before recording the spectra, volunteers were asked to complete a questionnaire concerning their
smoking and drinking habits, most recently consumed food and beverage and the use of any
medication. This was done to track the causes of possible outliers during data analysis. A visual
inspection of the oral cavity was performed by an experienced dental hygienist. In the volunteer
group, this was done to ensure that no oral lesions were present at the time of measurement. In
the patient group, the dental hygienist located and described the lesions to be measured. If pre-
sent, the volunteers and patients were asked to remove their dentures. All patients and volunteers
rinsed their mouth during one minute with a 0.9% saline solution in order to minimize the influ-
ence of consumed food and beverages.

The measurement set-up (Figure 2.1), as described in detail in Chapter 2, consisted of a Xe-
lamp with monochromator for illumination, a spectrograph and a custom-made set of 460 nm
longpass and shortpass filters[21]. Tissue excitation wavelengths were 365, 385, 405, 420, 435 and
450 nm (bandwidth < 15 nm Full Width Half Maximum). Using different filter sets for different
excitation wavelengths would have extended the emission range, but unfortunately for practical
reasons this was not possible. However, since the emission spectra of the important tissue fluoro-
phores are very broad, we expected to collect at least part of the relevant information[2,22]. The
measurement probe was disinfected using 2% chlorhexidine digluconate in ethanol and covered
with plastic film. The probe was placed in contact with the oral mucosa. The measurements were
performed in a completely darkened room to prevent stray light from entering the spectrograph.
In our patient group, we measured four positions for each lesion: the center of the lesion, the bor-
der, the surrounding tissue and the supposedly healthy tissue at the contralateral position. The
dental hygienist performed the measurements.

For each measured location and excitation wavelength, three sequential measurements of 1-
second integration time were recorded. This allowed us to remove occasional spectra containing
extremely high values for discrete pixels due to electronic noise. On each measurement day, a set
of calibration measurements was performed.

In our previous study, in which we investigated the autofluorescence properties of 13 anatomical
locations in the oral cavity, we concluded that oral mucosa can be divided into three categories
with different spectroscopic characteristics[21]. These comprise: 1) the dorsal side of the tongue,
2) the vermilion border of the lip and 3) a group of all other anatomical locations, which are
interchangeable with regard to their autofluorescence characteristics. In this study, we performed
all our data analysis within these 3 location groups separately.

Data processing

Data preprocessing was performed as described in our previous study[21]. Preprocessed spectra
consisted of 199 data points, covering the 467-867 nm range. For our first approach, autofluores-
cence spectra measured at the center of lesions were divided by spectra recorded from the contra-
lateral position. Since the high wavelength region of spectra shows very low fluorescence intensity,
dividing this part results in extremely noisy data. For this reason, only the 467-801 nm part of the
divided spectra (=160 data points) was considered.
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Principal components scores multicomparison

Principal components analysis was applied to spectra recorded from the center and border positi-
ons of lesions, separately as well as combined. We compared the values of the first 4 principal
component (PC) scores for spectra of lesions, divided into benign, dysplastic and malignant lesi-
ons. This was done to get an impression of the spectral differences between different lesion types.
We performed the non-parametric Kruskal-Wallis procedure for each excitation wavelength sepa-
rately and for 4 different normalization types. These comprised normalization by the peak intensi-
ty, by the area under the spectrum, by the spectrum recorded from the contralateral position in
the same patient and non-normalization. The Kruskal-Wallis procedure was chosen because of its
reduced sensitivity to outliers and unbalanced data (=data with unequal sample sizes for the diffe-
rent groups). This reduced sensitivity occurs because the procedure performs an analysis of vari-
ance (ANOVA) on the ranks of the PC scores, rather than on their numeric values, like in stan-
dard ANOVA. We performed a multicomparison on the Kruskal-Wallis results to test for any sig-
nificant differences of mean PC scores between different pairs of lesion types (benign, dysplastic,
malignant). If the mean PC scores are not significantly different for different lesion types, classifi-
cation by means of the information contained in the PC scores is impossible. However, please
note that the existence of statistically significant differences alone does not imply separability of
the data classes, since separability also requires small standard deviations in comparison to the dif-
ference between the mean values.

Classification of (pre-)malignant versus benign lesions

For the purpose of classification of benign v. (pre-)malignant lesions, we compared autofluores-
cence spectra recorded from the center of (pre-)malignant lesions on the one hand, with center
measurements of benign lesions on the other hand. This was done without normalization, with
normalization by the peak intensity, by the area under the spectrum and by the spectrum recorded
at the contralateral position in the same patient.

For each normalization method, classification was attempted with Principal Components
Analysis (PCA), Artificial Neural Networks (ANNs) and emission wavelength ratios as have been
applied in the literature[4,8,9,12,19,23-29]. All methods were performed on the basis of leave-
one-out classification, to ensure that no overly positive results were obtained. We investigated all
six excitation wavelengths. PCA classification was applied both with the first 10 and the first 4
principal components (PCs). We used the combination of PCA and linear classifier, which for tra-
ditional reasons we call the Karhunen-Loeve Linear Classifier (KLLC). This classifier is also
known as the regularized linear classifier assuming normal distributions. Before applying other
classifiers, first the PCA was performed. Then we applied the Quadratic Classifier assuming nor-
mal distributions (QNC) to the retrieved first 4 or 10 principal components. ANN was applied
using 1 hidden layer consisting of 10 neurons. For the red/green ratio techniques, we searched for
ratios in the literature that could be applied to our emission wavelength range. We compared
635/(467-489) nm, 640/500 nm, 680/600 nm and 630/560 nm ratios[9,25,27,28]. To make the
methods more robust, we integrated spectral areas of approximately 4 nm width around the selec-
ted emission wavelengths. We calculated Receiver Operator Characteristics (ROC) curve areas
using Leave-One-Out (LOO) classification for all methods. In these curves, sensitivities for detecti-
on of lesions are plotted against corresponding values of (1-specificity). The more accurately a
method separates the data classes, the closer the corresponding ROC-AUC (ROC - Area Under
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the Curve) approximates 1. We compared the areas under different ROC curves. This allowed us
to make a fair judgment of the effectiveness of different methods without being constricted to sin-
gle values of sensitivity and specificity, which largely depend on the threshold value chosen[30].
Some of the calculations were repeated for the combined set of center and border measurements
to investigate whether this affected the results.

Distinguishing lesions_from healthy mucosa

We calculated ROC-curves for distinguishing 1) cancerous lesions or 2) the complete set of lesi-
ons on the one hand from healthy tissue on the other hand. We used the four red/green ratio
techniques as described above and the KLLC on the first 10 PC scores. We compared the center
measurements of all lesions to the healthy oral mucosa data set, leaving out spectra recorded from
the vermilion border of the lip and the dorsal side of the tongue for both groups. We evaluated
areas under the ROC curve using LOO procedures for all excitation wavelengths. We repeated
the calculations for border measurements and for the combined center and border measurements
of lesions to see whether extending the dataset could improve the results.

Detection of mnvisible tissue alterations

For assessing the possibility of early lesion detection, we performed a multicomparison on the
PC scores of spectra recorded from 3 groups of mucosa: healthy oral mucosa, tissue surrounding
a lesion and tissue contralateral to a lesion. Spectra were normalized by the area under the spec-
trum. We compared the means of the first 4 PC scores for each of the 6 excitation wavelength
separately to test for any statistically significant differences (24 comparisons). This was done for 6
different data subsets. Again, we used the non-parametric Kruskal-Wallis procedure and perfor-
med multicomparisons on the outcomes. Based on the outcomes of these tests, we also calculated
ROC-AUC: for classification using the KLLC on the first 10 PC scores.

4.3 Results

General description of the data

Our volunteer population has been described before and consisted of 97 healthy volunteers (mean
age 50, range 18-85, standard deviation 16 years)[21]. Our patient population consisted of 155
persons (mean age 57, range 20-91, standard deviation 13 years). Some patients suffered from
multiple lesions, so that a total of 172 unique lesions could be measured. Several lesions were
measured for 2 or 3 times at different occasions for comparison, leading to a total of 199 lesion
measurements sessions. Lesion characteristics are described in Table 4.1.
Of the 199 measurement sessions on lesions, 23 were left out of the analysis because they could
not be staged satisfyingly, could not be located clinically or had already been receiving therapy.
These sessions were saved as additional test data.
In 13 of the remaining 176 measurement sessions, the contralateral tissue of the lesions could not
be measured for various reasons. For example, the lesion was present bilaterally, the lesion was
large and centrally located or the patient had abnormalities at the contralateral position that did
not allow classification of the tissue as healthy. For our staging algorithm development approach
using divided spectra, we substituted the spectra measured at the surrounding tissue for these cases
if possible. For 2 of the 176 valid measurement sessions, the ratio spectra were not calculated at
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Lesion type

Number of lesions
(number of measurement
sessions)

Included in the
analysis, location
group 3 (# sessions)

Suspicious lesions,
included in the

analysis, location group 3
(# sessions)

Squamous cell
carcinoma

Malignant: 19 (20)

Malignant: 16 (16)

Malignant: 16 (16)

Adenocarcinoma

Malignant: 1 (1)

Malignant: 1 (1)

Malignant: 0 (0)

Erythroplakia

Dysplastic: 2 (2)

Dysplastic: 2 (2)

Dysplastic: 2 (2)

Leukoplakia

Dysplastic: 13 (17)
Benign: 50 (56)

Dysplastic: 9 (13)
Benign: 45 (51)

Dysplastic: 9 (13)
Benign: 45 (51)

Erosive leukoplakia

Dysplastic: 1 (1)

Dysplastic: 1 (1)

Dysplastic: 1 (1)

Benign: 1 (1) Benign: 1 (1) Benign: 1 (1)
Actinic keratosis | Dysplastic: 1 (1) Dysplastic: 0 (0) Dysplastic: 0 (0)
Benign: 5 (7) Benign: 0 (0) Benign: 0 (0)

Oral lichen planus

Benign: 35 (39)

Benign: 33 (37)

Benign: 32 (36)

Candidiasis

Benign: 12 (15)

Benign: 10 (13)

Benign: 10 (13)

Dysplastic: 17 (21)
Benign: 132 (156)
Unknown: 1 (1)

Dysplastic: 12 (16)
Benign: 106 (120)

(Nonspecific) ulcus |Benign: 9 (10) Benign: 7 (8) Benign: 6 (7)
Lymphangioma Benign: 1 (1) Benign: 1 (1) Benign: 0 (0)
Fibroma Benign: 4 (4) Benign: 3 (3) Benign: 0 (0)
Aphtous lesion Benign: 1 (1) Benign: 1 (1) Benign: 0 (0)
Mucosa morsicatio | Benign: 1 (1) Benign: 0 (0) Benign: 0 (0)
Actinomycosis Benign: 1 (1) Benign: 1 (1) Benign: 1 (1)
Scar tissue Benign: 2 (2) Benign: 1 (1) Benign: 1 (1)
After CO2 laser Benign: 3 (9) Benign: 0 (0) Benign: 0 (0)
treatment

Lingua geographica | Benign: 1 (1) Benign: 1 (1) Benign: 0 (0)
Hyperemic mucosa |Benign: 1 (1) Benign: 1 (1) Benign: 0 (0)
Smoker’s palate Benign: 1 (1) Benign: 1 (1) Benign: 0 (0)
Heavy deposit of |Benign: 1 (1) Benign: 0 (0) Benign: 0 (0)
the tongue

Mucocéle Benign: 2 (2) Benign: 0 (0) Benign: 0 (0)
Paresthesia of Benign: 1 (2) Benign: 0 (0) Benign: 0 (0)
the tongue

Rest lesion muco- |Unknown: 1 (1) Unknown: 0 (0) Benign: 0 (0)
epidermoi

carcinoma

Total Malignant: 20 (21) Malignant: 17(17) Malignant: 16 (16)

Dysplastic: 12 (16)
Benign: 96 (110)

Table 4.1. Summary of lesions included in the dataset. All dysplasias and cancerous lesions were histologically proven.
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all because surrounding and contralateral tissue spectra both could not be measured, leaving 176
sessions for approach A and 174 sessions for approach B.

The clinical staging of the lesions was based on clinical appearance in the case of obviously
benign and therefore unbiopsied lesions, and on histology reports in the case of suspicious lesions.
Of the 176 measurement sessions that were included in the data analysis, 20 were classified as
squamous cell carcinomas, 1 turned out to be an adenocarcinoma and 21 were dysplastic lesions
(17 leukoplakia, 2 erythroplakia, 1 erosive leukoplakia and 1 actinic keratosis). The remaining 134
lesions were classified as benign lesions.

We performed our analysis in location group 3 only (= all anatomical locations besides the dorsal
side of the tongue and the vermilion border of the lip), because the amount of dysplastic and
malignant lesions in the other categories was too low to allow for a reliable analysis. The measure-
ment sessions of lesions at the vermilion border of the lip and the dorsal side of the tongue were
saved as additional test data for the algorithms.

Autofluorescence spectra characteristics

The median fluorescence spectra for center and border measurements at healthy tissue, benign
lesions, dysplastic lesions and malignant tumours at excitation wavelength 405 nm are shown in
Figure 4.1. We chose to plot median instead of average spectra, since averaged spectra are more
sensitive to outliers and can therefore be biased. It is clear from Figure 4.1a that lesions produce
less autofluorescence than healthy tissue. However, note that the spectra recorded from dysplastic
lesions are in between those recorded from benign lesions and from healthy tissue. The normali-
zed plot (Figure 4.1b) shows that lesions and especially malignant tumours have relatively more
fluorescence in the red spectral range. Again, note the mixing of benign and dysplastic lesions.
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Figure 4.1a. Median autofluorescence spectra of lesions of the oral mucosa of different types, excitation wavelength 405 nm.

b. Normalized spectra.

Figure 4.2 shows the 405 nm excitation median fluorescence spectra of center and border mea-
surements of benign, dysplastic and malignant lesions, normalized by spectra measured at the
contralateral position in the same patients. Dysplastic and benign lesions again show similar
median spectra. In Figure 4.3, we have plotted example spectra recorded from a benign, a dys-
plastic and a malignant lesion to illustrate that there is no general trend of fluorescence characte-
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ristics in relation to lesion type. All lesion types can show porphyrin-like peaks, not only malignant
or dysplastic lesions. This peak is of the same shape as the one frequently observed in our healthy
volunteer study, especially at the dorsal side of the tongue [21]. For all three lesion types, in most
cases the center of a lesion shows less fluorescence intensity than the contralateral tissue recorded
in the same patient. However, the percentage of cases in which the center of a lesion produces less
total intensity than the contralateral tissue is only 67% for benign, 55% for dysplastic and 72% for
cancerous lesions, showing that this criterion is not useful for classification.
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Statistical results
Principal Components Scores Multicomparison

Plots of the first 4 PCs for all center and border of lesions spectra after normalization by the
area under the spectra are shown in Figure 4.4 (405 nm excitation). PC1 appears to correspond to
the bulk autofluorescence, PC2 contains the porphyrin-like peak around 638 nm, while PC3 and
PC4 contain a mixture of blood absorption and porphyrin-like fluorescence. The first 4 principal
components accounted for >99% of the variance in the data.

We observed that the differences between tumours and benign lesions, as well as between
tumours and dysplastic lesions, were more prominent than those between dysplastic and benign
lesions (i.e., a higher percentage of the 24 PC scores comparisons yielded significant differences,
Table 4.2). The results look similar for all excitation wavelengths considered, however, 365 nm
excitation tends to yield somewhat more differences between lesion groups. The normalization
method that exposed the most differences was normalization by the area under the curve.

The diversity in the group of benign lesions can possibly reduce the amount of significant diffe-
rences that are found between benign and (pre-)malignant lesions by creating more spectral varia-
tion. We therefore selected only those benign lesions that were clinically suspicious for dysplasia
and/or malignancy (leukoplakia, lichen planus, candida, ulcus, erythroplakia and actinic kerato-
sis), and applied PCA for the classification of dysplastic and malignant versus benign lesions
again. This approach did not improve the results. The results must be interpreted carefully, becau-
se reduction of the dataset on itself makes the appearance of statistically significant difference less
probable.

Principal component loads

500 550 600 €50 700 750 800 850
Emission wavelength (nm)

Figure 4.4. First four principal components loadings of spectra of center and border measurements of lesions that were included
in the analysis, excitation wavelength 405 nm. Loadings are normalized to the area under the curve and centered around zero.
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Malignant v. Malignant v. Dysplastic v. Mean for all 3
benign dysplastic benign classifications
Non-normalized 38 38 8 28
Normalized by the 29 33 8 23
peak intensity
Normalized by the 67 54 4 42
area under the
spectrum
Normalized by the 13 0 0 4
spectrum recorded
at the contralateral
position

Table 4.2. Percentage of significantly different principal components scores between benign, dysplastic and malignant lesions
for different normalization methods. For each comparison between two lesion types, 24 pairs of PC scores were available
(first 4 PC scores, 6 excitation wavelengths). Comparisons were performed using the Kruskal-Wallis procedure. Benign and
malignant lesions show the most differences, hardly any differences exist between benign and dysplastic lesions.

Classification of (pre-)malignant versus benign lesions

In general, an area under the ROC-curve close to 0.5 indicates that the method used has failed
and is as effective as random classification. An area >0.9 indicates excellent classification, corres-
ponding to excellent separability of the two classes. The results for ANN, PCA, KLLC and QNG
for distinguishing (pre-)malignant from benign lesions all turned out to be bad (area<0.65).
Including the spectra recorded at the borders of lesions did not improve the results, nor did the
use of border spectra exclusively. Selecting only those benign lesions that were clinically suspicious
for dysplasia or SCC, as described before, still gave areas under the ROC <0.65. Distinguishing
between benign and dysplastic lesions was not successful either (areas < 0.65). We applied the
KLLC classifier on the first 10 PCs for spectra that had been divided by spectra recorded from the
contralateral position. This resulted in ROC curve areas of approximately 0.5 for all excitation
wavelengths, meaning that classification of dysplastic vs. benign lesions failed. For the distinction
between benign and malignant lesions, 1.e. excluding dysplastic lesions from the analysis, areas
were higher (0.59-0.75). This implies, in agreement with the PC scores multicomparison results,
that the difficulties are caused by the problems in distinguishing dysplastic from benign lesions and
not so much by distinguishing benign from cancerous lesions. In fact, the distinction between dys-
plastic and malignant lesions could more successfully be made than that between benign and dys-
plastic lesions (areas under the ROC curve 0.67-0.82 for KLLC on the first 10 PCs, depending on
the excitation wavelength).
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Distinguishing lesions_from healthy tissue

The results for distinguishing all lesions or cancerous lesions only from healthy oral tissue are
shown in Tables 4.3a-b. Classification was most successful for distinguishing cancerous from healt-
hy tissue (ROC-AUC: mean 0.93 + 0.03 for all excitation wavelengths and methods, except
ANN). The maximum value of ROC-AUC was 0.97, occurring for ratio 1, 2 and the combined
ratios for several excitation wavelengths between 405 and 435 nm. The ROC-AUC for the separa-
tion of combined lesions (suspicious benign, dysplastic and malignant) from healthy oral mucosa
was lower than for the separation of cancerous lesions from healthy mucosa, but still was high
(mean value + standard deviation ROC-AUC: 0.81 £ 0.03 for all excitation wavelengths and
methods, except ANN). The maximum ROC-AUC was 0.88 at 365 nm excitation using KLLC
on PC scores. The addition of measurements recorded from the border of the lesion did not
improve the results, nor did the use of border spectra exclusively. This suggests that autofluores-
cence characteristics recorded from the center of lesions contain the most information about tis-
sue type. This contradicts the results of our pilot study, in which the border of lesions seemed to
contain the most information. However, the present study is based on a larger patient population
and therefore more reliable.
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10 PCs | Ratio 1 Ratio 2 Ratio 3 Ratio 4 | Ratio 1+4| Ratios ANN on
combined 10 PCs
365nm | 0.92 0.93 0.93 0.82 0.88 0.88 0.88 0.58
385 nm | 0.92 0.94 0.95 0.90 0.92 0.92 0.95 0.44
405 nm | 0.92 0.96 0.97 0.95 0.95 0.95 0.97 0.50
420 nm | 0.92 0.97 0.96 0.94 0.91 0.93 0.96 0.47
435nm | 0.93 0.95 0.97 0.93 0.93 0.93 0.97 0.60
450 nm | 0.94 0.95 0.91 0.89 0.89 0.91 0.91 0.68
Squamous cell carcinoma versus healthy oral mucosa, center measurements.
10 PCs | Ratio 1 Ratio 2 Ratio 3 Ratio 4 | Ratio 1+4| Ratios ANN on
combined 10 PCs
365nm | 0.88 0.84 0.78 0.73 0.80 0.80 0.80 0.51
385nm | 0.85 0.83 0.82 0.77 0.82 0.83 0.82 0.50
405nm | 0.83 0.81 0.82 0.79 0.81 0.81 0.81 0.50
420 nm | 0.83 0.81 0.81 0.79 0.81 0.81 0.81 0.51
435nm | 0.84 0.81 0.81 0.79 0.81 0.82 0.82 0.49
450 nm | 0.84 0.83 0.76 0.77 0.81 0.82 0.81 0.51

Center measurements of tumours, dysplastic and suspicious benign lesions versus healthy oral mucosa.

Tuble 4.3. Areas under the ROC curve. All spectra were recorded within location group 3. Areas were calculated

using leave-one-out analysis for the Karhunen-Loeve Linear Classifier. Ratio 1: 680/600 nm, ratio 2: 635/(455-
490) nm, ratio 3: 630/560 nm, ratio 4: 500/640 nm. Artificial Neural Network using 10 hidden newrons. Only

“real” lesions located in anatomical location group 3 were included. We applied normalization by the area under the

Spectrum.
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Detection of invisible tissue alterations

Multicomparison of the first 4 PC scores for the surroundings and contralateral sites of benign,
dysplastic and malignant lesions showed some significant differences in mean values for different
PC scores. These results are not shown in a table. For benign versus malignant lesions, 54% of the
24 PG scores (6 excitation wavelengths, 4 PCs) were significantly different. For dysplastic versus
malignant lesions, this number was reduced to 25%, and for benign versus dysplastic lesions only
4% of PC scores were significantly different. A multicomparison of spectra with randomly atta-
ched labels of benign, dysplastic and malignant returned no statistically significant differences at
all. This makes us confident that the calculated significant differences for PC scores between diffe-
rent lesion types are not a statistical artifact but truly are the consequence of different spectrosco-
pic properties. However, the causes of these differences remain speculative because biopsy proven
histologic data were not available from these apparently healthy locations.

To further investigate the differences, we repeated the calculations for spectra recorded either at
the surroundings of lesions or at the contralateral position, separately. For surrounding positions,
no differences for the three lesion types were observed at all. For the contralateral measurements,
we found 46% differences between benign and malignant and 29% between dysplastic and malig-
nant lesions. This suggests that, to our surprise, contralateral tissue is more influenced by lesion
type than surrounding tissue is. Possibly, the observed differences in PC scores are caused by field
cancerization or tobacco smoking habits, which are correlated to lesion type. The tissue surroun-
ding lesions might demonstrate some lesion-related effects, like slight inflammation, that oversha-
dow the effects of field cancerization and smoking habits. This might explain why benign and
(pre-)malignant lesions show more differences within the contralateral than within the surrounding
data subset. A PC scores multicomparison between surroundings and contralateral spectra of lesi-
ons (all types grouped or separately), showed no significant differences between these locations.
However, this still does not rule out the possibility of lesion-related effects overshadowing the diffe-
rences caused by field cancerization. The standard deviations of PC scores within lesion type
groups can be larger than a possible difference between surroundings and contralateral tissues. For
our sample size, this would make it improbable to detect significant differences even if they exist
in the general population.

To further investigate the underlying causes for the observed significant differences, we expanded
the PC scores analysis dataset with spectra from the healthy volunteer reference database. Spectra
recorded from the dorsal side of tongue and at the vermilion border of the lip again were exclu-
ded. Please note that the expansion of the dataset leads to the extraction of different principal
components loadings. These are now mainly determined by the - much larger - set of healthy
mucosa spectra.

The results are summarized in Table 4.4. The combination of healthy reference database spectra
with spectra recorded from the surroundings and contralateral position of lesions, yields more sig-
nificant differences in PC scores between the subsets. This is probably caused by the larger
amount of data available, which makes the appearance of any differences that exist in the general
population more probable. Again, differences are more prominent in the subset containing contra-
lateral measurements than in the subset with spectra recorded from the surroundings of lesions.
This might be explained by the spectral effects of field cancerization or smoking habits as explai-
ned before.
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Data subset used for Healthy mucosa + Healthy mucosa + Healthy mucosa +
PCA analysis PP lesion surroundings | contralateral positions lesion surroundings +
Pair of tissue contralateral positions
types compared @l

Benign v. malignant 0 29 54
Dysplastic v. malignant 0 17 21

Benign v. dysplastic 4 0 8

Healthy v. benign 33 21 50

Healthy v. dysplastic 8 0 25

Healthy v. malignant 42 50 58

Table 4.4. Percentage of significantly different principal components scores between pairs of different lesion types, data
including healthy volunteer measurements. For each comparison between two lesion types, 24 pairs of PC scores were
available (first 4 PC scores, 6 excitation wavelengths). Comparisons were performed using the Kruskal-Wallis procedure.
We applied normalization by the area under the spectrum.

After obtaining these results, we were curious about the possibility to classify lesions by means of
autofluorescence spectra recorded at the surroundings and contralateral position. We therefore
applied the linear classifier using 10 PCs to separate (pre-)malignant from benign lesions. Areas
under the ROC curves were between 0.50-0.72 for the combined set, meaning that classification
was useless. Distinguishing malignant from benign lesions gave comparable results. The distinction
between malignant and dysplastic lesions could more successfully be made (surroundings: 0.52-
0.67; contralateral: 0.67-0.85; combined: 0.65-0.75). Again, the contralateral dataset performed
best. We added the healthy oral mucosa reference database and attempted classification of benign
and healthy oral mucosa versus dysplastic and malignant mucosa. ROC-AUCs were 0.62-0.82,
best results were obtained for the contralateral dataset. Distinguishing all lesions from healthy
mucosa by means of their surrounding and/or contralaterally recorded spectra resulted in ROC-
AUCs of 0.59-0.73. We can conclude that classification of lesion type by means of surrounding
and contralateral tissue spectra was not possible. However, the results imply that some information
on tissue type is contained at the clinically healthy contralateral tissue.

4.4 Discussion

We were well able to distinguish lesions in general from healthy tissue (maximum ROC-AUC =
0.88 using KLLC and PCA) and achieved excellent results for distinguishing cancerous tumours
from healthy tissue (maximum ROC-AUC = 0.97 using ratios). The results were not influenced
noticeably by the choice of excitation wavelength. Concatenation of spectra recorded at different
excitation wavelengths, as has been suggested in the literature, did not improve the results[10].
The best results were obtained when spectra were normalized by the area under the curve. Center
measurements contained the most relevant information. Normalization by the spectrum recorded
at the contralateral position revealed the fewest significant differences between lesion types. To our
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surprise, this contradicts the results found in our pilot study by Van Staveren et al.[17]

Our results for distinguishing lesions from healthy oral mucosa, as well as for distinguishing can-
cer from healthy mucosa, were comparable with results found in the literature. Majumder et al.
achieved 86% sensitivity, 63% specificity for distinguishing oral cancer from healthy mucosa, while
Wang et al. achieved a sensitivity of 81% and a specificity of 94% for the same problem[11,12].
Gillenwater et al. established a 94% sensitivity, 100% specificity for distinguishing abnormal from
normal oral mucosa, while Miiller et al. found a 96% sensitivity, 96% specificity for the same
question when using a combination of autofluorescence and diffuse reflectance measure-
ments[9,20].

Contrary to our success in distinguishing all lesions or cancerous lesions from healthy oral muco-
sa, the relevant clinical question could not be answered. We were not able to separate benign from
(pre-)malignant lesions using our methods (area under the ROC curve <0.65 for all methods). In
our opinion, this is due largely to the fact that the oral cavity is more complex than other organs,
in which autofluorescence spectroscopy for the staging of lesions has been applied more succes-
sfully using comparable excitation wavelengths[2,25,31-34]. The reasons for this complexity can
be as follows. In general, tumours as well as benign and dysplastic lesions can be of various
degrees of keratinization, hyperplasia and blood content. All these factors influence the shape and
intensity of autofluorescence spectra, and since they show large variance within each lesion cate-
gory, a mixing of categories by means of autofluorescence spectroscopy classification can easily
result. In the oral cavity, there could be more difficulties than in other organs, because the diffe-
rent oral tissue types may show different reactions to disease. However, we would need large
amounts of lesions for each anatomical location to test this hypothesis.

The mixing of different lesion types for our dataset can be observed in Figure 4.1, in which
median spectra from benign and dysplastic lesions are intertwined for normalized as well as for
non-normalized autofluorescence spectra.

In contrast with our findings, Wang et al. established a sensitivity of 81% and a specificity of
96% for distinguishing “premalignant and malignant” lesions from “benign” lesions in the oral
cavity by means of autofluorescence spectroscopy[35]. Spectra were recorded under 330 nm exci-
tation and classified using a partial least-squares and artificial neural network (PLS-ANN) classifi-
cation algorithm. The divergence of our mutual results can potentially be explained by the choice
of excitation wavelength, since a lower excitation wavelength may lead to excitation of different
fluorophores. However, we expect to collect at least part of the fluorescence from the important
tissue fluorophores as well, since they show broad absorption and emission spectra. The use of dif-
ferent multivariate analytic methods is probably not the cause for the divergence in results either,
since we applied many different methods, which did not improve the results. Also, the methods
used are quite similar in concept. We therefore think that the discrepancy in results is probably
caused by the different patient populations. All lesions measured by Wang et al. were located at
the oral buccal mucosa, and all were induced by areca quid chewing and smoking habits. Their
lesion set thus was much more homogeneous, which may facilitate the classification.

In contrast with our results as well, Heintzelman et al. achieved 90% sensitivity and 88% specifi-
city for distinguishing dysplastic and cancerous tissue from benign and healthy oral mucosa in a
training set, and 100% sensitivity, 98% specificity in their validation set using 3 excitation wave-
lengths[10]. These results cannot be compared to ours because a different classification was per-
formed. If the number of benign lesions is relatively low, effectively the more successful
lesion/healthy classification has been made. The results for the training set for this question are
comparable to ours. Sensitivity and specificity for the validation set are higher than we found,
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which might be explained by the data distribution (277 normal sites, 2 dysplastic and 2 cancerous
sites) or the combination of excitation wavelengths used.

Diagnostic algorithms based on the presence of a porphyrin-like peak around the 638 nm emis-
sion wavelength have been applied successfully in the literature [9,36]. It seems generally accepted
that this peak is caused by endogenous porphyrin production. This may be either by cells of the
body, or by microorganisms. In our previous study, we have shown that rubbing the tongue could
diminish the height of the porphyrin-like peak by 30-40%, suggesting that at least part of the por-
phyrins are located outside of the tissue. We have not tried to diminish porphyrin-like peaks by
rubbing lesions because of practical drawbacks.

In our study we saw porphyrin-like peaks appearing in benign lesions (32%), dysplastic lesions
(19%), malignant lesions (73%) and even occasionally in healthy oral mucosa [21]. Therefore,
ratio 2 (=635/(455-490) nm) was not successful in distinguishing benign lesions from dysplastic
and malignant lesions in our patient population. The high occurrence rate of 638 nm fluorescen-
ce of tumours in combination with the reduced total fluorescence intensity explain why the less
relevant distinction between malignant and healthy tissue could successfully be made using ratio 2.

We observed statistically significant differences between PC scores of surrounding and contrala-
teral mucosa of benign lesions on the one hand, and of dysplastic and malignant lesions on the
other hand. This is surprising, because the differences between center and border measurements
of lesions of both groups were not even pronounced enough to allow for a reliable classification.
However, we must remember that statistically significant differences between means of groups do
not imply separability of the classes. Furthermore, it is possible that the differences found for sur-
rounding and contralateral tissues are not a result of an invisible effect of the lesion itself, but
merely a symptom of field cancerization. In fact, this is very probable when considering the fact
that contralateral tissue showed more significant differences between benign, dysplastic and malig-
nant lesions than surrounding tissue did. However, all conclusions remain speculative because bio-
psy proven histologic data of the surroundings and contralateral positions were not available.
Applying autofluorescence imaging may expand our knowledge of this subject, and may be useful
—1if not for lesion staging, then still for lesion detection. This is especially helpful for follow-up
inspection in patients at high risk for developing oral cancer.

To potentially improve our diagnostic accuracy for lesion staging, we will include diffuse reflec-
tance spectra in our future analysis. These spectra are sensitive to scattering and absorption pro-
perties of the tissue, and therefore indirectly to the degree of keratinization and the amount of
blood, respectively. Incorporating reflectance spectra into the classification algorithms may reduce
the influence of variations in blood content and keratinization and thus the amount of informati-
on that is non-specific for malignant transformation. Performance can possibly be improved by
including other optical diagnostical methods.
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