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ABSTRACT Based on previous experiments in nude mice,
showing that fluoresceinated monoclonal antibodies against
carcinoembryonic antigen localized specifically in human car-
cinoma xenografts and could be detected by laser-induced
fluorescence, we performed a feasibility study to determine
whether this immunophotodiagnosis method could be applied
in the clinic. Six patients, with known primary colorectal
carcinoma, received an i.v. injection of 4.5 or 9 mg of mouse—
human chimeric anti-carcinoembryonic antigen monoclonal
antibody coupled with 0.10-0.28 mg of fluorescein (molar ratio
1/10 to 1/14). The monoclonal antibody was also labeled with
0.2-0.4 mCi of I (1 Ci = 37 GBq). Photodetection of the
tumor was done ex vivo on surgically resected tissues for the six
patients and ir vivo by fluorescence rectosigmoidoscopy for the
sixth patient. Upon laser irradiation, clearly detectable heter-
ogeneous green fluorescence from the dye-antibody conjugate
was visually observed on all six tumors; almost no such
fluorescence was detectable on normal mucosa. The yellowish
tissue autofluorescence, which was emitted from both tumor
and normal mucosa, could be subtracted by real-time image
processing. Radioactivity measurements confirmed the speci-
ficity of tumor localization by the conjugate; tissue concentra-
tions of up to 0.059% injected dose per g of tumor and 10 times
less (0.006 %) per g of normal mucosa were found. The overall
results demonstrate the feasibility of tumor immunophotodi-
agnosis at the clinical level.

Despite major progress in understanding the process of
malignant transformation and the technical improvement in
conventional cancer treatments—such as surgery, radiother-
apy, and chemotherapy—the average survival time of pa-
tients with the most common types of cancer has not signif-
icantly changed over the last decades.

One way to improve the prognosis of cancer patients is to
detect and destroy small tumors earlier. After systemic
injection of certain dyes, laser-induced fluorescence endos-
copy was shown to be helpful for the photodiagnosis of early
bronchial carcinoma (1-5). Such a diagnostic procedure,
although limited to accessible tumors (directly or endoscop-
ically), can be applied to many tumors, including carcinomas
of the respiratory, gastrointestinal, and urogenital systems as
well as ocular and skin cancers (3).

A major limitation of tumor photodiagnosis and therapy,
however, is the lack of selectivity for cancerous tissues of the
presently available dyes. To overcome this problem, cou-
pling the dyes to antibodies directed against tumor-associated
antigens has been proposed. Dyes, such as porphyrins or
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chlorins, have been coupled to monoclonal antibodies
(mAbs), but these conjugates were studied primarily in vitro
(6-8), and the few experimental immunophototherapy stud-
ies did not yield highly significant results (9). The obvious
advantage of using mAbs as vectors for tumor localization of
dyes is the ability of a mAb to bind specifically to an antigen
that is more abundant in tumor than in normal tissue.
Furthermore, this technique allows selection of the dye on
the basis of its photophysical and spectral properties, inde-
pendently of its weak tumor-localizing properties.

We chose human-mouse chimeric mAb directed against
carcinoembryonic antigen (CEA) (10) because anti-CEA an-
tibodies have given the best experimental and clinical results
for colorectal carcinoma localization (11, 12) and chimeric
mAbs were less immunogenic in patients than their murine
counterpart (13). We selected fluorescein as the dye, primar-
ily for its favorable photophysical properties, as shown in the
innumerable in vitro applications of mAb—fluorescein conju-
gates and secondly because it can be injected in large doses
into patients without side effects (14).

We have previously shown that anti-CEA mAb-fluores-
cein conjugates injected i.v. in nude mice bearing human
colon carcinoma xenografts allow clear immunophotodetec-
tion of these tumors (15). The purpose of the present pilot
clinical trial was to determine whether such type of tumor
immunophotodiagnosis is feasible in patients.

MATERIALS AND METHODS

mAb. The mouse-human chimeric anti-CEA mAb
(CGP44290) of human IgG4 k isotype used was derived from
one of our murine anti-CEA mAbs B7-25 (10, 16). This mAb
has a high affinity for CEA (2 x 10! M~1) and was shown by
immunoscintigraphy to localize well in carcinomas (17).

Preparation and Characterization of Conjugates. Five or 10
mg of chimeric anti-CEA mAb was labeled with 0.2 or 0.4
mCi of 12°I (1 Ci = 37 GBq) by the Iodo-Gen (Pierce) method
(12). Separately, 1 or 2 mg of the same chimeric mAb was
labeled with 0.2 or 0.4 mCi of 131,

Five milligrams of !25I-labeled chimeric mAb was coupled
to 0.2 mg of fluorescein isothyocyanate (isomer I; Sigma)
diluted in pure dimethylformamide, as described (15). The
conjugate was filtered through a Sephadex G200 column
(Pharmacia), in pyrogen-free 0.15 M NaCl, to remove free
fluorescein and any aggregated material. The fluorescein/
mAb ratio was determined (15), and the conjugate was
sterilized by filtration through a 0.22-um Millipore filter.

Abbreviations: CEA, carcinoembryonic antigen; mAb, monoclonal
antibody.
#To whom reprint requests should be addressed.
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Immunoreactivity of each conjugate preparation was de-
termined before injection and on a sample from the patient’s
serum (collected 2 hr after injection) by a direct binding assay
(15, 16) to an excess of purified CEA coupled to CNBr-
activated Sepharose (Pharmacia).

Patients and Antibody Perfusion. A series of six patients
with known primary carcinoma of the colon or rectum were
investigated. Each patient gave informed consent before
inclusion in the study. Table 1 shows the clinical features of
each patient and the amounts of antibody—fluorescein con-
jugates injected. Patients had their thyroids blocked by
Lugol’s 5% (vol/vol) iodine solution, and they received an
antihistaminic drug and prednisolone before slow (30 min)
i.v. injection of the antibody conjugate, as described (12).

Patients 2 to 6 received in the same perfusion 1 mg of the
same chimeric mAb not conjugated with fluorescein and
labeled with 0.2 mCi of 131.

Immunophotodetection of Tumors. Surgery was performed
on the first five patients 24 hr after injection. The resected
colon segment containing the tumor was analyzed ex vivo for
fluorescence, under homogeneous Argon ion laser excitation
light at 488 nm, with an intensity of 50 mW per cm? and a
200-um-core optical fiber. For the sixth patient, a fluores-
cence rectosigmoidoscopy was performed in vivo, 24 hr after
injection, followed by resection and ex vivo photodetection
24 hr later. The laser light was introduced by a quartz optical
fiber that passed through the biopsy channel of the endo-
scope. At the distal end, the light emitted from the fiber
passed through a special optical system for homogeneous
illumination (5); in that case light intensity was ~10 mW per
cm?,

In all patients, the fluorescence was first visualized through
a Kodak Wratten filter (no. 12), which eliminates the reflec-
tion of the 488-nm excitation light but not the tissue autoflu-
orescence. Color photographs (see Fig. 1) were taken through
the same filter, with Kodak film (Ektachrom, 200 ASA)
exposed for 15 sec (aperture of objective, F/5.6; laser exci-
tation light intensity, 10 mW per cm?).

Then, the fluorescence was analyzed by a specially de-
signed photodetection apparatus (5) allowing real-time image
processing and subtraction of most tissue autofluorescence,
as described (2, 5). The subtracted image, which is essentially
due to the mAb-flhorescein conjugate, was shown directly on
a video screen (see Fig. 2).

Differential Radioactivity Measurement. Samples from dif-
ferent parts of the resected tumor and from the dissected
normal bowel mucosa, serosa (remaining bowel wall after
removal of mucosa), and normal fat, as well as from blood
taken at surgery, were collected and weighed; the specific
radioactivity of %I and of 3!l was measured in a dual-
channel scintillation counter (16). Results were expressed as
percentages of the injected dose of radioactivity per g of
tissue (12, 16). The tumor-to-normal tissue ratios were cal-
culated by dividing the percentage of injected dose per g of
tumor by that of the different adjacent normal tissues.

Proc. Natl. Acad. Sci. USA 89 (1992)

The circulating plasma half-lives of the mAb—fluorescein
conjugates and of the unconjugated mAb were derived from
the specific radioactivity measured in serial blood samples
taken at 2, 6, and 24 hr after injection.

RESULTS

In Vitro Characterization of Antibody Conjugates. The
conjugate preparations gave a single protein peak after fil-
tration on Sephadex G200 with 0-3% of aggregates that were
discarded. The mAb-to-fluorescein molar ratio in the selected
immunoconjugate peak ranged from 1/10 to 1/14 (Table 1),
which was found to be optimal in previous studies in nude
mice (15).

Percentage of binding to insolubilized CEA of the conju-
gates before injection and that obtained from patient’ serum
2 hr after injection were always high, ranging from 75.3% to
93.2%.

Immunophotodetection of Colorectal Carcinomas. None of
the six patients injected with the immunoconjugate (Table 1)
showed any adverse effect during or after the injection.
Photodetection of tumors was performed ex vivo on surgi-
cally resected tissue for the first five patients and also in vivo
by fluorescence rectosigmoidoscopy for the sixth patient.

Just after surgery, the resected colon segment was opened
by a longitudinal incision and homogeneously irradiated with
a laser light at 488 nm. Visual examination through a cut-off
filter that eliminates the reflected excitation light showed a
heterogeneously distributed green fluorescence in different
parts of the tumor, which was not detectable on normal bowel
mucosa. Fig. 1 shows color photographs of the tumor and
adjacent normal tissue from patients 2, 3, and 6 illuminated by
normal light (Fig. 1 A, C, and E) and by the laser light (B, D,
and F). The selective and patchy green fluorescence of the
tumor is clearly visible on the photographs, but a yellowish
autofluorescence, observed on both tumor and normal bowel,
interferes with optimal detection of the green fluorescence.

After visual observation and color photographs, all re-
sected tumors and normal bowel segments were also ana-
lyzed by a photodetection apparatus allowing pixel-by-pixel
subtraction of tissue nonspecific autofluorescence from spe-
cific fluorescence due to the antibody—fluorescein conjugate
by real-time image processing (5). Fig. 2 illustrates this
technique on the resected tumor and normal bowel mucosa
from patient 3.

Patient 6 had her tumor directly examined by fluorescence
rectosigmoidoscopy 24 hr after injection. Fig. 3 shows the
video-screen image obtained during this in vivo immunopho-
todiagnosis procedure. The rectosigmoid carcinoma gave a
well-delineated fluorescence signal after computerized sub-
traction of autofluorescence.

125].Labeled mAb Conjugate and 3'I-Labeled mAb Concen-
tration in Tumor and Normal Tissues. To confirm the photo-
detection results, for all six patients the percentage of in-
jected dose of 125I-labeled mAb—fluorescein conjugate and
that of 13I-labeled unconjugated mAb simultaneously in-

Table 1. Clinical features and description of antibody—fluorescein conjugates for the six patients studied
Patient Duke Serum CEA, Fluorescein-to-mAb Injected mAb, Injected

No. Age Sex Primary tumor stage ug/liter* molar ratios mg fluorescein, mg

1 64 M Rectum C 2.7 14 4.5 0.14

2 60 F Rectum A 3.6 11 4.5 0.11

3 71 F Transverse colon B 2.5 11 4.5 0.11

4 65 F Rectum? C 2.6 10 4.5 0.10

5 71 M Rectum B 0.9 14 9.0 0.28

6 59 F Rectosigmoid B 2.6 14 9.0 0.28

*Serum CEA values were measured by enzyme immunoassay, giving normal values from 0 to 2.5 ug/liter (16).

fRecurrence of rectum adenocarcinoma.
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Fic. 1. Examples of laser-induced fluorescence, observed without subtraction of autofluorescence, in large-bowel carcinomas from patients
2,3, and 6, whoreceived an i.v. injection of chimeric anti-CEA mAb-fluorescein conjugate. (A, C, and E) Carcinoma from the rectum, transverse
colon, and rectosigmoid, respectively, illuminated with normal light. (B, D, and F) Corresponding tumors and normal tissue after homogeneous
laser excitation at 488 nm, photographed through a filter cutting only the exciting light. The green-dye fluorescence is heterogeneously distributed
in the tumor tissue and almost undetectable in normal bowel mucosa. Size of the three tumors ranged from 3 to 4.5 cm in the largest diameter.

jected in patients 2—-6 were determined by differential radio-
activity measurement of several fragments of the tumor and
of adjacent normal tissues, allowing comparison of the tumor-
localizing capacity of the mAb-fluorescein conjugate with
that of unconjugated mAb.

Fi1G. 2. Demonstration of immunophotodetection and subtrac-
tion of autofluorescence by real-time image processing (2, 5) for the
tumor from patient 3. (A) Schematic representation of tumor area
(Tu) and normal mucosa, separated in poorly illuminated (a) and
highly illuminated (B) regions. (B) Fluorescent image in the spectral
domain between 520 and 600 nm, detecting the fluorescein emission
and part of autofluorescence. (C) Fluorescent image in the spectral
domain between 600 and 700 nm, detecting autofluorescence. (D)
Computerized subtraction of image in C from image in B.

Table 2 presents the results of the radioactivity measure-
ments from different fragments of the tumors (mean values
and ranges) and from normal tissues and blood samples,
expressed as percentage of injected dose per g of tissue
(x10%. The radioactivity concentrations in the different
tumor fragments and in normal tissues from patient 4 are
further illustrated in Fig. 4. The heterogeneity of tumor
localization, determined by radioactivity measurement,
agrees with the patchy distribution of immunofluorescence
seen by immunophotodetection (Figs. 1 and 2).

Table 3 shows the ratios of radioactivity concentration
between tumor and normal tissues calculated for mAb-
fluorescein conjugates and unconjugated mAb. The results
indicate that mAb—fluorescein conjugates are almost as effi-
cient as unconjugated mAbs in terms of specificity of in vivo
tumor localization.

Analysis of Patient Serum Samples. The mean circulating
half-life of 13!I-labeled chimeric anti-CEA antibody noncon-
jugated with fluorescein was 52 hr (range, 46-63 hr); for

FiG.3. Fluorescence rectosigmoidoscopy done in patient 6, 24 hr
after i.v. injection of chimeric mAb—fluorescein conjugate. (A) Nor-
mal light endoscopic image of the rectosigmoid carcinoma. Note that
the broad white line extending to the right of the tumor is an artifact
from specular reflection. (B) Results from computerized subtraction
of autofluorescence show immunophotodetection of the tumor by the
same endoscope.
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Table 2. Concentration of 125I-labeled chimeric mAb—fluorescein conjugate and 13!I-unconjugated mAb in tumor, adjacent normal tissue,

and blood, as determined by radioactivity measurement

Concentration of 125I-labeled conjugated or unconjugated mAb, (mean % injected dose/g of tissue) x 103

Tumor* (range) Mucosa Serosa Fat Blood
mAb- mAb- mAb- mAb- mAb-
Patient fluorescein mADb fluorescein  mAb  fluorescein mAb  fluorescein mAb  fluorescein mAb
1 6.7 3.5-25.2) ND 0.9 ND ND ND 0.3 ND 4.6 ND
2 25.1 (20.3-40.1)  54.6 (41.5-84.3) 3.5 6.3 1.8 2.3 0.7 1.2 8.4 14.0
3 11.6 (8.9-17.1) 22.4 (15.3-34.6) 2.2 3.4 2.1 2.9 0.8 1.2 9.2 12.6
4 38.4 (17.5-59.8)  64.4 (30.5-95.8) 6.5 10.3 2.6 33 2.2 3.2 12.9 18.1
5 4.4 (1.1-5.0) 13.7 (2.2-15.4) 0.8 2.1 0.4 2.1 0.3 0.5 5.5 11.7
6 11.1 2.4-24.8) 38.7 (8.9-81.1) 0.7 33 0.5 2.1 0.3 0.8 4.9 11.8

ND, not determined.

*Concentrations were measured 24 hr after injection for patients 1-5 and 48 hr after injection for patient 6. The mean % injected dose/g was
calculated by dividing total specific radioactivity measured in four to six tumor fragments by total weight of these fragments.

antibody fluorescein conjugates with a molar ratio of 1/10 or
1/11, the mean half-life was 36 hr (29-42 hr), whereas for the
immunoconjugates with a molar ratio of 1/14, the mean
half-life was 24 hr (20-31 hr).

The search for human anti-mouse IgG, anti-idiotype or
anti-fluorescein antibodies in patient serum samples, col-
lected 2 to 5 months after injection, by a solid-phase radio-
immunoassay with a sensitivity of 0.1 ug per ml (to be
described elsewhere) gave entirely negative results.

DISCUSSION

The results presented here show that an anti-tumor-
associated antigen antibody labeled with a fluorescent dye
and injected i.v. in patients can bring sufficient amounts of
the dye into a carcinomatous lesion to make it detectable by
laser-induced fluorescence. This demonstration may open
the way to the development of clinical immunophotodiagno-
sis and, possibly, to more selective forms of phototherapy.
Previously, injected mAbs localized in the patient’s tumor
have always been detected by y-emitting isotopes coupled to
the antibodies (12, 18). Now, after laser irradiation we can
visualize the patchy distribution of the fluoresceinated anti-
body localized in the patient’s tumor.

To bridge the gap between the fields of photodiagnosis and
immunoscintigraphy, we have also labeled our mAb-
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F1G. 4. Concentration of unconjugated chimeric anti-CEA mAb
(open bars) and fluorescein-coupled chimeric mAb (shaded bars) in
five resected tumor fragments (TU; highest-to-lowest concentration)
and in adjacent normal mucosa (MUC), normal serosa (SER), fat,
and blood from patient 4, obtained 24 hr after injection. The results
expressed in percentage of injected dose (ID) per g of tissue (x103)
(ordinate) were determined by differential radioactivity counting.

fluorescein conjugates with a small amount of 25I. This
labeling allowed confirmation of the specificity of tumor
localization of the mAb-fluorescein conjugates by precise
radioactivity measurements in tumor and normal tissues.

The reason for these favorable results are 3-fold. (i) We
used a chimeric mAb (10) with high affinity for CEA, a tumor
marker that has been shown for many years to be one of the
best target antigens for mAb localization in tumors (11, 12,
18). (ii) We had previously demonstrated in the nude mice
model that up to 10 molecules of fluorescein can be coupled
to anti-CEA mAb without decreasing its capacity for local-
ization in the target tumor (15). (iii) The fluorescein has
optimal photophysical properties for diagnosis with a large
absorption coefficient and a quantum yield of fluorescence
emission of up to 85% (19). In addition, fluorescein excitation
wavelength corresponds to the strong emission at 488 nm of
a conventional Argon ion laser.

Importantly, the injection of up to 9 mg of mouse-human
chimeric mAb-fluorescein conjugates was well tolerated by
all patients and did not induce any detectable antibody
response directed either against the chimeric mAb idiotype or
framework region or against the fluorescein molecules cou-
pled to the mAb.

It may appear surprising that fluoresceinated antibodies,
which have been one of the most commonly used immuno-
logical reagents in vitro for identification of antigen on tissue
sections and on cell surface, particularly for flow cytofluo-
rimetry and cell sorting, have never been used for tumor
diagnosis in vivo. Fluoresceinated anti-CEA antibodies have
been sprayed directly on resected stomach tissue to detect
carcinoma cells (20), but no study of in vivo tumor localiza-
tion of i.v. injected fluoresceinated mAb was done.

Other photosensitizing dyes have been coupled to different
mADbs for the purpose of phototherapy (6-9), but no in vivo
biodistribution or tumor localization results have been re-
ported. One reason for the absence of results from in vivo
studies of dye-antibody conjugates is that some of the most
commonly used photoactive dyes, such as hematoporphyrins
or chlorins, have hydrophobic properties. Thus, when sev-
eral molecules of these dyes are coupled—either directly to
each antibody molecule or through a polypeptide or polyvi-
nylalcohol intermediate (8, 21)—the circulating half-life of
the antibody may be drastically reduced, precluding satis-
factory tumor localization.

One particular advantage of fluorescein isothiocyanate is
that it can be randomly coupled to the NH; residues of
antibodies at a molecular ratio of 1/10 to 1/12, without
excessively decreasing the circulating half-life and tumor-
localization capacity of the anti-CEA mAb. This fact has
been shown in nude mice by using the murine anti-CEA mAb
35 (15) and is confirmed here with the chimeric anti-CEA
mAb CGP44290 (10). The circulating half-life of the mAb-
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Table 3. Tumor-to-normal tissue ratios of radioactivity concentration for 125I-labeled chimeric mAb—fluorescein conjugate and 13!I-labeled

unconjugated chimeric mAb

Tumor/mucosa Tumor/serosa Tumor/fat Tumor/blood
mAb- mAb- mAb- mAb-

Patient  fluorescein mAb fluorescein mAb fluorescein mAb fluorescein mAb
1 7.4 (3.9-28.0) ND ND ND 22.3 (11.7-84.0) ND 1.5 (0.8-5.5) ND
2 7.2 (5.8-11.5) 8.7 (6.6-13.4) 13.9 (11.3-22.3) 23.7 (18.0-36.7) 35.9 (29.0-57.3) 45.5 (34.6-70.3) 3.0 (2.4-4.8) 3.9 (3.0-10.0)
3 5.3 (4.0-7.8) 6.6 (4.5-10.2) 5.5 (4.2-8.1) 7.7 (5.3-11.9) 14.5 (11.1-21.4) 18.7 (12.8-28.8) 1.3 (1.0-1.9) 1.8 (1.2-2.7)
4 59 (2.4-9.0) 6.3 (3.0-9.3) 14.8 (5.9-22.6) 19.5 (9.2-29.0) 17.5 (7.0-26.7) 20.1 (9.5-29.9) 3.0 (1.2-4.6) 3.6 (1.7-5.3)
5 4.4 (1.0-5.00 6.5 (1.0-7.3) 5.5 (1.4-6.3) 6.5 (1.0-7.3) 14.7 (3.3-16.7) 27.4 (4.4-30.8) 0.8 (0.2-0.9) 1.2 (0.2-1.3)
6 11.1 (2.4-24.8) 11.6 (2.7-24.6) 15.9 (3.4-35.4) 18.2 (4.2-38.6) 37.0 (8.0-82.7) 47.9 (11.1-101.4) 2.3 (0.5-5.1) 3.2 (0.8-6.9)

Tumor-to-normal tissue ratios (mean and range) were obtained by dividing percentage of injected dose per g of tumor by percentage of injected

dose per g of adjacent normal tissues. ND, not determined.

fluorescein conjugates was =~70% of that of unconjugated
mADb, for the conjugates with molar ratio of 1/10 and 48% for
the conjugates with molar ratio of 1/14. Table 2 shows that
the percentage of injected dose per g of tumor is =~50% of that
observed with unconjugated mAb for the fluorescein conju-
gates with a molar ratio of 10 or 11 and =30% for the
conjugates with a molar ratio of 14.

Despite the relatively high fluorescein substitution of the
injected mAb-fluorescein conjugate, the absolute amount of
fluorescein injected remained very low—0.10-0.28 mg coupled
to 4.5-9 mg of chimeric anti-CEA mAb. Knowing from radio-
activity measurement that the average percentage of injected
dose of immunoconjugate per g of the positive tumor fragments
was ~0.02% (Table 2), it can be calculated that 22 to 56 ng of
fluorescein localized per g of tumor. This amount is definitely
within the range of detection by laser-induced fluorescence,
especially when the adjacent normal tissue contains 8—20 times
less fluorescein. Interestingly, 22-56 ng of fluorescein per g of
tumor (consisting of =~10° cells) represents an average of
35,000-88,000 fluorescein molecules per tumor cell.

Now, the question remains: can the encouraging results
from the present clinical feasibility study be extrapolated to
the detection of much smaller superficial carcinomas, which
represent a real diagnostic problem. The fact that radiola-
beled mAbs have been shown to localize at a higher concen-
tration in smaller tumors than in larger ones (16) suggests a
positive answer to this question.

Among the different types of small carcinomas that may
benefit from immunophotodiagnosis are not only the super-
ficial bronchial carcinomas but also relapses of bladder
carcinomas and incipient peritoneal carcinomatosis, which
could be detected by peritoneoscopy. Our observation of
fluorescent tumor tissue through glasses equipped with the
appropriate optical filters suggests that immunophotodiag-
nosis could even be helpful during surgical laparoscopy for
the identification of small nests of metastatic tumor cells. For
deep-seated lesions, radiolabeled mAbs, detected either by
tomoscintigraphy (12) or by direct application of a radiosen-
sitive probe during surgery (22), will be more efficient. For
superficial lesions, however, photodetection of disseminated
tumors after injection of fluorescein~mAb conjugates may be
a more precise method.

Ultimately, immunophototherapy should be the optimal
complement and logical development of immunophotodiag-
nosis. For that purpose, a high priority should be given to the
identification and testing of photoactive dyes with a high
quantum yield of singlet oxygen production, which can be
coupled to antibodies without altering their biodistribution
and tumor-localizing properties.
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