Qing Nets
The following is a MSWord Formula format document with all the queuing results needed in CPE 471.
m=#srvrs
ui=dprtr rte of srvr i
=capacity of link, usually all the same.
[[lambda]]i=arrvl rate into node i.
[[gamma]]=net arrvl rate
E(T)=network wide avg delay
E(n)=avg # of pkts in net
[[gamma]]E(T)=E(n)
Open
Jackson
ASSUME M cascaded M/M/1 Q's
E(T)=f(1,[[gamma]])isu(i=1,m,f([[lambda]]i,ui-[[lambda]]i))
[[rho]]iui=[[lambda]]i
Shortest Path Routing
min-hop means all weights 1
Alg A-Dijkstra
*makes a minimum weight spanning tree
*does not give routing table
w=next node
D(v)=dist from src 1 to node v
l(i,j)=cost from i to j
Initial Step
N={1}
for each v not in N DO
BEGIN
D(v)=l(1,v)
if v not connected to 1 then
D(v)=[[infinity]]
END
WHILE all nodes not in N DO BEGIN
find w not in N which makes D(w) min.
add w to N.
for each node not in N
{update D(v)}
D(v)=Min[D(v),D(w)+l(w,v)]
END
Use TABLE BELOW
step|N|D(2)|D(3)...|w
0|{1} |1|[[infinity]]|2
B-Alg
assume dest=1
Make a table:
V -> 2 3 4 ... N
step nd nd nd
0
1
2
Under the n you place the next node you know about from dest. under d you place min weight. Propagate till done
Dist-B-Algorithm
Assume 1 is dest.
NODE
step# 2 3 4 5 .. #msgs
{adj-list 4 ech nd}
initizlize start out with inf.
done when msg #=0
Predecessor Alg
send P to previous node
1-2-3-4
l(1,2)<-[[infinity]]
2 3 4 msg#
1 3 2 4 3
ini 1 p 2 p 3 -
0 * p 2 p 3 1
1 * p * p 3 1
2 * p * p * 0
Useful Formulas
isu(i=1,N,i)=f(N(N+1),2)
isu(i=1,N,i2)=f(N(N+1)(2N+1),6)
PROBABILITY
x=r.v.
E[x]=mean
E[X2]=2nd moment
[[sigma]]2=variance
[[sigma]]2=E[x2]-E[x]2
m Fixed Dist
m=r.v.=msg lngth
[[sigma]]2=0
E[m2]=E[m]
m Exponential Dist
[[sigma]]m2=f(1,[[lambda]]2)
E[m]=f(1,[[lambda]])
E[m2]=f(2,[[lambda]]2)
[[rho]]=N=n[[lambda]]o(-,m)
2o(-,m)=E[m2]
POLLING
CONTROLLED ACCESS
D=Inbound delay
E(D)=avg access delay
=time pkt wts in Q b 4 xmission begins
m=msg xmission time
C=channel capacity
o(-,l)=avg pkt lngth
l'=ovrhd bits
o(-,m)=(o(-,l)+l')/C
D=E(D)+o(_,m)
E=avg number of retransmission attempts per message transmitted
K=retransmission interval
ts=sync time
tc=scan time
tp=length of polling message, i.e. 48 bits/4800 baud
L=walk time
[[rho]]=total trfic intensity
[[rho]]=sum([[rho]]i)=S
[[tau]]=rnd trip delay tim
[[tau]]'=overall propagation delay for N stations
[[lambda]]=per station rate of packet generation
[[rho]]=N[[lambda]]o(_,m)
o(-,t)c=L/(1-[[rho]])
E(D)=
=f(L,2) f(1-[[rho]]/N,1-[[rho]]) + f(N[[lambda]]E(m2),2(1-[[rho]]))
E(m2)=second moment of frame length
m fixed,
E(D)=f(o(-,tc),2)(1-f([[rho]],N))+f(N[[lambda]][[omicron]](
inbound delay is:
D=E(D)+ o(-,m)
if m exp dist then [[rho]]=N and
E(D)=[[phi]]([[rho]][[omicron]](-,m),1-[[rho]]) and o(-,m)=1/[[lambda]] and 1-[[rho]]/N=0
Roll Call Polling
-each station interrogated by cc.
all stations equally spaced
L=Ntp+Nts+[[tau]]'
if controller at end
then [[tau]]'= f([[tau]],2) (1+N)
if controller in middle
then [[tau]]'=f([[tau]],2)(1+f(N,2))
Hub Polling
-cc institutes, station completes then xfer control
Lhub=[[tau]]+Nts
o(-,tc)=L/(1-[[rho]])
RANDOM ACCESS POLLING
Time division
Frequency division
S=newly arriving pkt intensity=normalized throuput.
G=actual traffic intensity=utilization= normalized carried load
[[lambda]]'=total rate of pkts attmpting xmission including rexmission.
[[lambda]]=rate of pkts generated by each station.
[[lambda]]>[[lambda]]'
S/G=prob of no collision
E=avg # of rexmission attmpts/msg xmitted
K=rexmission interval in m units.
R=rnd trip delay+processing time in m unit intervals
Pure (Unslotted) aloha
wasteful of bandwidth about .18 of capacity
Assume m fixed
pkt avrls poisson
rexmission poisson
S=[[rho]]=N[[lambda]]m
Smax=f(1,2e) = .18
Nmax=f(.18,[[lambda]]m)
1/u=m
G=N[[lambda]]'m
[[lambda]]'=total#of pkts attempting to xmit over the channel, newly generated&rexmitted
[[lambda]]'>[[lambda]]
E=f([[lambda]]',[[lambda]]) - 1
S=Ge-2G
G/S=1+E
E=e2G-1
D=avg time required to succesfully rexmit a message.
D=m[1+R+E(R+f(k+1,2))]
Slotted Aloha
S=N[[lambda]]m
Nmax=f(.36,[[lambda]]m),
S=Ge-,G
Peak ,value for S@G=1
S=.368
D/m=
1.5+R+E[R+.5+f(K+1,2)]
if K >5 =>S=Ge-G
E=e2G-1
are good aprox.'s
let k=5Local Area Networks
b=station latency in bits
N=number of stations
L=ring latency
=walk time
t=once around
propagation delay
c=channel capacity b/s
L=[[tau]]+Nb/c
tf=avg xfer time
=time to xfer data from one station to another
TOKEN PASSING
RING
TOKEN Passing Bus
in bus token addressed to specific station. If token passed to neighbors [[tau]]=rnd trip delay
L/2=avg rng prop dly
tf=
f(L(1-[[rho]]/N)+[[lambda]]E(m2),2(1-[[rho]]))
+m+L/2
[[rho]]=[[lambda]]m
[[lambda]]=total avg tfc in syst.
m=avg frm lngth
CSMA/CD
[[rho]]max=1/[1+6.44a]
a=[[tau]]/m
[[tau]]=R/d
R=rate of prop in m/s
d=dist. in meters
tf=
m[[rho]][(f(E[m2],E[m]2)+(4e+2)a+5a2
+4e(2e-1)a2]/
2{1-[[rho]][1+(2e+1)a]}
+1+f(a,2) + 2ea -
f((1-e-2a[[rho]])(f(2,[[rho]]) +f(2a,e)-6a),2[Fp([[lambda]])e-[[rho]]a-1-1+e-2[[rho]]a])<> f(t)=frm lngth dist
Fp([[lambda]])=Laplacian(f(t))
M is fixed
E[m2]/E[m]2=1
[[Phi]][[pi]]([[lambda]])=e-[[rho]]
M is Exp.
E[m2]/E[m]2=2
Fp([[lambda]])=1/(1+[[rho]])
[[rho]]max=1/[1+6.44a]
[[tau]][[phi]]|u[[iota]][[nu]]=u+[[tau]]/2 as [[rho]]->0
tf=m+f([[lambda]]E[m2],2(1-[[rho]])) as a->0
Token Rings xfer delay-thruput -exp distb. pkt lng single pkt mode-complete rcpt of frm bfr rlsng tkn
[[rho]]=[[lambda]]m+[[lambda]]L
E[m2]=[[sigma]]2+(m+L)2
lm|max=max normalized thruput rate
[[lambda]]|max=f(m,1+L/m)
single token mode-token passed on when recieved back by xmitting station
f(t)=frm lngth dist.
f(t)=(1/m)e-t/mu(t)
u(t)=unit step
f(t)=exp dist.
f'(t)=
(1-e-l/m)d(t-L)
+f(1,m)e-t/mu(t-L)
E(t)=L+me-l/m
=m(l/m+e-l/m)
[[rho]]max=[[lambda]]maxm
=1/(l/m+e-l/m)
[[rho]]=[[lambda]]m