Computer Engineering

Fairfield University

Project Initium: Resource Management

Thesis Problem Statement

Francisco Castellanos

Graduate Student, Computer Engineering

Fairfield University, Fairfield CT 06430

fsophisco@yahoo.com

1.Introduction

Grid computing is a kind of parallel computing that enables the sharing, selection, and aggregation of geographically distributed “autonomous” resources, at runtime, as a function of availability, capability, performance, cost, and users’ quality-of-service requirements [11]. One of the services that a Grid can provide is a computational service. Computational services execute jobs in a distributed manner [12]. A Grid providing computational service is often called Computational Grid [12].

We propose to address a sub-problem in the area of Computational Grids concerned with resource management. As compute servers become available on the grid, they run a screen saver that informs a central Look-Up Server (LUS). They then download a job, perform some computation, and then return the results back to the LUS.

1.1 Problem Statement

The Compute Servers (CS) are heterogeneous and geographically distributed computational resources that join the grid by announcing their availability to a LUS. A Compute Manager (CM) manages the load, execution, error handling, multi-threading, status, communication, and response of tasks within the CS.

The goal is to make use of the CS (Compute Server) during its idle state. Additionally, we seek to minimize the intrusion into the CS desktop. Further, we seek to execute a trusted job and to return the result from the CS to the LUS using a secure channel.

We use a screen saver that executes during the idle state of the CS to contact the LUS. Thus a sub-problem includes the creation of a portable screen saver that can be downloaded on demand.

1.2 Approach

Our approach for the development of the screen saver addresses four aspects of resource management in the Computational Grid:

· Detection of CS Idle-state initiation and termination

· Computation task deployment

· Computation task management

· Secure communication between CS and LUS

 The first area to address is having the screen saver detect when the machine is not in use (a platform specific activity)[1]. Moreover, the screen saver should terminate gracefully when the CS is no longer idle. The screen saver must communicate the availability of the CS to the LUS.

The second area focuses on the deployment of the computation task (request) into the CS. We propose that the screen saver be a Java Web Start application. At launch, the screen saver, after announcing the availability of the CS, will automatically connect to the LUS to download a Java Network Launching Protocol (JNLP) file and a signed computation JAR over a secure channel. Java Web Start (JAWS) is a mechanism that allows full-fledged applications to run on demand. There is no need for complicated installations, configurations or upgrades, as upgrades are automatically distributed using the JAWS technology.

The third section is having the CM handle the request. This requires loading, executing, terminating, and returning results back to the LUS. We propose that the computation task-code be loaded into a fresh Virtual Machine to guarantee that the latest version of the byte code is loaded. The CM must gracefully handle launch, error handling, and thread management for the computation task.

The fourth section involves having the CM communicate status information back to the LUS. Status information includes benchmark data, load, and processing state. This communication must occur over a secure channel, perhaps through RMI/SSL. The LUS can then make decisions regarding queuing, prioritization, and load.

1.3 Motivation

 Grid computation is a topic of current research that brings to the fore the issues of program partitioning, distributed computation, and supercomputing. It is of interest to a large number of researchers because it enables the use of resources that would otherwise remain idle. Further, it establishes virtual supercomputer facilities that are otherwise beyond the reach of most researchers.

We are motivated to address the sub-problem of devising a portable screen saver for volunteer computing, in part, because of the success of the SETI project. A major deficiency of SETI is that it is not portable and generally only available to accelerate a single application.

Resource Management is critical to Grid Computing. A framework built around the computation task is required in providing a structure for just such a full-fledged application [3]. Job management should be part of the framework. The framework should easily find a job when it is non-performing, so that it can be either killed or recovered and restarted [3]. It should also manage to trap a job for debugging [3].

“Built on the Internet and the World Wide Web, the Grid is a new class of infrastructure. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, the Grid promises to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible.”[13]

2. Related work

“Driven by the success of the SETI project and others like it, researchers have been working to exploit the vast pool of the computing resources connected to the Internet, but in a way that is secure, manageable, and extendable” [4].

JGRID is a Jini-based project that aims to create an infrastructure that relies on the features of JINI, such as, networking and services discovery, leasing, distributed events and transactions, security, etc… JGRID is built by simple services that are joined together to compose a complex architecture. Each service is composed of a common set of modules and a specialized set of modules. The common set of modules is responsible for system services such as discovery, lookup, registration, administration, etc. Compute services, key services of JGRID, are responsible for exporting Java Virtual Machines (JVM) of remote computers into the Jini/GRID community, and to allow the execution of created JAVA objects in that JVM. The compute service provides process management, scheduling, monitoring, and message-passing communication support. Single and parallel tasks, are sent to the remote compute service using Java RMI. The execution of a parallel message-passing Java program requires that a message-passing infrastructure (MPI) be configured before execution.

Our approach is similar to the JGRID compute service in that we seek to build a framework that takes care of the system environment locally in the CS. The implementation of the task, to be calculated by the CS, does not have to know about the details of the environment. Our approach is different from JGRID in that we seek to utilize Java Web Start as our tool for task-deployment, whereas JGRID relies on RMI and MPI mechanisms. In JGRID, it is unspecified whether the compute service provides its services in a volunteer manner while the system is not being utilized.

The Gridbus [15] project supports cluster and grid computing by developing open source middle-ware tools that aim to provide solutions to eScience and eBusiness applications. Gridbus technologies are developed based on a layered architecture design. The core tools are located in a middle layer that interfaces between the service providers (bottom layer) and the applications that use the grid (top layer). Given a job to be executed, Gridbus utilizes a service broker that analyses and makes scheduling decisions based on the resources’ characteristics such as availability, capability, and cost. The broker identifies resources by querying the Grid Market Directory (GMD). The GMD acts as a registry for service publications and discovery. GMD is developed over SOAP and XML. Gridbus middleware for service providers relies on the Alchemi and Globus frameworks. The Alchemi framework is built using the .NET technology and it aims to be used in the Windows platform. That is, the implementation of the service for resource providers is not cross-platform; therefore the same service must be developed for other platforms. This is a disadvantage that our approach addresses by creating a portable screen saver that provides resource management. Our approach seeks to utilize technologies based on web services, such as, Java Web Start, but at the same time avoids the utilization of XML due to the high cost of parsing.

The Globus [14] project provides a toolkit that defines the services necessary to construct a computational grid. These services include components for security, resource location, resource management, communication, etc… Globus defines an “hour glass”-layer architecture. High-level services are built on top of local services. The neck of the hourglass defines an interface that provides access to simple local service implementations. Global services are then defined in terms of this interface. For example, resource management in Globus is provided by the Globus Resource Allocation Manager (GRAM). Globus may contain many GRAMs that are each responsible for a particular set of local resources. GRAM provides a set of building blocks that can be used to build global resource management strategies. Resource requests are communicated based on a Resource Specification Language (RSL), which is a language of definitions for global services. Globus differs from our approach in that it is a toolkit aimed to provide services necessary to build custom computational grid. Globus is similar to our approach in that we seek to provide a general local management framework for the discovery and utilization of remote compute servers.

The GridLab [16] project has the main goal of proving an environment for the users and application developers that allows them to produce applications that can benefit from the power of the grid. The Grid Application Toolkit (GAT) provides a robust, generic API that applications can call to use the underlying grid services. GridLab achieves abstraction of the underlying grid by following a layer architecture. Both, the GAT and the GridLab services form the middle layer between the applications and Grid middleware. The goals of the GAT design are abstraction, flexibility and fail-safety. The adapter pattern supports the abstraction of interfaces, and therefore is critical for the design of the GAT. In the GAT, adapters represent an interface with capability providers (an entity that provides specific capability). Flexibility is achieved by allowing a dynamic interchange of capability providers at runtime using a pool of adapters. Some degree of fail-safety is achieved by allowing other suitable adapters to be called in case of failure. An application trying to utilize the grid must use the GAT-API to call the GAT. The GAT then queries the capability registry for a suitable adapter. The adapter interfaces with one or more of the capability providers to provide the functionality required. The GridLab Resource Management System’s (GRMS) main goal is to provide scheduling mechanisms that fit the needs of the applications. The GRMS is composed of system configuration management (performance monitoring system), job execution management (handles time, priority and space), resource management, and infrastructure services (user management, accounting and security). The GridLab project is similar to the Globus project in that both aim to provide services and policies that form a framework for the development of grid aware applications.

The MDS-2 implementation for grid information services [17], part of the Globus toolkit, has the goal of providing mechanisms that allow the discovery, characterization, and monitoring of resource services. The implementation aims to overcome the challenges of these services due to the vast diversity, large numbers, dynamic behavior, and geographical distribution of entities. Services, such as, discovery, scheduling, replica selection, trouble shooting, performance diagnosis, etc… differ greatly in terms of the resources, demands, and the way information is used. The MDS-2 implementation is based on the idea that all of these services have a similar structure: ”one or more consumers (users or programs) wish to obtain information from one more producers”[17]. The architecture is composed of two elements: a collection of generic information providers, and a collection of higher-level services. The information providers offer information about entities through local operations or gateways to other information providers. Higher-level services are responsible for collecting, managing, indexing, and responding to information provided. Interaction between these two elements occurs through two basic protocols: a soft-state registration protocol for identifying entities, and an inquiry protocol for the retrieval of information about those entities. That is, a provider announces its existence to higher-level services using the registration protocol, and higher-level services obtain information about the entities known to a provider through the inquiry protocol. The architecture supports the separation of information retrieval and the discovery and monitoring mechanisms, therefore a wide variety of strategies for discovery and monitoring are supported. This design meets the requirements of our approach in that we seek to design and implement a protocol that allows the interaction between CS an LUS though using RMI.

Resource selection service for locating grid resources that match the application requirements is a key element of the grid. However, the problems of first discovery and then organizing the resources that are needed to meet the application requirements are not simple. Condor [18], a matchmaking framework that supports single and multiple resource selection, provides a mechanism based on the ClassAd language. This language allows the users to describe requests and resource owners to describe their resources. A matchmaking mechanism matches the user request with appropriate resources. A general-purpose resource selection framework that can be used by different types of applications is made available by extending the capability of the ClassAd language. The enhancement to the language enables the user to specify aggregate resource properties, like total memory and bandwidth. Also, the matchmaking algorithms have been modified to allow one-to-many matching of requests to resources. An open interface has also been provided to allow the personalization of the resource selector. The interface allows the loading of application-specific mapping modules to customize the resource selector. The resource selector locates, evaluates, and returns the appropriate set of resources based on the mapping module. The architecture for the Resource Selector Service (RSS) [18] entails three modules. The Resource Monitor is responsible for obtaining resource information from a grid information system, and to catch the data into local memory. The Set Matcher uses the matching algorithm to match incoming requests with appropriate resources. The Mapper makes decisions on mappings to resources based on resource topology and workload allocation. The Mapper is provided as a user-specified-dynamic link library that communicates to the matching process. This is due to the tight relationship between applications and mapping techniques. The request may contain five elements: The Type of Service (synchronous or asynchronous), Job Description (characteristics of the job), Mapper (mapper program to be used), Constraint (requirements), and Rank (criteria for ranking resources). The resource selector result is expressed in XML and describes the selected resources and mapping scheme. Our approach focuses on the mechanisms that a resource uses to announce its existence and to provide benchmark data about itself to the grid. From this viewpoint, our approach can be a complementary element to the resource selection service.

A decentralized approach for resource discovery is desirable from administrative and performance reasons [19]. Resources in a grid are identified based on a set of desirable attributes. Resource attributes range from static to dynamic attributes, such as, operating system version (static) or CPU load (dynamic). Resource discovery in the grid is challenging due to the large number of resources and users, the heterogeneity in resource types and requests, and the change of dynamic resource attributes. These issues are difficult to overcome especially in centralized and hierarchical discovery mechanisms. A peer-to-peer architecture that is flat, fully decentralized, and that develops candidate architecture design, is proposed [19]. Nodes or peers are servers that store information about its local and shared resources within a Virtual Organization (VO). That is, a node may provide information about itself or multiple resources. From the point of view of discovery, the grid is composed of geographically distributed nodes that join and leave at any time. A request is sent to a known node. The node then tries to find the matching resources locally. If it finds them, it returns their descriptions; otherwise it forwards the request to another node. Intermediate nodes keep forwarding the request until the matching resources are found or the time-to-live (TTL) expires. The matching resources information (if found) is sent to the node that initiated the forwarding without the intervention of intermediate nodes. This framework is based on two mechanisms: the membership protocol that provides each node with membership information about other nodes; and a forwarding mechanism to find which nodes the request should be forwarded.

Deployment is a sub-problem of grid computing. Java Web Start offers a deployment facility using the HTTP protocol. On launch the Java Web Start checks the Web Server to see if a new version of the application is available, and if so, automatically downloads and launches [2].

3. References

[1] Douglas Lyon: “Asynchronous RMI for CentiJ”, in Journal of Object Technology, vol. 3, no. 3, March-April 2004, pp. 49-64. http://www.jot.fm/issues/issue_2004_03/column5
[2] Sun Microsystems: “Java Web start Technology”, http://java.sun.com/j2se/1.4.2/docs/guide/jws/Readme.html
[3] Edward Harned: “A Java RMI server framework”, October 2001, http://www-106.ibm.com/developerworks/java/library/j-rmiframe/
[4] Anthony Karre: “A do-it-yourself framework for Grid Computing”, April 2003, http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-grid_p.html
[5] Douglas Lyon: “Project Initium: Programmatic Deployment”, Journal of Object Technology, To appear in September, 2004.
[6] Zoltan Juhasz, Kristian Kuntner, Mark Magyarodi, Gabor Major, Szabolcs Pota: “JGrid Design Document”, June 2003.

[7] James Linn and Douglas Lyon: “Java For Programmers: Chapter 43 RMI”, January 2004.

[8] Steve Kim: “Java Web Start”, September 2001, http://www-106.ibm.com/developerworks/java/library/j-webstart/
[9] Sun Microsystems: “Developer's Guide Java TM Web Start Technology”,

http://java.sun.com/products/javawebstart/docs/developersguide.html.

[10] Sun Microsystems: “Trial RMI”, http://java.sun.com/docs/books/tutorial/rmi/
[11] Rajkumar Buyya: “Grid Computing Info Center: Frequently Asked Questions(FAQ)” , http://gridcomputing/gridfaq.html
[12] Mark Baker, Rajkumar Buyya and Domenico Laforenza: “Grids and Grid technologies for wide-area distributed computing”, http://www.gridbus.org/papers/gridtech.pdf, SOFWARE-PRACTICE AND EXPERTICE, 2002, John Wiley and Sons,Ltd.

[13] Ian Foster: “The Grid: A new Infrastructure for 21st Century Science”, American Institute of Physics, 2002, http://www.aip.org/pt/vol-55/iss-2/p242.html
[14] I. Foster, C. Kesselman: “The Globus Project: A Status Report” Proc. IPPS/SPDP '98 Heterogeneous Computing Workshop, pp. 4-18, 1998.

[15] Rajkumar Buyya, Srikumar Venugopal: “The Gridbus Toolkit for Service Oriented Grid and Utility Computing: An Overview and Status Report”, Department of Computer Science and Software Engineering, University of Melbourne, Australia, http://www.gridbus.org/papers/gridbus2004.pdf
[16] Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D. Doulamis, Tom Goodale, Thilo Kielmann1, André Merzky, Jarek Nabrzyski, Juliusz Pukacki, Thomas Radke, Michael Russell, Ed Seidel, John Shalf and Ian Taylor: “Enabling Applications on the Grid: A GridLab Overview”, 2003, http://www.gridlab.org/Project/Publications.html

[17] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman: “Grid Information Services for Distributed Resource Sharing”. Proceedings of the Tenth IEEE International Symposium on High-Performance Distributed Computing (HPDC-10), IEEE Press, August 2001. http://www.globus.org/research/papers/MDS-HPDC.pdf
[18] D. Angulo, I. Foster, C. Liu, and L. Yang: “Design and Evaluation of a Resource Selection Framework for Grid Applications”. Proceedings of IEEE International Symposium on High Performance Distributed Computing (HPDC-11), Edinburgh, Scotland, July 2002. http://www.globus.org/research/papers/RS-hpdc.pdf
[19] A. Iamnitchi and I. Foster: “On Fully Decentralized Resource Discovery in Grid Environments”. International Workshop on Grid Computing, Denver, CO, November 2001. http://www.globus.org/research/papers/GC2001.pdf
8/2/04
fsophisco@yahoo.com
6

