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Abstract

Pipelining the scheduling logic, which exposes and
exploits the instruction level parallelism, degrades
processor performance. In a 4-issue processor, our
evaluations show that pipelining the scheduling logic
over two cycles degrades performance by 10% in
SPEC-2000 integer benchmarks. Such a performance
degradation is due to sacrificing the ability to execute
dependent instructions in consecutive cycles.

Speculative selection is a previously proposed
technique that boosts the performance of a processor
with a pipelined scheduling logic. However, this new
speculation source increases the overall number of
misspeculated instructions, and this unuseful work
wastes energy.

In this work we introduce a non-speculative
mechanism named Dependence Level Scheduler (DLS)
which not only tolerates the scheduling-logic latency
but also reduces the number of misspeculated
instructions with respect to a scheduler with speculative
selection. In DLS, the selection of a group of one-cycle
instructions (producer-level) is overlapped with the
wake up in advance of its group of dependent
instructions. DLS is not speculative because the group
of woken in advance instructions will compete for
selection only after issuing all producer-level
instructions. On average, DLS reduces the number of
misspeculated instructions with respect to a speculative
scheduler by 17.9%. From the IPC point of view, the
speculative scheduler outperforms DLS by 0.3%.
Moreover, we  propose two  non-speculative
improvements to DLS.

1. Introduction

An option to improve processor performance is enlarg-
ing the issue queue (or scheduling window). The issue
queue is in charge of exposing and exploiting instruction
level parallelism (ILP). Instructions wait in the issue
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queue until their source operands are ready (wakeup)
and appropriate execution units are available (selection).

Both issue-queue phases (wakeup and selection) con-
stitute a hardware loop, the scheduling loop, because an
instruction must be selected before waking its depend-
ents instructions up. This hardware loop is critical
because its latency must be only one cycle in order to
execute dependent instructions in consecutive cycles
(back-to-back).

Issue-queue timing directly depends on issue-queue
size. Therefore, though increasing issue-queue size
could improve IPC, this could also increase processor's
cycle time. Pipelining the scheduling logic is an option
to mitigate this timing restriction. However, this option
may degrade IPC because back-to-back execution of
dependent instructions is impossible when the execution
latency of a producer instruction is shorter than the
scheduling-loop latency. Our experimental results with
SPEC-2000 integer benchmarks in a 4-issue processor
show that pipelining the scheduling logic over two
cycles degrades IPC, on average, about 10% with
respect to an unpipelined scheduling logic. Our results
are similar to those reported by other authors ([4], [13],
(23], [31D).

In order not to sacrifice the ability to execute back-to-
back dependent instructions, several works propose to
overlap the selection phase of a group of one-cycle
instructions (from now on, producer-level) with the
wakeup phase of its dependent instructions (consumer-
level). While some of these proposals allow the con-
sumer-level to compete for selection speculatively [31]
or to issue speculatively [4], other proposal does not rely
on speculation [11]. Also, while proposals [11] and [31]
require two logical Wakeup Matrices to wakeup depend-
ent instructions, proposal [4] requires only one Wakeup
Matrix.

Speculative mechanisms boost the performance of a
pipelined scheduling logic [4][31]. However, this new
speculation source increases the overall number of mis-
speculations. For instance, our experimental results,
using the simulation environment described in
Section 4, show that the speculative mechanism Select-



Free[4] boosts the performance of a two-cycle pipelined
scheduling, but it increases the overall number of mis-
speculated issued instructions, on average, by 10.0%.
Such unuseful work wastes energy in both processor
front-end and processor back-end.

In this paper, we propose the Dependence Level
Scheduler (DLS), a non-speculative mechanism which
not only tolerates the latency of the scheduling logic but
also reduces the overall number of misspeculated issued
instructions with respect to Select-Free mechanism by
17.9%. Moreover, DLS mechanism also boosts IPC of a
two-cycle pipelined processor and it reduces the overall
number of misspeculated issued instructions by 9.7%.

Dependence Level Scheduler allows pipelining the
critical hardware scheduling loop without sacrificing the
ability to execute dependent instructions in consecutive
cycles. In DLS mechanism, the selection phase of pro-
ducer-level instructions is overlapped with the wakeup
phase of the group of their dependent instructions. The
group of instructions woken up in advance will compete
for selection after all producer-level instructions have
been selected for execution. As DLS mechanism is not
speculative, both false selections [31] and pileup victims
[4] are avoided. Moreover, DLS mechanism, as Select-
Free, requires one Wakeup Matrix, in contrast with [11]
and [31] which require two logical Wakeup Matrices.
As we describe in the evaluation section, we consider
load-latency prediction and memory dependence predic-
tion in contrast to [4][11] and [31]. We compare DLS
mechanism with Select-Free mechanism, which hard-
ware costs are similar, and we show that DLS mecha-
nism is outperformed by Select-Free, on average, by
0.3%. In this paper, we also propose two improvements
to DLS mechanism. The best DLS improvement per-
forms within 1.5% of an ideal scheduler, it outperforms
by 0.2% Select-Free and it reduces by 18.7% the overall
number of misspeculated issued instructions with
respect to Select-Free.

This paper is structured as follows: Section 2 outlines
the processor model being used and motivates the work.
Section 3 describes the DLS mechanism. Section 4
details the simulation environment. Section 5 evaluates
the DLS mechanism. Section 6 describes two enhance-
ments to the DLS mechanism and evaluates them.
Section 2 discusses related work and Section 8 con-
cludes this paper.

2. Baseline processor model

Fig. 1 shows the pipeline of a dynamically scheduled
processor. Each stage may take more than one cycle.

In the front-end stages of the pipeline (fetch, decode
and rename stages), instructions are brought from the

instruction cache, decoded and renamed (to remove
false register dependencies). After that, the instructions
are dispatched into the issue queue. Each instruction
must wait there for the availability of its source oper-
ands (wakeup phase). Once its required execution
resource is available, the instruction can be selected for
execution (selection phase). Then, its payload and its
source registers are read. Next, the instruction is exe-
cuted and its result is written into the register file.
Finally, the instruction waits until it is committed in pro-

gram order.
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Figure 1 Processor Pipeline. F: Fetch, D: Decode, Re:
Rename, 1Q: Issue Queue, P: Read Payload, R: Read Register
File, E: Execution; WR: Write Register File, C: Commit.

The scheduling logic is composed by two phases:
wakeup and selection. The wakeup phase identifies
instructions with available source operands, these
instructions are named ready instructions. To wakeup
instructions, the Wakeup Logic uses a wired-OR style
array [4][10][28]. Each issue-queue entry corresponding
to a ready instruction activates a request signal in order
to notify its readiness. The selection phase picks the old-
est ready instruction taking into account available
resources in each issue port. These two phases constitute
a hardware loop because each instruction must be
selected before waking its dependent instructions up.
The latency of this hardware loop must be one cycle,
otherwise back-to-back execution of dependent instruc-
tions is sacrificed. That is, instructions selected by the
Selection Logic wake their dependent instructions up in
the next clock cycle (Fig. 2.a). Fig. 2.b shows a schedul-
ing logic pipelined over two stages. That is, a two-cycle
latency scheduling-loop.
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Figure 2 Diagrams of scheduling loops. a) one-cycle latency,
b) two-cycle latency. (W: Wakeup, S: Selection)

Fig. 3 shows an example of the influence of the
scheduling-loop latency on dependent-instruction
scheduling. We consider two instructions, I1 and 12; the
instruction 12 is dependent on the instruction 11, which



execution latency is one cycle.

In Fig. 3.a, as the scheduling loop is unpipelined, the
instruction 12 can be issued one cycle after issuing the
instruction I1. In Fig. 3.b, the scheduling loop is pipe-
lined over two cycles. In this scenario, when the instruc-
tion I1 is selected, it wakes the instruction 12 up on next
cycle. Consequently, back-to-back execution of instruc-
tions I1 and 12 is not possible.

a)

nfw/ss[ P [ R | E W

12 wis| P | R | E | wr |

b)

n|w/]s P R E | WR

2 w S P R E | WR |

Figure 3 Scheduling of a one-cycle instruction and a
dependent instruction assuming several scheduling-loop
latencies: a) one cycle, b) two cycles. (W: Wakeup, S:
Selection).

As a general rule, back-to-back execution is possible
only if the execution latency of the producer instruction
is greater than or equal to the scheduling-loop latency.
Previous works [4], [13], [23] and [31] concluded that
back-to-back is a must for high-performance processors.

In SPEC-2000 benchmarks, we have counted the
number of one-cycle committed instructions that update
the register file. We observe that integer benchmarks
double the percentage of one-cycle instructions with
respect to floating-point benchmarks (44.3% vs.
23.6%); consequently, integer benchmarks will be more
sensitive to the scheduling-loop latency than floating-
point benchmarks.

In this paper, the baseline processor uses a two-cycle
latency scheduling loop. Then there is, at least, a two-
cycle delay between issuing an instruction and issuing
its dependent instructions. In order not to degrade per-
formance with respect to the unpipelined scheduling
logic, the pipelined scheduling logic must be able to
exploit ILP in the issue cycle between issuing a one-
cycle instruction and issuing its dependent instruction.
For multi-cycle producer instructions (greater than one-
cycle latency), pipelining the scheduling logic does not
degrade performance with respect to an unpipelined
scheduling logic.

3. Dependence-level scheduler

In this section, we describe the Dependence-Level
Scheduler (DLS), a non-speculative mechanism that
allows pipelining over two cycles the critical scheduling
loop without sacrificing the ability to execute back-to-
back one-cycle instructions and their dependent instruc-
tions.

The idea is overlapping the selection phase of pro-

ducer-level instructions with the wakeup phase of their
dependent instructions. That is, dependent instructions
are woken up before their producer instructions have
been selected for issuing (woken up in advance). More-
over, in order to avoid an speculative selection phase,
woken up in advance instructions will compete for
selection after all producer-level instructions have been
issued. The goal of DLS mechanism is to look for
opportunities for back-to-back execution of dependent
instructions and to use them safely. Note that the execu-
tion latency of multi-cycle instructions hides the sched-
uling-loop latency and therefore they can be executed
back-to-back with their dependent instructions.

Fig. 4 shows an example of the scheduling of an
instruction sequence, assuming that only one instruction
can be issued per cycle. The IQ label means that the
instruction is waiting to be ready in the issue queue. The
W and WA labels mean, respectively, that the instruc-
tion wakes up and that the instruction wakes up in
advance. The RI label symbolizes that the instruction is
ready and it is competing for selection. The ARI
(advanced ready instruction) label means that the
instruction has been waken up in advance but it does not
compete yet for selection. Finally, the S label means that
the instruction is selected for execution.

Cycles 1 2 I N
1.add rl«r2, 13 w S
2. add 4«15, 16 w RI S
3. sub r9«rl, 17 1Q WA ARI S
4. sub r10<9, 18 1Q 1Q 1Q WA s |

Figure 4 Scheduling example of the DLS mechanism. A bar
between cycles indicates that all producer-level instructions
have been issued, then consumer-level can compete for
selection next cycle safely.

In Fig. 4, we assume that the source operands of
instructions 1 and 2 are available in cycle 1. Both
instructions wake up and become the current producer-
level. In cycle 2, the current producer-level competes for
selection, and also it wakes up in advance its depend-
ents. Consequently, instruction 3 is woken up in
advance in cycle 2, and it becomes the consumer-level.
This consumer-level will not compete for selection until
the current producer-level is completely scheduled. At
the end of cycle 3, the producer-level has been com-
pletely scheduled. Then in cycle 4, the consumer-level
(instruction 3) will be allowed to compete for selection,
and consequently, it becomes the current producer-level.
Also in cycle 4, the current producer-level wakes its
consumer-level (instruction 4) up in advance. Because
in cycle 4 the current producer-level is completely
scheduled, in cycle 5 the current consumer-level will be
allowed to compete for selection.

DLS mechanism is equivalent to a one-cycle schedul-



ing-loop if, every cycle, all producer-level instructions
are scheduled. In this scenario, back-to-back execution
is performed and oldest-first selection policy is
observed. Otherwise, if producer-level instructions
require several cycles to be scheduled, their woken up in
advance consumer instructions are prevented from com-
peting for selection, then DLS performance depends on
whether the available ILP can maintain the throughput
of issued instructions. A harmful performance scenario
takes place when issue width is not fully exploited and
there are woken up in advance instructions prevented
from competing for selection whose producer-level
instructions have already been scheduled in previous
cycles.

3.1. Hardware Design

Next, we describe the implementation of DLS by
extending the base two-cycle scheduling logic
(Section 2). Main differences of DLS with respect to a
Base two-cycle scheduler are:

e In the Base model, each instruction wakes its
dependent instructions up only after being selected. In
DLS, one-cycle instructions wake their dependent
instructions up before being selected. They wake their
dependent instructions up in advance using the one-
cycle scheduling loop shown in Fig. 5.

* In the Base model, instructions start competing for
selection the cycle after becoming ready. In DLS, the
selection phase of ready instructions dependent on
producer-level instructions may be delayed. This is
necessary to prevent them from being selected
speculatively. In Fig. 5, D-Logic and ZDL are in
charge of this task.In DLS, instructions are classified
according to two criteria: their own execution latency
and their producers’ execution latency.

In decode phase, instructions are classified according
to their execution latency. One-cycle instructions are
classified as wakeup in advance; multi-cycle instruc-
tions are classified as wakeup in selection. In Fig. 5,
wakeup signals to Wakeup Logic come from one-cycle
and two-cycle latency scheduling loops. Only one loop
is significant for each instruction to wake its dependent
instructions up. The wakeup signal is selected by a mul-
tiplexer controlled by the classification of the instruc-
tion.

In rename phase, producer instructions of every
instruction are identified. DLS also classifies instruc-
tions according to the latency of their producer instruc-
tions. Instructions that depend on at least a one-cycle
instruction are classified as woken up in advance.
Instructions that do not depend on any one-cycle
instruction are classified as woken up in selection. This

later class also contains instructions whose source oper-
ands are available in rename phase.
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Figure 5 DLS design.

In Fig. 5, the Wakeup Logic sets ready bits (readyy...
ready,,_;) for those instructions that have been waken up.

Ready woken up in selection instructions will compete
for selection next cycle after waking up. However, ready
woken up in advance instructions must be prevented
from competing for selection until selecting all one-
cycle instructions currently competing for selection
(reqq... reqy.1). Zero Detection Logic (ZDL) and D-

Logic determine if ready woken up in advance instruc-

tions are allowed to compete for selection next cycle.
a) ready;
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Figure 6 a) D-Logic. Slice corresponding to an issue-queue
entry. “ready” stands for a request signal from Wakeup
Matrix. b) ZDL. Slice corresponding to an issue-queue entry
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Every cycle, ZDL determines if all requesting wakeup in
advance instructions have been selected. If this condi-
tion is met, then load input in D-Logic is set. Conse-
quently, D-Logic allows woken up in advance
instructions compete for selection next cycle; otherwise,
D-Logic will retain woken up in advance instructions at
least one more cycle (Fig. 6.a). Fig. 6.b shows an slice
of ZDL. Non continuous box contains the logic which is
replicated for every issue-queue entry. For every
requesting instruction in the issue queue, ZDL checks if
they have been selected the current cycle. Moreover,
instructions either selected in previous cycles or classi-
fied as woken in selection are not accounted by ZDL.



4. Simulation environment

4.1. Processor model

We have modified SimpleScalar 3.0d [1] to model a Re-
Order Buffer (ROB) and separate issue queues (integer
1Q and floating-point 1Q). Also, our processor model
predicts both load latencies and memory dependences.
The speculative instruction issue and the recovery
mechanisms have been carefully modelled. We assume
an out-of-order processor with eight stages from Fetch
to IQ and two stages between IQ and Execution. Table 1
details other processor and memory parameters.

Table 1 Processor and memory parameters

Processor model

Fetch and Decode width 4 Issue-queue size: Integer / 32/20
Floating point
Branch predictor: hybrid 16 bits Functional Units: Integer 4/2

(bimodal, gshare) / Floating point

Store sets predictor | 1024 /128
ROB/LSQ size 128/64

Memory access ports 2

Issue width: Integer / 42
Floating point

Memory hierarchy

L1 I-cache 32KB, 4- L2-Main memory bus 8bytes / 2
L] D-cache way, 2 cycles
cycles
Line size 32B Main memory latency 100
cycles
L2 Unified Cache 256 KB, Load latency prediction Blind
Line size 4-way, (L1 hit)
12 cycles
32B

Table 2 lists the instruction latencies assumed in this
work. ALU label stands for: integer add, integer sub-
tract, logical operations and branches.

Table 2 Execution latency (in cycles) of the instructions.

Latency Latency
ALU 1 2-FP (+,*) | 4 fully pipelined
Load 3 FP (/) 15 unpipelined
Integer (*,/) | 10 /15 unpipelined FP (sqrt) 24 unpipelined

We use a memory-dependence predictor (store sets
[7]) to predict which store instructions write to the same
memory location that a younger load reads. Then, when
a load instruction is predicted to depend on a store
instruction, the scheduler delays issuing the load
instruction until issuing the store instruction. A mem-
ory-order violation is handled when the store instruction
commits and, at this moment, the recovery is initiated
from the offending load. The replay is non-selective
(squash recovery) and is performed from a buffer,
located before dispatch phase, that keeps all renamed
instructions in order to reduce the misspeculation pen-
alty on a memory-order violation. A store instruction is
ready to compete for selection when all input operands
are available.

Load instructions are variable-latency instructions. To
cope with this variability, load instructions are blindly

predicted to hit L1 and their dependent instructions are
scheduled accordingly. To deal with misschedulings, our
processor implements a delayed selective replay mecha-
nism that replays the misscheduled instructions from the
issue queue [16]. A register scoreboard keeps the status
of each register (dependent or independent on a miss-
cheduling). Each load instruction that misses L1 marks
its destination register as unavailable. In register-read
stage, each issued instruction accesses the scoreboard to
check the status of their source registers and it propa-
gates the status to its destination register. To recover
from misschedulings, each instruction remains in the
issue queue until verifying that it is not dependent on
misschedulings. Instructions dependent on misschedul-
ings are replayed from the issue queue after resolving
the cache miss.

4.2. Considerations about
critical path

scheduling-loop

Select logic is implemented using a matrix of bits
[10][28], in which the number of rows and columns is
equal to the number of instructions in IQ (N). Each row
codes the priority of an instruction with respect to the
other valid instructions in 1Q. Each column indicates if
the instruction is requesting for execution. The evalua-
tion of this bit matrix has 3 phases. First, row-request
signals are propagated horizontally in parallel until they
reach their transposed columns. Second, request signals
are propagated vertically in parallel in order to inhibit
younger requesting instructions. Third, for each row,
sel; signal is evaluated by checking its priority with all
requesting columns. Calling a hop [28] to either hori-
zontal or vertical distance between two contiguous
matrix elements, circuit delay requieres 3xN hops to
evaluate sel; signal.

ZDL has three gate levels (Fig. 6.b). First two levels
are replicated per IQ-entry. First gate level of ZDL is
evaluated in parallel with first phase of selection logic.
In the second gate level of ZDL, the NOR; gate evalu-
ates just after sel; signal has been evaluated. Third gate

level is a N-input NOR gate implemented as a chain of
two-input NOR gates. After 2xN hops, the first sel; sig-
nal (sely.;) is stable, and just after NOR gates of the
chain evaluate while rows evalutate their sel; signals.
Therefore, evaluation time for ZDL equals to 2xN+N+1
hops, this means a similar circuit delay as a bit matrix
for an N+1-entry 1Q.

We can suppose that the delay increment due to ZDL
is similar to enlarging the issue queue by one entry in
processor models different from DLS. In the evaluation,
we conservatively enlarge the IQ by two entries to all
processor models not using DLS.



4.3. Workload

We use SPECInt-2000 integer benchmarks compiled
into Alpha ISA. We simulate a contiguous run of 100M-

instruction from SimPoints [30] after a warming-up of

100M-instruction. Table 3 shows input data sets.

Table 3 Simulated benchmarks and their input data set.

Bench. Data set Bench. Data set Bench. Data set
bzip2 | program-ref gzip program-ref twolf  |ref

crafty |ref mcf ref vortex |one-ref
eon rushmeier-ref parser |ref vpr route-ref
gee 166-ref perl diffmail-ref

5. Evaluation of DLS

In this section we evaluate the performance of DLS
processor. For comparison purposes, we also evaluate
three additional processors.

First, a baseline processor (B) with a two-cycle
scheduling loop that sacrifices the execution of depend-
ent instructions in consecutive cycles if producer
instructions are one-cycle latency.

Second, an ideal processor (ID) with a two-stage
scheduling logic, but it uses a one-cycle latency hard-
ware loop to wakeup/select instructions. Thus, depend-
ent instructions can be scheduled back-to-back in spite
of producer’s execution latency, and the pipeline depth
is kept consistent with the other processors (like in [4]).

Third, a processor that uses the Select-Free (SF)
mechanism proposed by M. D. Brown et al. in [4]. They
propose to remove the Selection Logic from the critical
scheduling loop. Ready instructions wake their depend-
ent instructions up, that is, the selection phase of each
producer instruction is overlapped with the wakeup
phase of its consumer instructions. Thus, all woken up
instructions compete speculatively for selection. Con-
tention for issue ports may misspeculate selections
because a consumer instruction may be selected at the
same time as its producer instructions. SF mechanism
checks the availability of the source operands of each
issued instruction before execution stage. In our simula-
tions we model the SF mechanism on a two-cycle
scheduling loop; SF mechanism checks the availability
of register source operands in register-read stage using
the scoreboard structure to check latency mispeculation.

Firstly, we present IPC results. Secondly, we show
results about the number of misspeculated instructions.
Third, we show the impact of latency between selection
and execution stages.

5.1. IPC evaluation

Table 4 shows, for each benchmark, the IPC achieved
by B processor in a 4-way processor (Table 1) and the

harmonic mean across the benchmark set considering
and not considering mcf (due to its biased memory
behaviour).

Table 4 IPC of the B processor (34 IQ-entries) and two
harmonic means (with and without mcf).

bzip2 crafty eon gap gee gzip mef
1.95 1.94 2.07 2.03 1.57 1.73 0.12

parser perl twolf vortex vpr HM HM-mcf
1.03 1.59 0.91 2.40 0.76 0.76 1.44

Fig. 7 shows the speedup of the other evaluated proc-
essors with respect to the B processor. We present indi-
vidual results for each SPEC-2000 integer benchmark
and two average values: Avg (including all benchmarks)
and Avg-mcf (including all benchmarks but mcf). These
average values are calculated as the ratio of the har-
monic means of the IPC. As the number of simulated
committed instructions is the same for all benchmarks,
we weight all benchmarks equally.

% Speed up
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Figure 7 Speed up of ID, DLS and SF processors with respect
to B processor (34 1Q-entries). Avg stands for ratio of
harmonic means of IPC.

The ID processor outperforms B processor from
20.7% in parser to 1.0% in mcf, averaging 4.9% (Avg).
However, when mcf is excluded from the average (Avg-
mcf), then the improvement reaches the 9.4%. These
results remark the importance of back-to-back execution
of dependent instructions.

On average, DLS processor performs within 2.0%
(Avg) of ID processor. Performance degradation with
respect to ID processor is due to conservatively prevent-
ing woken in advance instructions from competing for
selection despite their producer instructions have
already been selected. This is caused by producer-level
instructions whose scheduling take more than one cycle.

On average, SF processor slightly outperforms DLS
processor by 0.3% (Avg and Avg-mcf). But in eon, perl
and twolf, DLS processor outperforms SF processor (at
most, 1.4% in perl). In case of perl and twolf, wrong-
path execution explains performance degradation of SF.



In case of eon, the great amount of available ILP let
DLS perform better. However, the key observation is
that DLS processor misspeculates less issued instruc-
tions than SF processor. SF adds a new source of specu-
lation that is aimed at dealing with the latency of a
pipelined scheduling logic. This additional speculation
source increases the overall number of misspeculations
noticeably. Although such unuseful work boosts IPC in
SF processor, it wastes energy in both processor fron-
tend and processor backend. To point it out, we show an
indirect measure of the wasted energy by classifying the
misspeculated issued instructions by the source of their
speculation. Later, we analyse the impact of latency
between selection stage and execution stage.

5.2. Misspeculated instructions

The overall energy consumed while the processing of
a task is proportional to the number of executed instruc-
tions and the average work required for processing an
instruction. To estimate the energy consumption due to
misspeculated instructions, we quantify the number of
misspeculated issued instructions classified by the
source of their misspeculation. Considering these
sources, we know if a misspeculated issued instruction
uses front-end processor resources, back-end processor
resources or both. We differentiate four categories of
misspeculations: a) wrong-path instructions, b) mem-
ory-order violations, c) latency misspredictions and d)
misspeculated selections (this category applies only to
SF processor). The first category uses both front-end
and back-end processor resources. The second category
uses dispatch and back-end processor resources. The
later two categories use processor resources from 1Q
until register read stage.

In Fig. 8, for each benchmark, we show the misspecu-
lated issued instructions per committed instruction, dis-
tributed by misspeculation category in both DLS and SF
processors. The dark portion of each column represents
the amount of misspeculations of DLS processor. The
entire column represents the amount of misspeculations
of SF processor. For each benchmark, we show four col-
umns that correspond to the four misspeculation catego-
ries. DLS processor always issues less misspeculated
instructions than SF processor for each misspeculation
category in all benchmarks. In Fig. 8, sometimes this
difference can not be appreciated.

% misspeculated issued

instructions
M DLS (32 IQ-entries)

\I\ \A:Ll37
IOS [ SF (34 1Q-entries)

----- - MOV

»»»»» - EMis

_____ Msel

0 bzip2
Figure 8 Misspeculated issued instructions per committed
instruction, distributed by misspeculation category in both

DLS and SF processors. WP stands for wrong-path
instructions, MOV for memory-order violations, LMis for
latency misspredictions and MSel for misspeculated
selections.

In Fig. 9 we show the arithmetic means (Avg and
Avg-mcf) of misspeculated issued instructions per com-
mitted instruction across SPECInt benchmarks in ID, B,
SF and DLS processors. We show the four misspecula-
tion categories and, for each category, we show a group
of four columns that corresponds to ID, B, SF and DLS
processors.

% misspeculated
instructions

O 1ID (34 IQ-entries)
O B (34 IQ-entries)

B SF (34 1Q-entries)
[JDLS (32 IQ-entries)

Figure 9 Arithmetic means of misspeculated issued
instructions per committed instruction across SPEC
benchmarks in ID, B, SF and DLS processors. WP stands for
wrong-path instructions, MOV for memory-order violations,
LMis for latency misspredictions and MSel for misspeculated
selections.

In Fig. 9, we observe significant differences in the
category of latency misprediction between Avg and
Avg-mcf due to the great number of latency misspredic-
tions in mcf (Fig. 8).

The result of descendent sorting the processors by the
overall number of misspeculated issued instructions is:
SF, ID, B and DLS. SF processor boosts the perform-
ance of a two cycle scheduling logic using speculative
selection to favour back-to-back execution and it
increases with respect to B processor the overall number
of misspeculated issued instructions by 10.0%. How-



ever, DLS processor looks for opportunities for back-to-
back execution. DLS processor reduces with respect to
B processor the overall number of misspeculated issued
instructions by a 9.7%. Taking into account the catego-
ries WP, MOV and LMis, the result of descendent sort-
ing the processors by the number of misspeculated
issued instructions is: ID, SF, B and DLS (excluding
latency misprediction category in Avg-mcf). Comparing
ID and SF processor, the amount of speculation in
branch missprediction and latency missprediction cate-
gories is greater in ID with respecto to SF. However, on
behalf of a fair comparison, re-scheduled instructions
due to miss-selections prevent SF from going deeper in
wrong-path. Note that the sum of all misspeculations in
ID and SF are similar.

In SF processor a misspeculated selection occurs
when both producer and consumer instructions are
issued at the same cycle. When an instruction is depend-
ent on a misspeculated load and it also requires to be re-
issued due to a misspeculated selection, we consider it
as a misspeculated selection. On Average, the number of
misspeculated selections represents a 2.3% of the com-
mitted instructions and a 5.3% of the misspredicted
issued instructions.

In SF processor, due to speculative selection, branch
instruction issuing (and, consequently, branch prediction
checking) may be delayed with respect to DLS proces-
sor due to the re-issuing of the older misscheduled
instructions or because the branch instruction belongs to
a chain of misspeculated instructions. Then, SF proces-
sor goes into the wrong exection path deeper than B and
DLS processors. On average, DLS processor reduces
the number of wrong-path issued instructions by a 7.0%
with respect to SF processor. DLS processor also exe-
cutes less wrong-path instructions than B processor
(15.4 of reduction), this is caused by the fact that DLS
model can resolve branches before than B model
because in some cases it can execute one-cycle-depend-
ent instructions back-to-back.

The number of cache misses in SF and DLS proces-
sors are very similar and both processors check the
latency prediction at the same pipeline stage. However,
the number of latency misspeculated instructions in SF
processor is greater than in both B and DLS processors
due to the aggressive speculative policy in the schedul-
ing logic, that allows SF processor issuing more instruc-
tions dependent on the missing load than B and DLS
processors. DLS processor looks for safe opportunities
for executing back-to-back dependent instructions,
while SF processor always favours back-to-back. On
average, DLS processor reduces the number of latency
misspeculated instructions with respect to SF processor
by 21.4%. DLS also reduces in a 5.8% the number of

latency mispeculated instructions with respect to B. In
DLS, an instruction that depends on a load and a one-
cycle instruction is conservatively labelled as woken up
in advance. After wakeup, this instruction must wait for
complete scheduling of current producer level before
competing for selection, nevertheless which producer
was firstly issued (load instruction or one-cycle instruc-
tion). Assuming that one-cycle producer has already
wake up in advance, on a Ll-miss of producer load,
woken up in advance dependent instructions scheduling
is delayed until the current producer level is scheduled.
This delay may prevent to these dependent instructions
to be scheduled in the shadow of this L1-miss, and then
the number of misspeculated instructions due to L1-
misses are reduced. In mcf (Fig. 9), this situation is spe-
cially significant.

Also, the misspeculated issued instructions due to
memory-order violations is smaller in DLS processor
than in SF processor. On average, DLS processor
reduces a 17.6% the number of misspeculated issued
instruction in this category.

To sum up, DLS processor reduces the number of
misspeculated issued instructions in each misspecula-
tion category with respect to SF and B processors. DLS
processor reduces the overall number of misspeculated
issued instructions a 17.9% with respect to SF and a
9.7% with respect to B processor.

Finally, we have also simulated all processors with
the same number of IQ entries (32). The results show
that this parameter does not significantly impact the
overall number of misspeculated issued instructions.
The overall number of misspeculated issued instructions
of SF processor is reduced by DLS processor a 17.3%.
The number of misspeculated selections in SF processor
represents a 6.5% of the misspeculated issued instruc-
tions. In this case, on average, DLS processor slightly
outperforms SF processor by 0.1%.

5.3. Impact of the latency between selection
stage and execution stage

Fig. 10 shows the performance impact of latency
between selection stage and execution stage. We con-
sider latencies from one cycle to four cycles, since two
cycles is the default value in our evaluations. All proces-
sors show a performance degradation if the latency
increases, because both the branch-missprediction pen-
alty and the load-instruction shadow [16] increase.
However, the performance degradation observed in SF
processor is greater than in the other processors because
the misspeculated-selection penalty increases with the
latency. For instance, DLS processor reduces the overall
number of misspeculated issued instructions with
respect to SF processor by 7.8% and 10.0% (Avg and



Avg-mcf) for 1 cycle, meanwhile for 2 cycles, it
becomes a 17.9% and 16.0% (Avg and Avg-mcf), for 3
cycles, it becomes a 33.5% and 23.3% (Avg and Avg-
mcf), and for 4 cycles, it becomes a 35.5% and 23.8%
(Avg and Avg-mcf).

IPC
(HM-mcf)

R

155 - - o= s = - - - - - - - T e - - - - - -
—+- 1D (34 IQ-entries)

1.50 T -= DLS (32 IQ-entries)

T SF (34 IQ-entries)

L e S
- B (34 [Q-entries)

1.35

1 cycle 2 cycles 3 cycles 4 cycles

Figure 10 Performance impact of the latency between
selection and execution stages in ID, DLS, B and SF
processors. Plotted values are the harmonic mean of IPC
excluding mcf benchmark

6. Improvements to the DLS mechanism

In this section we analyse DLS behaviour and we pro-
pose two improvements to DLS.

First row of Table 5 shows the percentage of execu-
tion cycles in which there are no woken in advance
instructions. Next four rows show the percentage of exe-
cution cycles that Selection Logic devotes to schedule a
producer-level that takes one, two, three and four or
more cycles to be scheduled, and also, there exists at
least one advanced waken up instruction. In case of two
or more scheduling cycles, their woken in advance con-
sumers are prevented from competing for selection until
completely scheduling the producer-level.

Table 5 Execution cycle distribution according to producer-
level scheduling duration in DLS (1, 2, 3, 4 or more cycles).

bzip2| crafty| eon | gap | gec | gzip| mcf | parser| perl | twolf] vortex| vpr

no WA | 343 37.6] 52.0| 34.6( 61.1| 29.4 94.9| 49.5| 49.3| 59.3| 38.1| 70.0

Leyele | 38.0| 37.6| 37.2| 46.7| 28.9| 37.9| 4.5| 40.1 | 34.4| 32.2| 35.1|23.1

2cycle |21.6| 19.1 83| 163| 73| 21.1f 06| 7.9 |12.7| 6.8| 16.5| 6.4

3cycle | 48| 49| 19| 1.8 23| 105( 00| 2.1 | 32| 1.5] 75| 0.5

>4cycles| 1.3 08] 06| 06( 04] 1.1 00| 04 | 04| 02| 28| 0.0

In DLS processor, back-to-back execution of one-
cycle producer instructions and their dependent instruc-
tions is achieved when the producer-level instructions
are scheduled in one cycle. In Table 5 we observe that,
except mcf, the percentage of cycles in which no woken
in advance instructions (first row) plus the percentage of
cycles in which the scheduling of producer-level
instructions takes one cycle ranges from 67.3% (gzip) to
93.1% (vpr). During this percentage of cycles, DLS
processor performs like the ideal processor (ID).

In DLS processor, when the scheduling of producer-
level instructions takes several cycles, then woken in

advance instructions are conservatively prevented from
competing for selection although their producer instruc-
tions have been already selected. In this scenario,
reflected by bottom three rows in Table 5, DLS proces-
sor expects that available ILP maintains throughput of
issued instructions, that is, all issue ports will be busy
every cycle. Thus during scheduling cycles of producer-
level instructions, performance may be degraded due to
two reasons: a) some issue ports are not busy and these
issue ports could have been devoted to schedule woken
in advance instructions whose producer instructions
have been already scheduled and b) although issue
bandwidth is fully exploited every cycle, some woken in
advance instructions may be older than any instruction
that competes for selection.

If the scheduling of producer-level instructions takes
two cycles, DLS processor is not outperformed by the
baseline processor (B). However when the scheduling
takes even more cycles, then DLS processor may be out-
performed by B processor.

The following subsections describe two improve-
ments to DLS processor. The goal of these improve-
ments is to allow competing for selection some
instructions that in DLS processor were prevented from
competing for selection. In following subsections we
describe the improvements and in a later subsection we
present their evaluation.

6.1. Taking into account instructions without
consumer instructions in issue queue (DLS-
WCQO)

The distance between a producer and its consumers
instructions is usually short. However, there is a repre-
sentative fraction of one-cycle instructions that do not
have consumer instructions in IQ at issue time. In DLS
processor, when these producer instructions belong to a
producer-level, they could prevent the instructions that
have been woken in advance by the remaining instruc-
tions of the producer-level from competing for selec-
tion. Table 6 shows the percentage of times, that all one-
cycle latency instructions competing for selection do not
have a consumer instruction in IQ. This percentage is
classified according to the time devoted to schedule pro-
ducer-level instructions that are currently competing for
selection. The idea is that producer-level instructions
without consumer instructions in the issue queue do not
prevent woken in advance instructions from competing
for selection. For this, at dispatch time, DLS-WC mech-
anism also tags as without-consumer any instruction
classified as wakeup in advance. Later, at dispatch time
of the first consumer instruction, DLS-WC mechanism
untags the producer instruction if it still remains in the
issue queue. An instruction tagged as without-consumer



is not accounted by ZDL and then, this instruction does
not prevent waken in advance instructions from compet-
ing for selection.
Table 6 For each producer-level scheduling duration,
percentage of times that all instructions competing for
selection do not have consumer instructions in the issue

queue.
Scheduling Cycle Duration bzip2 crafty con gap gce gzip
2 cycle 43 2.4 1.5 3.0 1.6 35
> 3 cycles 0.9 1.1 0.5 0.6 0.5 22
mcf parser perl | twolf | vortex| vpr
2 cycle 0.02 1.5 2.3 0.6 34 0.6
> 3 cycles 0.00 0.5 0.5 0.3 2.7 0.1

6.2. Letting woken up in advance instructions
compete for selection (DLS-B)

In DLS mechanism, during the scheduling of producer-
level instructions, woken in advance instructions are not
allowed to compete for selection although their pro-
ducer instructions may be already selected. The idea to
improve DLS mechanism is to make safe use of instruc-
tion age in order to let some woken in advance instruc-
tion compete for selection before producer-level
instructions had been completely scheduled.

In DLS-B mechanism, a woken in advance instruc-
tion is also allowed to compete for selection only if it is
older than the oldest instruction which remains compet-
ing for selection. This approach is conservative because
not all woken in advance instructions whose producer
instructions are already selected are allowed to compete
for selection. An instruction still competing for selection
that is older than the woken in advance consumer
instructions but younger than the already selected pro-
ducer instructions, prevents the consumer instruction
from competing for selection (note that a really ready
consumer instruction will be disabled for selection by
any older non-selected instruction that currently is com-
peting for selection). The implementation of this selec-
tion policy is simple in a issue queue that maintains the
instructions physically ordered by compacting the issue
queue entries [10] or by using a circular structure [19].
In selection phase of these schedulers, a request signal
generates a kill signal to disable lower-priority request
signals. DLS-B mechanism adds another kill signal: a
request signal from a producer-level instruction disables
younger request signals from waken in advance instruc-
tions.

Fig. 11 shows an example of scheduling an instruc-
tion sequence with DLS-B mechanism. All four instruc-
tions are labelled as wakeup in advance, but only
instruction 3 is labelled as woken up in advance. Instruc-
tions 1, 2 and 4 form a producer-level, and instruction 3
forms the consumer-level.

In cycle 1, instructions 1, 2 and 4 (one-cycle instruc-
tions) are ready. During cycle 2, instruction 3 is woken
up in advance. In cycle 3, as instruction 3 is younger
than instruction 2, instruction 3 is not allowed to com-
pete for selection. Instruction 2 is older than instruction
4 and, it is selected in cycle 3. In cycle 4, instruction 3 is
allowed to compete for selection because it is older than
instruction 4; then instruction 3 is selected. Being the
oldest instruction of both the producer-level and the
woken in advance instructions ensures that data depend-
ences of instruction 3 are satisfied.

Cycles 1 2 3 4 5 I 6 7 8 9

1. add 16417, 18 W S P R [ALU| WR
2. sub r9¢—10, r11 W | RI S P R |ALU| WR
3. add 13«16, 12 IQ | WA | ARI| S P R |ALU|[ WR
4. add r12¢rl, 4 W | RI | RI | RI S P R |ALU|[ WR

Figure 11 Scheduling example with DLS-B mechanism

6.3. Evaluation

In this section, we show the performance results for both
improvements to the DLS processor (DLS-WC and
DLS-B). Fig. 12 shows the speedup achieved by these
processors with respect to the B processor.

Focusing on DLS-WC processor, on average, a slight
improvement is achieved. DLS-WC processor outper-
forms DLS processor in all benchmarks except in gap
and vpr. The performance increment depends on the
benchmark and it is significant in gzip (2.8%).

DLS-B processor outperforms DLS-WC processor.
On average, it boosts DLS processor by 0.5% and it is
within 1.5% of ID processor. The speedup of DLS-B
processor with respect to DLS processor in benchmarks
crafty, gzip and vpr ranges from 1.3% to 3.4%. How-
ever, in eon benchmark, DLS processor and DLS-WC
processor outperform DLS-B processor. In eon bench-
mark, DLS-B processor issues 0.22 million more
instructions than DLS processor, however, DLS-B proc-
essor still issues less instructions than SF processor.

Also, these improvements to DLS processor reduce
the overall number of misspeculated issued instructions
with respect to SF processor up to 18.7% (Avg DLS-B)
and 18.4% (Avg DLS-WC). In base DLS, woken up in
advance instructions wait for the scheduling of the cur-
rent producer-level, although their source operands are
ready. DLS-WC and DLS-B try to promote these unnec-
essarily-waiting instructions and let them to compete for
selection before the current producer-level has been
scheduled. These promoted instructions may be either
speculative or non-speculative, anyway more ILP is
exposed and branches may be resolved earlier (less mis-
speculations).
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Figure 12 Speedup of ID, SF, DLS, DLS-WC and DLS-B processors with respect to B processor (34 1Q-entries). Avg
stands for ratio of harmonic means of IPC.

7. Related works

Researchers have addressed the scalability and atomic-
ity of instruction schedulers using different techniques.
Prescheduling allows shortening or even eliminating the
wakeup phase of instruction schedulers
[S1[6]1[91[20][23][25]. Wakeup latency is addressed by
reducing the load capacitance of the wakeup tag bus
[8][12][18] or by wusing index-based wakeup
[5][6][12][14][21][29][32]. In several works the issue
queue is partitioned or segmented in order to reduce the
scheduling-loop latency[3][13]. Other proposals narrow
the implementation of the issue queue taking into
account that the distance between producer and con-
sumer instructions is short [12] or that some producers
do not have consumer instructions in the issue queue at
issue time [28]. In the context of pipelined schedulers,
some proposals hide the scheduling-loop latency by
grouping instructions because grouping increases the
scheduling granularity [2][15][17][26][27]; also, in
order not to sacrifice the ability of back-to-back execu-
tion, other proposals schedule instructions speculatively.

Several works overlap the selection phase of a pro-
ducer instruction with the wakeup phase of their
dependent instructions. J. Stark et al. [31] proposed to
speculatively wake instructions up by their grand-par-
ents in order to tolerate the scheduling logic latency. An
additional Wakeup Logic driven by parent instructions
confirms if each selected instruction has their source
operands available. R. Gran et al. [11] add a Wakeup
Logic to a base two-cycle scheduling logic in order to
detect opportunities to execute dependent instructions
back-to-back. This added Wakeup Logic keeps instruc-
tions dependent on one-cycle instructions; they are
woken up when the parent group of one-cycle instruc-

tions starts competing for selection. There exists an
opportunity to execute back-to-back dependent instruc-
tions when all instructions of the parent group of one-
cycle instructions have been selected. While [31] is
speculative, [11] is not. Moreover, both proposals use
two Wakeup Logics which duplicate the cost of the
wakeup phase.

M.D. Brown et al. [4] proposed a design of the sched-
uling loop, named Select-Free in which Wakeup Logic
forms a single cycle loop and the Selection Logic is
removed from the critical scheduling loop. This mecha-
nism wastes energy due to re-schedulings. Their evalua-
tions assumes both perfect load latency prediction and
perfect memory-dependence prediction. However, in
our evaluations we predict both of them and we measure
the impact of several misspeculation sources separately.
In this scenario, the non-speculative mechanism pro-
posed in this paper (DLS) reduces the overall number of
misspeculated issued instructions with respect to SF by
17.9% and SF slightly outperforms DLS by 0.3%.

8. Conclusions

In high performance processors the scheduling loop is a
critical loop. Pipelining this loop without significantly
downgrading performance may allow to increase clock
frequency and/or to enlarge the issue queue. We have
proposed a mechanism, the Dependency Level Sched-
uler (DLS), that tolerates the latency of a pipelined
scheduling loop and it also boosts performance with
respect to a pipelined scheduling logic. The idea of DLS
mechanism is to look for opportunities to execute
dependent instructions back-to-back and use these
opportunities safely. Key differences of DLS mecha-
nism with respect to previous proposals, that tolerate the



latency in a pipelined scheduling logic, is that DLS
mechanism is non-speculative and it does not duplicate
hardware cost in Wakeup Logic.

We have shown that the number of misspeculated
instructions issued by DLS processor is smaller than the
misspeculated instructions issued by a speculative
scheduler and thus, the wasted energy is smaller. We
indirectly have evaluated the wasted energy by quantify-
ing the amount of misspeculated issued instructions.
DLS processor reduces the overall number of misspecu-
lated issued instructions with respect to a speculative
scheduler by 17.9% while it is outperformed by the
speculative scheduler only by 0.3%. Also, we have
shown that when the number of stages between issue
and execution increases, then DLS processor reduces
even more the number of misspeculated issued instruc-
tions with respect to the speculative scheduler, and
moreover, DLS processor slightly outperforms the spec-
ulative scheduler.

DLS processor performs, on average, within 2.0% of
an ideal processor (unpipelined scheduler). Improve-
ments to DLS mechanism reduce this performance gap.
The best of these improvements performs within the
1.5% of an ideal processor and it reduces the overall
number of misspeculated instruction with respect to a
speculative scheduler by a 18.7%.
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