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Abstract

While Speculative Multithreading (SM) on a Chip Mul-
tiprocessor (CMP) has the ability to speed-up hard-to-
parallelize applications, the power inef ciency of aggres-
sive speculation is a concern. To improve SM s power ef -
ciency, we note that not all the tasks that are running in a
SM environment are equally critical.

To leverage this insight, this paper develops a novel,
widely-applicable task-criticality model for SM. It also pro-
poses CAP, a novel architecture that builds a task-criticality
graph dynamically and uses it to make scheduling decisions
in a SM CMP. Experiments with SPECint, SPECfp, and
Olden applications show that, in a CMP with one fast core
and three slow ones, the E D? with CAP is, on average,
91-95% of that without. Moreover, it is only 77-91% of the
E  D? of a CMP with four fast cores and no CAP. Overall,
we argue that scheduling for task criticality is bene cial.

1. Introduction

Relentless transistor integration is driving processor
manufacturers to build Chip Multiprocessor (CMP) archi-
tectures. However, while CMPs can effectively speed-up
parallel programs, much of the application base today is still
composed of sequential applications — for example, non-
numerical applications that compilers fail to parallelize.

A proposed solution to speed-up these hard-to-
parallelize codes is Speculative Multithreading (SM)
(e.g., [5, 6, 16, 17]). While evaluations of SM on a CMP
have generally shown good, if modest, speedups, an impor-
tant concern has been the power inefficiency of aggressive
speculation. As more tasks are executed speculatively to
deliver higher speedups, there is a higher chance of spend-
ing power on work that ultimately gets squashed. Unfortu-
nately, wasting power is an unattractive proposition.

Given the key importance of power issues, our goal is
to design power-efficient SM systems. Previous work on
this area by Renau er al. [12] focused on improving the en-
ergy efficiency of SM operations. In this paper, we focus
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instead on the interaction between the tasks of an applica-
tion. Specifically, we make a key observation on the behav-
ior of SM tasks: not all of the tasks that are running in a SM
environment are equally critical for the performance of the
application.

To leverage this insight to improve power efficiency,
we need two architectural features. First, the CMP has
to be able to assess the criticality of each task. While
some of the ideas from instruction-level criticality analy-
sis [4, 7, 14, 19, 20] can be reused for tasks, the model and
hardware implementation required are substantially differ-
ent. Second, the CMP has to be able to execute the less
critical tasks in a way that saves power. This can be sup-
ported by running them on cores with lower frequency and
voltage.

Based on these observations and needs, this paper pro-
poses CAP, a novel architecture that (i) analyzes and pre-
dicts the criticality of tasks in a SM application at run-time,
and (ii) uses criticality predictions to schedule tasks on a
SM CMP with some cores running at lower frequency and
voltage. Critical tasks are scheduled on fast cores, while
non-critical ones run on slower ones.

Overall, this paper makes three contributions:

1. It develops a novel, widely-applicable task-criticality
model for SM.

2. It proposes the CAP architecture, which dynamically
builds a task-criticality graph based on the model and uses
it to make scheduling decisions in a SM CMP.

3. It evaluates CAP. Experiments with SPECint, SPECfp,
and Olden applications show that, in a CMP with one fast
core and three slower ones, the £ D? with CAP is, on
average, 91-95% of that without it. Moreover, it is only 77—
91% of the E  D? of a CMP with four fast cores and no
CAP. Overall, we argue that scheduling for task criticality
is beneficial for power efficiency.

The rest of the paper is organized as follows. Section 2
presents a background; Sections 3 and 4 present the pro-
posed criticality model and the CAP architecture; Sections 5
and 6 evaluate CAP; and Section 7 concludes.

2. Background

The critical path is the chain of dependent events that de-
termine the overall execution time of the program. There



has been substantial research on predicting the critical in-
structions and quantifying instruction criticality [2, 3, 4,
7, 14, 15, 19, 20]. Conventional instruction-level critical
path analysis has the advantage of reasoning about events
that happen within a microprocessor, such as contention on
functional units. However, in the scenario of SM archi-
tectures, directly applying the instruction-level model has
shortcomings. First, the flood of per-instruction information
makes the model very hard to implement in hardware. Sec-
ond, most per-instruction information is useless when con-
sidering interactions between tasks. Specifically, instruc-
tions that are not responsible for inter-thread communica-
tion are usually uninteresting. Finally, interesting, task-level
information is scattered across the many instructions of the
task.

Due to these limitations, in this paper, we propose a task-
level criticality model for SM that tracks and collects per-
task information, and then predicts the criticality of each
task. The number of tasks is orders of magnitude lower than
the number of instructions. Therefore, it is possible to store
the model in hardware.

2.1 Speculative Multithreading (SM)

SM extracts tasks from a sequential program and exe-
cutes them in parallel, hoping not to violate sequential se-
mantics. The control flow of the sequential program im-
poses a task order. Therefore, we use the term predeces-
sor and successor tasks. The safe (or non-speculative) task
precedes all speculative tasks. SM schemes provide special
hardware support to detect if the parallel execution of spec-
ulative tasks violates any data dependence relation required
by the sequential program. If any dependence is violated,
the offending tasks are squashed, any polluted state is re-
paired and the tasks are re-executed.

Buffering Speculative Data. Under SM, data generated by
speculative tasks has to be stored separately before it can be
merged with the safe state of the program. Speculative data
can be saved in a special hardware buffer or in the cache
of the processor. When a task becomes non-speculative, its
data can be made visible to the rest of the system. A cache
can hold speculative state from multiple speculative tasks.
The data of each task has its own version ID.

In-Order and Out-of-Order Task Spawning. There are
two types of task spawning schemes in SM: in-order and
out-of-order [13]. Under in-order spawning, an individual
task can at most spawn one correct task in its lifetime. A
correct task is one that is in the sequential execution of the
program, rather than in the wrong path of a branch. As a re-
sult, correct tasks are spawned in-order, namely, in the same
order as in sequential execution. Under out-of-order spawn-
ing, an individual task can spawn multiple correct tasks.
Out-of-order spawning is harder to support, but it enables
more task parallelism.

Power-ef cient Speculative Multithreading. Renau ez
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al. [12] identified and quantified the main sources of en-
ergy consumption in SM. Then, they proposed a set of sim-
ple energy-saving optimizations for SM. Their work focuses
on improving the efficiency of SM operations; our paper fo-
cuses on improving the efficiency of the interaction between
SM tasks.

Nagpal and Bhowmik [10] used an instruction-level crit-
icality model to drive energy-aware speculation for SM pro-
cessors. They focused on controlling task squashes by de-
laying the non-critical loads and enhancing the branch pre-
diction. Our scheme considers all task interactions, not just
task squashes.

3. Task-Level Criticality Model

This section describes a novel task-level criticality model
for SM environments. The model is very general, as it
applies to both SMT- and CMP-based SM architectures,
both with in-order and out-of-order task spawning. Since
it tracks only task-level information, it significantly re-
duces storage requirements compared to an instruction-level
scheme, and lends itself to a simpler hardware implementa-
tion.

3.1 Lifetime of a SM Task

In an instruction-level criticality model, an instruction is
represented by a set of nodes that represent different stages
in the instruction’s lifetime — e.g., Dispatch, Execute and
Retire. Similarly, a task experiences a few stages during its
lifetime: Start (the task is created by a predecessor), Exe-
cute (the task is assigned to a free core or context), Finish
(the execution completes the task-end instruction) and Com-
mit (the commit token for the task is consumed). Figure 1(a)
shows a task’s lifetime, where the thicker line represents the
use of a core or context.

To accurately calculate the critical path in a set of dy-
namic SM tasks, we need to model all the interactions be-
tween tasks: (i) a task can execute a spawn instruction,
thereby creating another task; (ii) a task can execute a
store instruction that synchronizes with a successor task or
squashes it, forcing the latter and its successors to re-start;
(iii) a task may have to wait for another to finish execution
and release the core or context; and (iv) a task may have to
wait for another to commit, so that it can become safe and
either commit or perform an irreversible operation such as
1/0.

We propose to divide a task lifetime into stages between
which these interactions take place. Unlike the instruction-
level model which has a unique set of nodes per instruction,
many instructions map into a single node. As a result, using
the four obvious stages Start, Execute, Finish and Commit
as in Figure 1(a) is suboptimal. The reason is that the Exe-
cute stage can contain instructions with a mix of criticality
levels. Specifically, if it contains a task spawn instruction
(or similarly for a squash or sync), the instructions before
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Figure 1. Stages in a task lifetime (a), exam-
ple of multiple task execution (b), and result-
ing criticality graph (c).

the spawn may be much more or less critical than the ones
after it. While the model accurately calculates the critical
path in aggregate, its suboptimal characteristic makes it less
accurate for identifying the criticality of a specific instruc-
tion.

3.2 Proposed Task Level Model

In our model, we handle task spawn, squash, and syn-
chronization operations in the Execute stage differently.
Consider spawns first. In an environment with out-of-order
spawning, a task may spawn multiple tasks. After every
spawn operation, the criticality level of the task may change
substantially. Consequently, we propose a model where a
task is broken into subtasks. After every spawn operation, a
new subtask starts.

As an example, consider Figure 1(b). It shows Task A
spawning Task C and then squashing it. C immediately
restarts. Later, Task A spawns Task B, which is less specu-
lative than Task C. Task B cannot get a processor and waits
until Task A finishes and relinquishes its processor. After
that, Task B executes. When B completes, C is still running.
In this example, there are three subtasks in A: from the start
of the task to the first spawn (subtask A.7); between the two
spawns (subtask A.2); and from the last spawn to the end of
the task (subtask A.3).

This approach, where a subtask has at most one spawn,
has two important properties. First, in-order and out-of-
order task spawning environments are handled seamlessly.
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Secondly, a task spawn cannot cause instructions with dif-
ferent criticality levels to be included in the same Execute
node. We could apply the same approach of creating a sub-
task for a squash or a synchronization edge. However, be-
cause they are much rarer than spawns, the benefits would
be small.

We model a subtask with four nodes. Start (S) and Ex-
ecute (E) follow the description of Section 3.1. Finish (F)
corresponds to the point after the subtask executes a spawn
or a task-end instruction. Finally, Commit (C) involves re-
ceiving the commit token, committing the architectural state
of the whole task (only if this is the last subtask in the task),
and passing the token to the next subtask. Table 1 shows
when each node is reached.

[ Node [ When It Is Reached |
Start (S) Subtask is created
Execute (E) Subtask starts executing
Finish (F) Subtask has completed a spawn or a task-end instruction
Commit (C) Subtask receives the commit token
Table 1. Nodes in a subtask.
[ Edge [ Description
Si — E;
E; — F; Transitional edges within a subtask
F — C;
F; — Sj Spawn Subtask(i) spawns Subtask(j)
FE; — Sj Squash Subtask(i) squashes Subtask(j)
E; — Ej Sync Subtask(i) synchronizes with Subtask(j)
F;, — E; Resource Subtask(i) relinquishes core to Subtask(j)
Ci — Eipq BeSafe Subtask(i+1) must wait to be safe
Cy — Cita Commit Subtask(i)’s commit precedes Subtask(i+1)’s

Table 2. Edges in the criticality graph.

Table 2 describes all the possible edges between the
nodes. The first set of edges are those within a subtask (Row
1). They are drawn between the successive stages of a sub-
task: S; — FE;, E; — F;, and F; — ;. The rest of the
edges in the table are between subtasks, and represent inter-
actions between subtasks. Specifically, every subtask starts
in one of two ways. First, it can be spawned by a prede-
cessor, as shown by the Spawn edge F; — S;, where the
subtask versions satisfy ¢+ < j (Row 2). Alternately, the
subtask can be squashed by a predecessor and restarted, as
shown by the Squash edge E; — S; (Row 3).

Once executing, subtasks can synchronize either with ex-
plicit wait instructions or as a result of a dependence predic-
tor. In this case, a Sync edge E; — Ej is inserted (Row 4).

A spawned task may be unable to execute in two cases:
it does not have a core or context to run on, or it needs to be-
come safe before it can execute. The latter case may occur,
for example, if the subtask has to perform an I/O operation,
which cannot be executed speculatively. The first case is
represented by the Resource edge F; — E; (Row 5). The
second case is represented by the BeSafe edge C; — E;
(Row 6). This edge goes from the Commit node of a subtask
to the Execute node of its immediate successor.

Finally, the fact that each subtask must commit after its
immediate predecessor commits is represented by the Com-



mit edge C; — C; 11 (Row 7).

Figure 1(c) shows the criticality graph corresponding to
the execution in Figure 1(b). The critical path can be com-
puted efficiently using Last Arriving Rules [4] by walking
backward from the last Commit node in the graph. The crit-
ical path in Figure 1(c) is highlighted with thicker lines.
From this graph, it is clear that 7ask B is not in the criti-
cal path. Task B could take longer to execute (perhaps in a
lower power mode) without hurting performance.

For simplicity, in the remainder of the paper, we will use
the term “tasks” to mean the “subtasks.”

4. Architecture Design

We propose an architecture called CAP (Criticality Anal-
ysis for Power-efficient Speculative Multithreading) to: (i)
build our task-level criticality graph in hardware dynami-
cally and (ii) make task criticality predictions based on the
graph. These predictions are used to schedule SM tasks in a
CMP power-efficiently.

Figure 2(a) shows a multiprocessor system with CAP.
CAP adds two modules: a Task Controller (TC) and a Criti-
cal Path Builder and Predictor (CPBP). The TC keeps track
of all running and pending tasks, and controls task schedul-
ing. The CPBP has two components, namely the Builder
and the Predictor. The former builds the criticality graph in
hardware on-the-fly and computes the critical path; the lat-
ter uses the critical path information to store the inter-task
edges that are Critical Edges most frequently. A Critical
Edge is one that connects a critical task at the point where
it ceases to be critical to the next critical task at the point
where it starts being critical.

As a task executes, the TC keeps information on it, such
as which task spawned it and which tasks squashed it. When
the task commits, the TC forwards this information to the
Builder to be added to the criticality graph. When the
Builder has buffered enough tasks for a meaningful analy-
sis, it calculates the critical path. Based on the critical path,
the Builder updates the list of Critical Edges in the predic-
tor. Then, the Builder’s graph is flushed, and it starts over.
The Predictor, therefore, gets continuously trained. The TC
uses the information on Critical Edges in the Predictor to
make scheduling decisions.

4.1 Task Controller

To be able to construct critical paths, we need to record
some information for each dynamic task. Specifically, for
each node in the task, we need to record (i) which incom-
ing edge is the Last Arriving Edge (LAE) to the node and
(i1) what is the ID of task at the source of that edge. This
information is collected by the TC.

As a task is created, the TC assigns a Version ID (VID)
to it — a unique name for that dynamic task. As the task
executes, the TC records the aforementioned information.
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Figure 2. Multiprocessor system with CAP
(a), CurCriTask register (b), Graph Table (c),
VID Table (d), and Critical Edge Table (e).

When the task commits, this information is passed to the
Builder.

The TC has a register called CurCriTask (Figure 2(b)),
which contains the VID of the task that is currently criti-
cal. Such task is scheduled on a high performance core —
one with high voltage and frequency. The other tasks can be
scheduled on slower processors that use less power. Since
such tasks had slack, they will not hurt performance. Ev-
ery time that the CurCriTask task experiences an event that
could be the source of a Critical Edge, the TC checks the
Predictor. If the Predictor confirms that this is a Critical
Edge with high probability, the task at the destination of the
Critical Edge is placed in the CurCriTask register and the
TC moves that task to a high-performance core.

Based on our experiments, we find that the Critical Edges
where a processor re-schedule is most often beneficial are
of the Spawn, Squash, and Sync type. Consequently, the
Predictor will only store information on these three edge
types. Moreover, the TC will only check the Predictor when
the CurCriTask task spawns, squashes or synchronizes. If
the Predictor has not recorded the corresponding Spawn,
Squash, or Sync edge as Critical, criticality is assumed to
remain in the task. In this case, the CurCriTask register re-
mains unmodified.

However, recall that, in our model, a spawn also ‘trans-
forms’ the spawning task into a new task — e.g., Task A./



becomes A.2 after spawning C in Figure 1. As a result,
A.I and A.2 have different VIDs. If the A./—C edge is not
found in the Predictor, the CurCriTask register is automati-
cally updated to hold A.2. Artificial spawn edges introduced
by our model such as A./—A.2 are not stored in the Predic-
tor to save space.

When the CurCriTask task really finishes (i.e., not be-
cause of a spawn), the current non-speculative task in the
system is moved to a high-performance processor, but the
CurCriTask register is not necessarily updated. It is updated
only if there is only one task left in the system — in which
case, that task is put in the CurCriTask register. Otherwise,
it is left unused and the TC checks the Predictor at every
spawn, squash, and synchronization of every task, hoping
to identify a Critical Edge. When one is identified, the des-
tination task is put in the CurCriTask register.

The TC ensures that the non-speculative task always
runs.

4.2 Builder

The Builder is responsible for building the graph and cal-
culating the critical path. The Builder consists of the two
hardware tables shown in Figures 2(c) and (d): the Graph
Table and the Version ID (VID) Table, respectively. The
Graph Table provides the storage for the criticality graph.
The VID Table simply maps a VID to an index into the
Graph Table — also called an Entry ID (EID).

Each row in the Graph Table corresponds to a dynamic
task. The first field (Task SID) is the static task ID. The
other fields record, for each node in the task, (i) the type of
its LAE and (ii) the EID of the task at the source of its LAE.
The different types of edges are shown in Table 2.

Specifically, the Start area of the Graph Table contains
information on the LAE for the Start node. Since the alter-
natives are a Spawn or a Squash edge (Table 2), we use a
1-bit Type-of-edge field and an EID field. We discuss the P
field later.

The Execute area contains information on the LAE for
the Execute node. The alternatives are an intra-task edge
from the task’s Start node, or a Sync, Resource, or BeSafe
edge. The first case is encoded with a null EID field. The
other cases are encoded with a 2-bit Type field and the cor-
rect EID in the EID field.

There is no need to store information on the Finish node
because it has a single type of incoming edge. Finally, the
Commit area contains information on the LAE for the Com-
mit node. The alternatives are an intra-task edge or a Com-
mit edge. Consequently, we need a 1-bit Type field. There
is no need for an EID field because the source of a Commit
edge is always the immediate predecessor task.

The Graph Table also contains two P fields (Figure 2(c))
to help the Predictor. The P fields record whether the corre-
sponding LAEs were predicted as critical during the previ-
ous execution of the task. By recording this information in
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the Graph Table, the Builder can compare the current criti-
cal path to criticality predictions made at the previous exe-
cution, and update the Predictor.

With this support, consider how a graph is built. When
a task commits, an entry in the Graph Table is allocated
for the task and is filled with information from the TC. The
VID Table is used to map VIDs to entries in the Graph Ta-
ble. When the Graph Table is filled with tasks, the critical
path is calculated. A finite state machine traverses the graph
in reverse and constructs the critical path based on LAE in-
formation. The cross-task edges in the critical path that are
of Spawn, Squash or Sync type are Critical Edges and are
passed to the Predictor for training.

Thanks to using a task-level criticality model, the Builder
is very space-efficient. The storage for the Builder is
34b 64 for the Graph Table plus 38b 16 for the VID Ta-
ble, for a total of 348 bytes.

4.3 Predictor

The Predictor records the most frequently-observed Crit-
ical Edges in the program. For that, it uses the Critical
Edge Table (Figure 2(e)). Each row in this hardware ta-
ble corresponds to an ordered pair of tasks that have one or
more Critical Edges going between them. Each row con-
tains three 3-bit up/down saturating counters, which count
the number of times that we have seen a Critical Edge be-
tween these two tasks of type Spawn, Squash, and Sync,
respectively.

In our model, a task ‘transforms’ itself into a new one
when it spawns — e.g., Task A.I becomes A.2 after spawn-
ing C in Figure 1. In the example, if A.7 is critical, and the
Critical Edge Table does not contain the A./—C edge, we
naturally assume that A.2 is now critical. To save space in
the Critical Edge Table, artificial spawn edges introduced
by our model such as A.1—A.2 are not stored in the table.

The table is trained every time that the Builder gener-
ates a critical path and identifies Critical Edges. For each
Critical Edge, the static task IDs (Task SIDs) of the source
and destination tasks are hashed into an index into the ta-
ble. If no entry exists, a new one is allocated. In any case,
the counter of the corresponding Critical Edge type is incre-
mented. Note that, to improve the accuracy of the Predictor,
we can use a more complex hashing function that incorpo-
rates additional path history — to distinguish between dif-
ferent calls to this pair of tasks.

This table is de-trained in two cases. The first one is
when, after a critical path is generated, the Builder sees that
a LAE with the P bit set (Section 4.2) is not part of the criti-
cal path. In this case, the corresponding counter in the Crit-
ical Edge Table is decremented. If, as a result, all counters
in the row reach zero, the row is deallocated.

The second case is when an edge was predicted as crit-
ical during the previous execution of the task but the edge



did not even make it to the Graph Table because, in this exe-
cution, it was not even LAE. In this case, as soon the TC fills
the corresponding row of the Graph Table, it decrements the
corresponding counter in the Critical Edge Table.

With this support, the Critical Edge Table keeps the most
important Critical Edges. The TC makes processor schedul-
ing decisions based on the counter values in the table.

4.4 An Example of CAP at Work

Figure 3 provides an example of CAP at work. Parts (a)
and (b) are the same as in Figure 1, except that we also show
the VID Table. Consider each task in (a) as it commits. The
first one to commit is Task A./, which has a VID of 1. It is
allocated at entry EID=29 of the Graph Table. This row is
filled as follows. Since this is the first task, its Spawn and
Execute nodes have no external edge. Hence, both the Start
and Execute areas of the row are set to null. The Commit
field is set to indicate that the LAE comes from the Finish
node.

More Speculative
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Figure 3. An example of CAP at work.

The next task to commit is Task A.2. It is given entry
EID=30 in the Graph Table. It is spawned by Task A.1,
which is the source of the LAE to the Start node. Conse-
quently, the Start area of the row is filled with EID=29 and
Spawn type. The Execute area is set to null because there
are no external edges to the Execute node. The Commit field
is set like in the previous task.

Task A.3 proceeds in a similar fashion.

Task B commits next. The LAE to its Start node is a
Spawn edge from Task A.2. Assume that such edge was a
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Critical Edge in the execution — hence P=1. The LAE to its
Execute node is a Resource edge from Task A.3. The LAE
to its Commit node comes from its Finish node.

Finally, Task C commits. The LAE to its Start node is a
Squash edge from Task A.2.

The critical path is calculated by traversing the table
in reverse, starting at the last committed task at the point
marked by BEGIN in the figure. For each node, the Builder
proceeds backward along LAEs. The dark lines with arrows
drawn over the table show the progression of the critical
path. For this traversal, the VID Table is not needed.

This critical path uncovers one Critical Edge that is
added to the Critical Edge Table, namely the Squash edge
between Tasks A.2 and C '. If we assume that the corre-
sponding rows in the Critical Edge Table contained all ze-
ros, Figure 3(d) shows the resulting counter values. More-
over, we need to de-train the Spawn edge between Tasks A.2
and B, which had P=1 and is not in the critical path. If the
Critical Edge Table had a count equal to 1 for that edge, it
now becomes zero.

5. Methodology

To evaluate CAP on a SM CMP, we use SESC [11] —
a cycle-accurate execution-driven simulator with detailed
models of out-of-order superscalars, memory subsystems,
and SM protocols. It also includes models of dynamic
power from Wattch [1], Orion [21] and Cacti [18]. More-
over, we augment the simulator to support per-core DVFS.

We consider two configurations of a CMP with SM sup-
port and three scheduling algorithms. One configuration is
a 4-core CMP where each core runs at a high frequency (f)
and voltage (V). We call it 4H. The second configuration
is the same 4-core CMP where only one core runs at the
high f and V, while the other three cores run at a low f and
V. We call it /H. For each configuration, we consider three
scheduling algorithms, namely Base, Sort, and CAP. Base is
anaive algorithm where tasks get free cores using first-come
first-serve. Sort guarantees that the non-speculative task and
the three least-speculative ones are always running; more-
over, in /H, the non-speculative task runs on the sole fast
core. Sort is based on the common wisdom that non- or less-
speculative tasks are more important than more-speculative
ones. Finally, CAP uses our proposed scheme. In all cases,
we apply the energy optimizations for SM suggested by Re-
nau et al. [12], including clock gating unused cores. Table 3
shows the architecture parameters.

To generate the SM binaries of applications, we use the
POSH compiler [8]. We allow out-of-order spawn [13] and
optimize the binaries for energy-efficiency [12]. We eval-
uate the SPECint and SPECfp 2000 applications with the
Ref input set. Exceptions include those applications written

IRecall from Section 4.3 that artificial edges such as the Spawn edge
between Tasks A./ and A.2 are never added to the table.



Suite Appl. #Dyn. | #Inter-Task Edges/Task (%) | # Inter-Task Edges in Crit. Path (% of Each Type) [ Similarity
Tasks | Sq | Sync | Res | BSafe | Sp [ Sq [ Sync | Res [ Com [ BSafe | to Safe (%)
bh 20464 2.0 0.0 97.4 1.5 0.7 2.0 0.0 95.4 0.6 1.3 25
em3d 79874 0.9 99.0 81.9 0.0 18.0 2.3 0.3 79.3 0.0 0.0 2
Olden health 409490 0.1 0.0 32.5 29.3 47.1 0.0 0.0 16.5 52 31.1 24
mst 1564246 0.2 0.0 54.4 0.0 472 0.4 0.0 522 0.0 0.0 19
perimeter 51745 1.1 0.5 55.1 0.0 55.4 2.5 0.5 41.6 0.0 0.0 22
art 1727610 1.0 0.0 93.2 0.9 4.1 1.4 0.0 93.3 0.2 1.0 17
SPECfp equake 450582 1.8 1.2 88.6 0.7 234 29 0.5 72.5 0.3 0.4 16
mesa 215426 0.0 100.0 10.4 0.0 19.9 0.0 71.7 2.3 0.0 0.0 31
bzip2 981836 6.4 8.4 6.5 0.3 88.1 49 29 3.7 0.0 0.4 88
crafty 665658 26.1 79.2 1.0 0.0 46.9 154 37.2 0.5 0.0 0.0 57
gap 1335200 345 100.0 35 18.3 359 17.6 27.7 0.8 0.0 17.9 59
gzip 2674412 0.8 41.6 0.1 0.0 79.6 0.7 19.6 0.1 0.0 0.0 38
SPECint | mcf 18607165 1.9 45.6 35 0.0 70.0 1.7 26.7 1.6 0.0 0.0 25
parser 5261992 16.6 61.2 8.8 1.0 67.9 10.9 15.9 4.1 0.0 1.1 51
twolf 6191552 18.1 432 6.3 0.0 37.4 20.2 38.8 3.6 0.0 0.0 39
vortex 1838191 0.7 18.1 16.4 1.6 75.0 0.9 9.8 11.2 0.8 2.3 42
vpr 174129 52.0 29.1 30.8 1.2 26.3 42.3 13.5 16.2 0.2 1.5 38
Olden Geom. Mean 140204 0.5 0.0 60.0 0.0 17.3 0.0 0.0 48.6 0.0 0.0 15
SPECfp Geom. Mean 551449 0.0 0.0 44.1 0.0 12.4 0.0 0.0 25.0 0.0 0.0 21
SPECint Geom. Mean 1972905 7.7 38.3 39 0.0 54.4 6.2 17.1 2.0 0.0 0.0 46

Table 4. Characterization of the critical path on 4H-Base.

Processor
Fetch/issue/comm width: 5/3/3 Frequency: 5.0 GHz
I-window/ROB size: 68/126 Branch predictor (spec. update):
Int/FP registers: 90/68 bimodal size: 16K entries
LdSt/Int/FP units: 1/2/1 gshare-11 size: 16K entries
Ld/St queue entries: 48/42 Cross-task dependence predictor:
Branch penalty: 13 cyc (min) Pred. Table: 64 entries
BTB: 4K entries, 2-way assoc. Sync. Table: 16 entries

CAP Builder CAP Predictor

Graph Table: 64 entries Critical Edge Table: 2048 entries
VID Table: 16 entries

Caches (All line sizes:64B) D-L1 I-L1 Shared L2
Size: 32KB  32KB 2MB
Round trip: 3cyc 2 cyc 10 cyc
Assoc: 4 2 8

High frequency and voltage: 5 GHz and 1.6 V

Low frequency and voltage: 3.5 GHz and 1.1 V

Bus frequency: 533MHz; Bus width: 128bit

DDR-2 DRAM bandwidth: 8.528GB/s; memory round trip: 98ns

Table 3. Architecture parameters, where cy-
cle counts are in processor cycles.

in C++ or Fortran, which we do not support, and perlbmk
and gcc which fail in our compiler. We also evaluate a
few Olden applications. In our simulations, we skip the ini-
tialization (1-6 billion instructions), and then execute about
0.75-1.50 billion sequential instructions.

For the SPECint applications, we studied the impact of
a cross-task dependence predictor (Table 3) as described
by Moshovos et al. [9]. Without the predictor, the aver-
age speedup of SM execution over sequential execution on
the same platform is 1.32; with the predictor, the average
speedup decreases to 1.28, butthe E  D? of the architecture
decreases by 10%. Consequently, in all our experiments, we
use the dependence predictor.

6. Evaluation
6.1 Characterization of Critical Paths

Table 4 characterizes the critical path of applications run-
ning on 4H-Base. To provide more insight, the data ignores
subtasks: all subtasks in a task are logically lumped into a
single unit, and all edges between subtasks in the same task
are neglected.
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The third column shows the number of dynamic tasks
per application. The group of columns labeled Infter-Task
Edges/Task shows the number of inter-task edges of each
type as a percentage of the number of tasks. Spawn and
Commit edges are not shown because their number is 100%.
From the table, we see that Squash and Sync edges are com-
mon in SPECint codes, while Resource edges are common
in the SPECfp and Olden codes due to their higher paral-
lelism. Having many Resource edges indicates that useful
work is often waiting to execute. BeSafe edges are rare.

The group of columns labeled Inter-Task Edges in Crit.
Path shows the percentage of inter-task edges in the critical
path that are of each type. We see that the dominant types
of Critical Edges are Spawn in SPECint and Resource in
Olden and SPECfp. SPECint codes also have a substantial
fraction of Squash and Sync Critical Edges.

The last column of the table shows the similarity between
the dynamic instructions in the critical path and those in
the Safe Path of the codes. The safe path are the instruc-
tions executed in tasks from the time the tasks become non-
speculative until the tasks commit. We define Similarity as
%ﬁj’;j, where I.;; and I,4 . are the dynamic instruc-
tions in the critical and safe paths, respectively. On average,
the similarity is 15% for Olden, 21% for SPECfp, and 46%
for SPECint. The fact that these numbers are low means that
the critical path is typically in the speculative tasks, not in
the non-speculative one. This is more the case in the Olden
applications. The reason is that they have fewer squashes
and higher parallelism than the other applications.

6.2 Performance and Power Impact

We now consider the performance and power impact of
scheduling for task criticality in SM. Due to space limita-
tions, we provide only a brief analysis. Figure 4(a) shows
the execution time in our six environments normalized to
4H-Base. Overall, the execution times of the 4H environ-
ments tend to be similar. The execution times of the /H en-
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Figure 4. Execution time (a), average dynamic power consumption (b),and £ D? (c) for different environments.

All bars are normalized to 4H-Base.

vironments are longer, but show a reduction as we go from
1H-Base to 1H-Sort and to 1H-CAP. On average, thanks to
criticality scheduling, the average execution time of applica-
tions on /H-CAP is 89-95% of that on /H-Base. Moreover,
applications take on average only 5—7% longer to execute
on /H-CAP than on 4H-Base.

Figure 4(b) shows the average dynamic power consumed
by the different environments. The figure shows that all the
1H environments consume much less average power than
the 4H environments. This is due to the low consumption of
three of the cores. On average, /H-CAP consumes 65-76%
of the power of 4H-Base.

Finally, Figure 4(c) shows E  D? for the different envi-
ronments. /H-CAP is the best environment, with an £ D?
that is, on average, 91-95% of that of /1H-Base or 77-91%
of that of 4H-Base. We feel, therefore, that scheduling for
criticality as in the CAP architecture is beneficial. The sim-
pler 1H-Sort also does well for the Olden applications —
in fact, it does better than /H-CAP. However, for the most
challenging applications, namely the SPECint codes, /H-
CAP is substantially better: its average £ D? is only 92%
of that of /1H-Sort.

7. Conclusion

To improve the power-efficiency of SM, this paper made
three contributions: (i) it developed a novel task-criticality
model for SM, (ii) it proposed the CAP architecture, which
builds a task-criticality graph dynamically and uses it to
make scheduling decisions; and (iii) it evaluated CAP.

Experiments with SPECint, SPECfp, and Olden appli-
cations showed that a CMP with SM runs more power-
efficiently with CAP. Specifically, in a CMP with one fast
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core and three slow ones, the E  D? with CAP is, on av-
erage, 91-95% of that without. Moreover, it is only 77—
91% of the E D? in a CMP with four fast cores and no
CAP. Overall, we argue that scheduling for criticality with
the CAP architecture is beneficial.
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