An Enhancement for a Scheduling Logic
Pipelined over two Cycles

Rubén Gran, Enric Morancho, Angel Olivé, José M. Llaberia,
Departamento de Arquitectura de Computadores. Universidad Politécnica de Catalunia.
{reran, enricm, angel, llaberia}@ac.upc.edu

Abstract - Out of order processors use the dynamic scheduling
logic both to expose and to exploit parallelism. Pipelining this
logic may sacrifice the ability to execute dependent instructions in
consecutive cycles. Several previous studies have shown that
pipelining the scheduling logic over two cycles degrades
performance; our evaluations, in a 4-way machine, on SPEC-2000
integer benchmarks show a performance degradation about 11%
compared to an unpipelined scheduling logic.

In this work, we present two non-speculative enhancements for
a scheduling logic pipelined over two cycles. The idea is
computing in advance which instructions will be woken-up by all
instructions that are currently competing for selection. Once all of
them have been selected, the pre-computed group of instructions
can compete for selection in next cycle. The enhancement goal is
to tolerate the scheduling-loop latency when not enough ILP is
available through the scheduling of dependent instructions in
consecutive cycles.

Our results in a 4-way machine show that our two proposed
enhancements perform, on average, slightly better than two
previously proposed speculative schedulers. The performance of
our proposals is within a 2.6% and 2% of an unpipelined ideal
scheduler.

Index Terms - Back-to-back execution, dynamic scheduler,
pipelined scheduling logic.

1. INTRODUCTION

The dynamic scheduling logic allows both exposing and
exploiting the instruction-level parallelism (ILP). The schedul-
ing task is divided into two phases: wakeup and select. The
wakeup logic marks instructions as ready when their data
dependencies are satisfied. The select logic picks instructions
for execution from the pool of ready instructions by consider-
ing instruction priorities and available resources.

Both the wakeup logic and the select logic form a hardware
loop, the scheduling loop, because an instruction cannot be
scheduled until its producer instructions have been scheduled.
Assuming that the producer-instruction latency is one cycle
then, in order to execute its dependent instructions in consecu-
tive cycles, the scheduling task must be performed in one
cycle. A producer instruction and its consumer instruction are
executed back-to-back when the consumer instruction con-
sumes the produced result as soon as it is available.

Manuscript received May 8, 2006. This work has been supported by the
Ministry of Education and Science of Spain under the contract TIN-2004-
07739-C02-01, the grant AP2003-4621 and the HIPEAC European Network of
Excellence.

1-4244-9707-X/06/$20.00 ©2006 IEEE

Enlarging the issue queue to expose more ILP may increase
the latency needed to wakeup and select instructions, which
may require reducing clock frequency. An approach to either
maintaining or increasing clock frequency is pipelining the
scheduling logic over several cycles, but then the IPC may
decrease because the scheduling logic sometimes is unable to
issue dependent instructions in consecutive cycles. Our experi-
mental results with SPEC-2000 integer benchmarks in a 4-
issue machine show that pipelining the scheduling logic over
two cycles degrades IPC, on average, about 11% compared to
an unpipelined scheduling logic. Other authors report similar
results ([2], [16], [20]).

Techniques that allow pipelining the scheduling logic with-
out sacrificing the back-to-back execution of dependent
instructions are an option to design high-frequency processors.
However, some previously proposed techniques ([2], [20]) are
speculative.

In this paper, we enhance a scheduling logic pipelined over
two cycles to increase its performance. The proposed enhance-
ment is non-speculative and able to execute dependent instruc-
tions in consecutive cycles when not enough ILP is available.
Consequently, we manage to tolerate the scheduling-logic
latency. The idea of the enhancement is computing in advance
which instruction group will be woken up by all one-cycle exe-
cution-latency instructions that are currently competing for
selection. Then, once all these instructions have been selected,
the precomputed instruction group can compete for selection in
next cycle and back-to-back execution may be performed.

Our results show that our two proposed enhancements out-
perform, on average, two previously proposed speculative
schedulers ([2], [20]) on SPEC-2000 integer benchmarks. The
performance of our proposals is within a 2.6% and 2% of an
ideal scheduler (unpipelined).

This paper is structured as follows: Section II outlines the
processor model being used and motivates the work.
Section III describes the proposed enhancement. Section IV
details the simulation environment. Section V evaluates the
proposed models and compares them to two previously pro-
posed mechanisms. Section VI discusses related work and
Section VII concludes this paper.

II. BASELINE PROCESSOR MODEL
Figure 1 shows the pipeline of a dynamically scheduled

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

processor, where each stage can take one or more cycles.
Front-End Back-End

d »
<« »

| F[D[R [I@Q]|]P | R[EX|[WR] C |

Figure 1 Processor Pipeline. F: Fetch, D: Decode, Re: Rename, 1Q: Issue
Queue, P: Read Payload, R: Read Register File, EX: Execution; WR: Write
Register File, C: Commit.

In the front-end stages of the pipeline (fetch, decode and
rename stages), instructions are brought from the instruction
cache, decoded and false register dependencies are removed.
After that, the instructions are dispatched into the issue queue
and wait there for the availability of both their source operands
and execution resources. When an instruction is selected for
execution, the payload and its source registers are read in fol-
lowing cycles. With its source operands, the instruction is exe-
cuted and its result is written into the register file. Finally, the
instruction waits for committing in program order.

Wakeup logic. We use a wired-OR style wakeup logic array
([2], [8]). Dependencies are indicated using an instructions-
instruction (each wakeup-matrix row and each wakeup-matrix
column corresponds to an instruction inserted into the issue
queue) wakeup matrix [2] (or physical registers-instructions
wakeup matrix [8]). Bit vectors (rows) perform dependence
tracking. Each bit in the vector represents the dependence on a
parent instruction [2] (or on the data availability of a physical
register [8]). When an instruction is issued, it sets the wakeup
line (column) corresponding to its own issue-queue entry [2]
(or to its destination physical register [8]). Each instruction
monitors the readiness of its source operands every cycle by
checking if all wakeup lines of matching dependence bits are
set. Each issue-queue entry corresponding to a ready instruc-
tion activates a request signal in order to notify its readiness.

Select logic. The input of the select logic are request signals
from the wakeup logic plus priority information. The select
logic picks the oldest ready instructions considering available
resources at each issue port. Instructions selected by the select
logic become the input of the wakeup logic in next clock cycle
in order to wakeup instructions dependent on the selected ones.

Figure 2 shows diagrams of both one-cycle latency (unpipe-
lined) and two-cycle latency scheduling loops. As a general
rule, back-to-back execution is possible only if the execution
latency of the producer instruction is greater than or equal to
the scheduling-loop latency. In [2], [16], [20], their authors
have concluded that back-to-back execution is a performance
goal.

selected instructions selected instructions

W/S

[w [s |

Figure 2 Diagrams of scheduling loops. a) one-cycle latency, b) two-cycle
latency. (W: Wakeup, S: Select)

Table 1 shows the distribution of committed instructions on
SPEC-2000 benchmarks considering their execution latency
and if the instructions produce a value that is stored in the reg-
ister file (Section IV details benchmarks, simulated intervals
and the execution latency of the instructions). We observe that

integer benchmarks double the amount of one-cycle execution-
latency instructions compared to floating-point benchmarks;
consequently, integer benchmarks will be more sensitive to the
scheduling-loop latency.

TABLE I. DISTRIBUTION OF COMMITED INSTRUCTIONS
ACCORDING TO THEIR EXECUTION LATENCY ON SPEC-2000.

updating register file .
- not updating
execution Iatenc‘y register file
Benchmarks one cycle | multicycle
Integer 44.30% 32.05% 23.65%
Floating Point 23.62% 62.40% 13.98%

In this paper, the baseline processor has a two-cycle latency
scheduling loop. Then, at least, there is a two-cycle delay
between issuing an instruction and issuing its dependent
instructions. So, in the issue cycle between issuing an one-
cycle execution-latency instruction and issuing its dependent
instruction, the scheduling logic must be able to exploit ILP in
order not to degrade performance compared to the unpipelined
scheduling logic. For multi-cycle execution-latency producer
instructions (greater than one cycle), pipelining the scheduling
logic does not degrade performance compared to an unpipe-
lined scheduling logic.

III. ENHANCED SCHEDULING LOGIC

In this section we describe a non-speculative enhancement
that improves the performance of a two-cycle latency schedul-
ing logic.

A. Base enhancement (E)

The enhancement is applied only to instructions that may be
woken up by instructions with an execution latency shorter
than the scheduling-loop latency. The remaining instructions
use the conventional two-cycle latency scheduling loop.

The idea to enhance the two-cycle latency scheduling logic
is to compute in advance which instructions will be woken up
by all one-cycle latency instructions which are currently com-
peting for selection. Once all of them have been selected, the
precomputed group of instructions competes for selection next
cycle. Therefore, back-to-back execution is possible.

Figure 3 shows a scheme of a two-cycle latency scheduling
logic with the proposed enhancement logic. In Figure 3, two
parts are distinguished: a) the base two-cycle latency schedul-
ing logic and b) the enhancement logic. The elements of the
base two-cycle latency scheduling logic are the wakeup matrix
A and the select logic. Remaining elements in Figure 3
enhance the base scheduling logic.

At dispatch time, all instructions are stored in wakeup
matrix A. The output of the select logic becomes the input of
the wakeup matrix A in next cycle. Each selection cycle, the
select logic picks the oldest instructions that remain in its

input, considering resource availability at issue ports.

v

wakeup
logic (A)

requestA select

request B I'

wakeup matrix A

all instructions

| wakeup| select |

wakeup matrix B ‘ C) D)

Figure 3 Block diagram of the base proposal.

The wakeup matrix B computes in advance which instruc-
tions will be woken up by the one-cycle latency instructions
which are currently in the input of the select logic. Then, in
wakeup matrix B are stored (the content of the entry allocated
to an instruction in both matrices is the same) only instructions
that may be woken up by one-cycle execution-latency instruc-
tions (their latency is shorter than the scheduling-logic
latency). The classification of each instruction is performed in
dispatch phase considering the latency of the instructions that
wake it up (parent instructions).

Instructions dependent on at least one instruction which exe-
cution latency is shorter than the scheduling-logic latency are
stored in wakeup matrix B. Therefore, inputs of the wakeup
matrix B are: a) one-cycle execution-latency instructions in the
input of the select logic and b) instructions selected by the
select logic that have an execution latency greater than or equal
to the scheduling-logic latency. These inputs are calculated by
the filter shown in Figure 3 using an instruction classification
performed in decode stage: instructions with an execution
latency shorter than the scheduling-logic latency belong to a
class, and the remaining instructions belong to the other class.
Detailed implementation for a slice of the filter (Figure 3), is
given in Figure 4.

from input of
the select logic

from output of
D | the select logic

classification

to input of wakeup matrix B

Figure 4 Detail of slice of the filter logic. Logic filters signals coming from D
and C (Figure 3). Signal D is discarded if the instruction latency is shorter than
the scheduling-logic latency. Signal C is discarded if the instruction latency is
greater than or equal to the scheduling-logic latency.

The zero-detection logic (ZDL) detects if all one-cycle exe-
cution-latency instructions currently competing for selection
were actually selected, and therefore it is safe for a ready
instruction in wakeup matrix B to proceed to selection.

Scheduling an instruction group with execution-latency
shorter than the scheduling-loop latency in the input of the
select logic may take one or several cycles.

If the scheduling takes one cycle, then the scheduling of the
instruction group overlaps with the computation in advance of
which instructions are woken up by this instruction group. The
wakeup matrix B computes in advance woken up instructions
and the ZDL detects that all instructions with execution latency
shorter than the scheduling-logic latency have been scheduled.
Then, in next cycle back-to-back execution of dependent
instructions is performed.

If the scheduling takes several cycles, then behaviour in first
cycle differs from behaviour in remaining ones. In first cycle,
dependent instructions in wakeup matrix B wake up, and they
wait for the activation of ZDL. In the elapsed time between the
first and the last scheduling cycle, selected instructions with
one-cycle execution latency wake dependent instructions up in
wakeup matrix A. Next cycle after waking up an instruction in
wakeup matrix A, its request signal will be in the input of the
select stage, and then it will compete for selection. In the cycle
next to the last scheduling cycle, back-to-back execution may
be performed.

Next, we describe the functionality of the logic M. The
request signal of an instruction that is woken up by an one-
cycle execution latency instruction is activated in both wakeup
matrices, but only one request signal should be observed by
select logic. Request signals are activated either in the same
cycle or in different ones.

The request signals are activated in different cycles if an
instruction is woken up by an one-cycle latency instruction.
First, the request signal is activated in wakeup matrix B when
the parent instruction is in the input of the select logic. Later,
when the parent is selected, the request signal is activated in
wakeup matrix A. Moreover, if during the elapsed time
between both events the output of ZDL is not activated, then
both requests will be concurrently activated.

The request signals are activated in the same cycle, when the
latest arriving operand of an instruction stored in wakeup
matrix B is produced by an instruction whose execution latency
is greater than or equal to the scheduler-logic latency.

granted

request_A issued

request_B

from zero-detection logic

Figure 5 Logic M. Slice corresponding to one entry of the issue queue.
Request_A and request_B stand for a request signal of the wakeup matrix A
and B respectively. Issued bit nullifies request signal when the request signal
has been previously granted.

Figure 5 shows detailed implementation of logic M. When
the request signal of an instruction is activated in the wakeup
matrix A, the request signal will be in the input of the select

stage in the next cycle. The request signal of an entry in the
wakeup matrix B will be in the input of the select stage in next
cycle only if the output of the ZDL is activated.

Select logic observes only one request signal for every
instruction (Figure 5). The issued bit filters out a request signal
that arrives to the input of the select stage after selecting the
instruction.

Note that the scheduling scheme may break the oldest first
instruction-selection policy. Instructions woken up from matrix
B can not be selected until selecting all one-cycle instructions
in the input of the select logic. Then, an instruction woken up
from matrix B may be waiting until selecting a younger (but
one-cycle) instruction.

Figure 6 shows an example of the scheduling of a sequence
of instructions assuming that only one instruction can be issued
per cycle. The 1Q label means that the instruction is waiting to
be ready in the issue queue. A and B labels mean that the
instruction wakes up in wakeup matrix A and B respectively.
The RI label symbolizes that the instruction is waiting for
selection in the input of the select logic. The S label means that
the instruction is selected for execution. Labels @, M1 and M2
mean, respectively, effective-address computation and the two
cycles needed to access first-level cache. Shadowed rows indi-
cate that instructions have been inserted in both wakeup matri-
ces (non shadowed rows indicate that instructions are inserted
only in matrix A).

In a cycle, an arrow indicates which instructions activate
wakeup-matrix lines. Each arrow starts at the producer instruc-
tion that activates its corresponding wakeup-matrix line; each
arrow ends at the consumer instructions. There are three kinds
of arrows according to the involved wakeup matrix: filled
arrows (matrix A), stick arrows (matrix B) and hollow arrows
(both matrices at the same time).

We assume that the operands of instructions 1 and 2 are
available at dispatch time, consequently both instructions wake
up in cycle 1. Instruction 1 is selected in cycle 2 and, as its
latency is larger than the scheduling-logic latency, its wakeup
lines are activated in both matrices at the same time (cycle 4).
In this example, as its dependent instructions are inserted only
in matrix A, no instruction benefits from the wakeup-line acti-
vation in matrix B. Similarly, instruction 2 is selected in cycle
3 and both matrices are aware of the availability of its result in
cycle 5.

In cycle 4, instruction 3 wakes up in wakeup matrix A. As it
is an one-cycle instruction, while it competes for selection, in
cycle 5, the availability of its result is notified to matrix B. The
wakeup of instruction 4 is independent of the selection of
instruction 3 in cycle 4. Moreover, once the instruction 3 is

selected, the availability of its result is notified to matrix A in
cycle 6.

In cycle 5, instruction 4 wakes up in matrix B and instruc-
tion 5 wakes up in matrix A. In cycle 6, both instructions com-
pete for selection because, at the end of cycle 5, the ZDL
activated the signal that allows ready instructions from wakeup
matrix B to compete for selection. In cycle 6, the instruction 4
wakes up in matrix A; however, as the instruction 4 is already
competing for selection, the M logic (by means of the issued
bits shown in Figure 5) filters out this request signal in next
cycle. The instruction 4 is selected in cycle 6, and the instruc-
tion 5 is selected in cycle 7.

Finally, the instruction 6 wakes up in both matrices in cycle
8 because its last arriving operand (r4) is produced by an
instruction with an execution latency larger than or equal to the
scheduling-logic latency. Selecting this kind of instructions is
notified to both matrices at the same time.

Note that, in this example, our proposal allows issuing the
instruction 4 one cycle earlier than the conventional scheduling
logic pipelined over two cycles.

B. Adding instruction fusing (E-F)

The proposed enhancement can be improved by taking
advantage of a program characteristic: a large number of
instructions has only one source operand (avg: 78.6% of com-
mitted instructions in SPECInt 2000). Moreover, at dispatch
time, some two-operand instructions have already available
one of them. Consequently, only one operand must be tracked
by the wakeup matrix.

Then, we make use of fusing instructions (a producer
instruction and its dependent one) in order to favour back-to-
back execution of dependent instructions. Two instructions are
fused when producer instruction is an one-cycle execution-
latency instruction and the consumer instruction only depends
on this instruction.

In our model E-F, the advantages of fusing instructions are
twofold. First, the consumer instruction can compete for selec-
tion once the producer instruction has been selected. Therefore,
back-to-back execution is possible. Second, it is not necessary
to store the consumer instruction in the wakeup matrix B for
waking it up.

The possibility of fusion is detected in dispatch phase. The
fused instructions must belong to the same dynamic basic
block and the producer instruction must be in the issue queue.

The instruction fused with its producer instruction is the first
one in program order that satisfies the previous conditions.
Note that the proposed instruction fusing is simple because
both producer and consumer instructions belong to the same
basic block.

Cycles 1 2 3 4 5] s 7 8 | o 10 11 12
1. load r«[..] A s P R @ M1 M2
2. load r2<[...] A RI s P R @ M1 M2 —» to matrix é

—> to matrix

3.addr3r1, ... | 1Q IQ Q [yA [[|s [| P R EX to beth matrices
4. load r4«[r3] IQ Q Q Q@ [[\B [vas P R @ M1 M2 |
5.add r5r1,r2 | 1Q Q Q [via [v A [| R s [P R EX
6.addrér4rs | 1Q | 1@ | 1@ | 1@ | 1@ Vo | @ WAB | s P R | Ex |

Figure 6 Scheduling example of the proposed mechanism. A bar between cycles indicates that the zero-detection logic activates its signal;
therefore, in next cycle, the request signals from wakeup matrix B will be added to the input of select logic (ZDL).

In our evaluations, two issue-queue entries are allocated to
fused instructions in wakeup matrix A and two issue cycles are
needed to schedule them. Therefore, we maintain the same
pressure than previous models over the issue-queue entries of
wakeup matrix A and the issue ports.

IV. SIMULATION ENVIRONMENT

A. Processor model
We have modified SimpleScalar 3.0d [2] in order to model a
Reorder Buffer and separate issue queues (IQ). We assume an
out-of-order processor with fifteen stages from Fetch to IQ and
two stages between 1Q and Execution. Table II details other
processor and memory parameters. Table III lists the instruc-
tion latencies assumed in this work.

TABLE II. PROCESSOR & MEMORY PARAMETERS

Model
Fetch and Decode width 4 inst/cycle
Branch predictor: hybrid (bimodal, gshare) 16 bits

ROB size / LSQ size 128/ 64 entries
Issue-queue size Integer / Floating point 32/ 20 entries
Functional Units Integer / Floating point 4/2
Memory access ports 2

Memory hierarchy

L7 /-cache and L1 D-cache 32KB, 4-way, 2 cycles
Line size 32B

L2 Unified Cache 256 KB, 4-way, 12 cycles
Line size 32B

L2-Main memory bus 8B /2 cycles

Main memory latency 100 cycles

TABLE III. EXECUTION LATENCY OF THE INSTRUCTIONS

(CYCLES)
Latency Latency
ALU 1 Floating point add, mul 4 pipelined
Load 3 Floating point divide |15 not pipelined
integer multiply 10 not pipelined others 1

We split store instructions into two instructions: STA (store
address computation) and STD (store data). Therefore, two
issue-queue entries are allocated to each store instruction.

A load instruction can be issued only after issuing all the
STA instructions corresponding to the store instructions older
than the load instruction. Consequently, we made each load
instruction dependent on all its older STA instructions.

The 1Q is divided into an integer 1Q and a floating-point 1Q.

% Speed up

@ID WME [COE-F MSW [SF [OB-Double

Our proposals are applied only to the integer IQ because the
execution latency of most FP instructions is greater than the
scheduling-loop latency.

B. Workload

We use SPEC2000 integer benchmarks compiled with full
optimizations on an Alpha machine. We simulate a contiguous
run of 100M-instruction from SimPoint [19] after a warming-
up of 100M-instruction. Table IV shows their input data sets.

TABLE IV. Simulated benchmarks and their input data set.

Bench| Data set Bench| Data set Bench. Data set
bzip2 |program-ref gzip |program-ref twolf |ref
crafty |ref mcf ref vortex |one-ref
eon |rushmeier-ref parser | ref vpr route-ref
gcc 166-ref perl |diffmail-ref

V. RESULTS

To evaluate the performance of our proposed enhancement we
have simulated several models with a two-cycle latency sched-
uling loop.

¢ A baseline model (B) where back-to-back execution of
dependent instructions is sacrificed when producer
instructions have one-cycle execution latency. Also, we
model instruction fusing (B-F) with same conditions than
in Section B.
Two models implementing our proposals: E and E-F.
For comparison purposes, B-Double model doubles the
number of integer issue-queue entries of the baseline
model. This model is intended for showing us what is more
cost-effective: dedicating added IQ entries to either expose
more parallelism or favour the back-to-back execution of
dependent instructions.
For comparison purposes, we model the Speculative
Wakeup (SW, [20]) and the Select-Free (SE, [2])
mechanisms. Both are speculative mechanisms designed to
tolerate the scheduling-logic latency. They are described in
Section VI. In our evaluations, the SW mechanism is
implemented by using two wakeup matrices (the first one
for tracking the parent instructions and the second one for
tracking the grandparent instructions). In the SF
mechanism, speculation is checked in register-read stage.
Moreover, we simulate an ideal model (ID) with unpipelined

OB-F

B - — — — — — — — — = — = — — — — -

20

15

10

Figure 7 Speed-up with respect to the B model

scheduling-loop (that is, its latency is one cycle). However, in

order to remove the effect of a branch-misprediction penalty

shorter than in the other models, its pipeline depth is kept con-

sistent with them by adding one extra stage in the front-end.
Table V presents our baseline IPC results.

TABLE V. IPC OF THE BASELINE MODEL (B).

bzip2/crafty] eon| gap| gcc | gzip| mcf parser perl | twolfjvortex| vpr
1.34|1.86| 2.12| 1.94| 1.38| 1.60| 0.13| 1.01| 1.38| 0.88| 2.38| 0.77

Figure 7 shows the speed-up of all models compared to the
B model. We present individual results for each SPEC-2000
integer benchmark and two average values: for all benchmarks
(HM) and for all benchmarks but mcf (HM-mcf) due to its
biased memory behaviour.

Our proposed models, on average, outperform both the B-
Double and the B-F models. The B-Double model outperforms
our proposed models in benchmarks mcf and vortex. However,
in the other benchmarks, doubling the number of issue-queue
entries to expose more parallelism is not cost-effective. It is
better to favour the back-to-back execution of dependent
instructions. Our proposed models also outperform B-F model
in all benchmarks. B-F model outperforms, on average, about
2.8% the B model. However, in gzip, performance improve-
ment reaches 9./%. This speedup is explained by the great
amount (23%) of fused instructions in dispatch. However, the
number of fusions and the speedup are not correlated, by
instance bzip2 has a 20% of fused instructions in dispatch and
its speedup is smaller (3.9%) than in gzip.

We observe that our proposed models, on average, outper-
form the speculative models (SW and SF). The SW model out-
performs our proposed models only in benchmark vpr; the SF
model outperforms E model in benchmarks bzip2, gzip, perl
and vpr. However, the E-F model is outperformed by the SF
model only in benchmark vpr:

Performance of E and E-F models are, on average, within
2.6% and 2% of the ID model, respectively. In the E-F model,
instruction fusing permits a consumer instruction, that has been
fused with its producer, to avoid waiting for the next merge
operation to compete for selection. Otherwise, in the E model,
consumer instructions have to wait for scheduling all one-cycle
execution-latency instructions, that are currently competing for
selection. Therefore, in the E-F model, those instructions could
save some cycles to reach the selection stage. On average, a
19.2% of dispatched instructions are fused with their producer
instruction.

While both the SF and the SW models are speculative, our
proposed models are not. The SF model must re-schedule some
instructions, that have been speculatively woken-up. This
involves activity, which wastes energy, in both the select logic
and the register file. Our evaluations show that, on average, in
the SF model the re-schedulings affect to a 3.4% of committed
instructions and a 3.0% of selections by the select logic.

The SW model may select instructions whose selection will
be later nullified because parent instructions have not been
issued. These false selections affect, on average, to a 7.6% of
the committed instructions and a 4.6% of selections by the
select logic.

The SW model and our proposed models use two wakeup
matrices. In the SW model, all instructions are stored in both
wakeup matrices. However, in our proposed models, the
wakeup matrix B stores bit dependence vectors of an instruc-
tion only if it can be woken up by an one-cycle execution-
latency instruction. In the proposed E model the average occu-
pancy of wakeup matrix B is a 19% smaller than the average
occupancy of wakeup matrix A. And for the model E-F, the
occupancy of wakeup matrix B is, on average, a 34% smaller
than the occupancy of wakeup matrix A.

In the SW model and in our proposed models, the empty
entries of both wakeup matrices can be dynamically deacti-
vated [1]. Then, our proposed models are more energy-efficient
than SW model because the average occupancy of wakeup
matrix B is smaller. Moreover, once the request signal of an
instruction is detected by logic circuit M, its mirror entry in the
other wakeup matrix can be deactivated.

VI. RELATED WORK

In order to reduce the scheduling latency, Palacharla et al. [16]
proposed dispatching chains of dependent instructions into
FIFO queues; the instructions considered to be issued are only
the instructions heading each FIFO queue. Another works pre-
schedule the instructions taking advantage of the fact that most
instruction latencies are known at decode time ([5], [7], [14]).
At dispatch time, instructions are sorted into a buffer according
to their predicted issue cycle. The schemes mainly differ in the
mechanism that deals with variable-latency instructions, e.g.
load instructions, and their chains of dependent instructions; a
structure like an issue queue is used for these cases. All these
techniques require estimating the issue cycle of instructions
before inserting them in the buffer structure.

Some proposals exploit the fact that most register-writing
instructions have, at most, one dependent instruction currently
in the issue queue. Based on this observation, the proposed
designs have structures that keep track of one or several
instructions that consume a produced register value ([5], [21]).
These techniques require additional hardware support for
branch-misprediction recovery unless the recovery is initiated
only when the branch instruction becomes the oldest instruc-
tion in flight. Other proposal uses RAM bitmap arrays to iden-
tify all the successors of each instruction in the issue queue [9].
A new design that reduces the area cost for large issue queues
was proposed by K. Hsiao and C. Chen in [10].

The observation that many instructions already have one or
two ready source operands at dispatch time has been used to
reduce the load capacitance of the wakeup tag bus in schedul-
ers that use CAM schemes to wakeup; consequently, the
wakeup latency may be reduced ([6], [9], [13]).

[.Kim and M. Lipasti proposed a hardware mechanism that
dynamically detects dependent pairs of instructions and fuses
them in order to be scheduled together [12]. So, the schedul-
ing-loop latency (two cycles) is hidden because the scheduling
granularity has been increased. A later work removes complex-
ity from hardware and enables more sophisticated fusing heu-
ristics using dynamic-translation software that becomes part of
the processor design [11]. Other related works use intensive

hardware to combine dependent operations [18] that are issued
speculatively or need static compiler support [3].

Several works use speculation to break the scheduling loop.
Stark et al. [20] proposed speculatively waking instructions up
by their grandparents. This proposal allows pipelining the
scheduling loop over two cycles. The speculative wakeup of an
instruction is confirmed after their parents are selected. A false
selected instruction affects performance only if it prevents
really ready instructions from being selected for execution.
Brown et al. [2] proposed a speculative technique, named
Select-Free, which moves the select logic off the critical loop;
this allows the scheduling loop to take just one cycle. The tech-
nique allows all woken-up instructions broadcasting the tags
into the issue queue in the following cycle, even though some
of them may have not been selected for execution yet. Conten-
tion for issue ports can produce the misspeculated wakeup of a
chain of dependent instructions. Therefore, the availability of
source operands of each issued instruction are checked before
execution stage. Both proposals allow back-to-back scheduling
of dependent instructions. Focusing in the SW model, we have
measured that, on average, a 7.6% of committed instructions
are falsely selected, which unnecessarily utilize the select
logic. In the SF model happens something similar. Measures
show, on average, a 3.4% of committed instructions must be re-
scheduled. Obviously, re-scheduled instructions incur in an
unnecessary utilization of both the select logic and the register
file.

VII. CONCLUSIONS

In this paper, we have proposed two non-speculative enhance-
ments (E and E-F) for a scheduling logic pipelined over two
cycles. These enhancements try to tolerate the latency of the
scheduling loop when there is not enough available ILP. Our
proposals compute in advance which instructions will be
woken up by all one-cycle execution-latency instructions that
are currently competing for selection. This pre-computed
group of instructions can compete for selection once all previ-
ous one-cycle execution-latency instructions, which are cur-
rently competing for selection, have been selected. Moreover,
we have improved the base enhancement (E) using instruction
fusing (E-F).

Our evaluations show that E and E-F models perform, on
average, within a 2% and 2.6% of an ideal (unpipelined) sched-
uler, respectively. Compared to baseline model B (scheduling
loop pipelined over two cycles), E and E-F increase perform-
ance , on average, a 7.9% and a 8.6%, respectively. Also, E and
E-F perform, on average, slightly better than two previously-
proposed speculative schedulers (Select Free and Speculative
Wakeup).

ACKNOWLEDGEMENTS

This work has been supported by the Ministry of Education
and Science of Spain under the contract TIN-2004-07739-C02-
01, the grant AP2003-4621 and the HIPEAC European Net-
work of Excellence. The authors thank Gabriel Loh and the
anonymous reviewers for their useful comments and sugges-
tions.

REFERENCES

[11 Y. Bai; R. I. Bahar. A dynamically reconfigurable mixed in-order/out-of-
order issue queue for power-aware microprocessors, Proc. IEEE Computer
Society Annual Symposium on VLSI, p. 139 - 146, Feb. 2003.

[2] M. Brown et al. Select-Free Instruction Scheduling Logic. Int. Symp. on
Microarchitecture, 2001, p. 204-213.

[3] A.Bracy etal. Dataflow Mini-Graphs: Amplifying Superscalar Capacity
and Bandwidth. Int. Symp. on Microarchitecture, 2004, p. 18 - 29.

[4] D.C.Burger and T.M. Austin, “The SimpleScalar Tool Set, Version 2.0,”
UW Madison Computer Science T. R. #1342, June 1997.

[5] R. Canal and A. Gonzélez. A Low-Complexity Issue Logic. Int. Conf.
on Supercomputing, 2000, p. 327-335.

[6] D. Emst and T.M. Austin. Efficient dynamic scheduling through tag
elimination. Int. Symp. on Computer Architecture, 2002, p. 37-46.

[77 D. Ermst et al. Cyclone: A Broadcast-Free Dynamic Instruction
Scheduler with Selective Replay. Int. 1 Symp. on Computer Architecture. Jun
2003, p. 253-262.

[81 J.A. Farrel and T.C Fischer. Issue Logic for a 600 Mhz Out-of-order
Execution Microprocessor. IEEE Journal of Solid-State Circuits, Vol 33(5), pp
707-712, 1998.

[97 M. Goshima et al.. A high-speed dynamic instruction scheduling
scheme for superscalar processors. Int. Symp. on Microarchitecture. 2001, p.
225-236.

[10] K. S. Hsiao and C.H. Chen. An Efficient Wakeup Design for Energy
Reduction in High-Performance Superscalar Processors. Conf. on Computing
Frontiers, 2005, p. 353-360.

[11] S. Hu et al. An Approach for Implementing Efficient Superscalar CISC
Processors. Int. Symp. on High Performance Computer Architecture, Feb.
2006, p. 40-51.

[12] I Kim and M. H. Lipasti, Macro-op Scheduling: Relaxing Scheduling
Loop Constraints. Int. Symp. on Microarchitecture, 2003, p. 277-288.

[13] I. Kim and M. H. Lipasti. Half-Price Architecture. Int. Symp. on
Computer Architecture. 2003, p. 28-38.

[14] P. Michaud and A. Seznec. Data-flow prescheduling for large instruction
windows in out-of-order processors. Int. Symp. on High Performance
Computer Architecture. 2001, p. 27-36.

[15] S. Onder and R. Gupta. Instruction Wake-up in Wide issue superscalars.
European Conf. on Parallel Processing, 2001, p. 418-427.

[16] S.Palacharla et al. Quantifying the complexity of superscalar processors.
T.R. University of Wisconsin-Madison. Nov 1996.

[17] E. Perelman et al.. Picking Statistically Valid and Early Simulation
Points. Int. Conf. on Parallel Architectures and Compilation Techniques. 2003,
p. 244-255.

[18] P. G. Sassone and D. Scott Wills. Dynamic Strands: Collapsing
Speculative Dependence Chains for Reducing Pipeline Communication. Int.
Symp. on Microarchitecture, 2004, p. 7 - 17.

[19] T. Sherwood et al., “Automatically Characterizing Large Scale Program
Behaviour,” in Proc. of ASPLOS, Oct. 2002, p. 45-57.

[20] J. Stark et al. On pipelining dynamic instruction scheduling logic. Int.
Symp. on Microarchitecture. 2000, p. 204-213.

[21] S. Weiss and J.E. Smith. Instruction issue logic in pipelined
supercomputers. IEEE Transactions on Computers, 33: p.1013-1022,
November 1984.

