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Abstract— Load misses in on-chip L2 caches often end up
stalling modern superscalars. To address this problem, we
propose hiding L2 misses with Checkpoint-Assisted VAlue
prediction (CAVA). When a load misses in L2, a predicted
value is returned to the processor. If the missing load reaches
the head of the reorder buffer before the requested data is
received from memory, the processor checkpoints, consumes the
predicted value, and speculatively continues execution. When
the requested data finally arrives, it is compared to the pre-
dicted value. If the prediction was correct, execution continues
normally; otherwise, execution rolls back to the checkpoint.
Compared to a baseline aggressive superscalar, CAVA speeds
up execution by a geometric mean of 1.14 for SPECint and
1.34 for SPECfp applications. Additionally, CAVA is faster than
an implementation of Runahead execution, and Runahead with
value prediction.

I. INTRODUCTION

Load misses in on-chip L2 caches are a major source of

processor stall in modern superscalars, since each miss can

take hundreds of cycles to complete. Often, the missing load

reaches the head of the reorder buffer (ROB) before the data

is received, dependences clog the pipeline, and the processor

stalls.

To increase performance, processors must find better ways

to overlap an L2 miss with useful computation and other

misses. Popular techniques include very aggressive out-of-

order execution, hardware prefetching, and software prefetch-

ing. Unfortunately, out-of-order execution appears able to

provide significant additional improvements only at high

implementation costs. Moreover, while prefetching typically

works well for regular applications, it often has a hard time

in irregular codes.

Past research has shown that it is possible to successfully

predict data values (e.g., [7]). Moreover, past work has used

hardware-based processor checkpointing in a variety of con-

texts, including early recycling of resources [8], increasing

the number of in-flight instructions [1], [3], and warming up

caches and branch predictors on L2 misses [9].

Based on these ideas, this paper suggests a new approach

to hide the latency of L2 misses. We call the new approach

Checkpoint-Assisted VAlue Prediction (CAVA). As soon as

a load misses in the L2 cache, a predicted return value is

passed to the CPU. If the missing load reaches the head of

the ROB before the data is received from main memory, the

CPU performs a checkpoint, consumes the predicted value,

and continues execution. The missing load and the subsequent

instructions are speculatively retired. The speculative state

that they generate is kept buffered in the L1 cache. If the

prediction is later determined to be correct, the speculative
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state commits and execution continues normally — no re-

execution of any speculatively retired instruction is needed.

Otherwise, the speculative state is discarded and execution

rolls back to the checkpoint.

In this paper, we describe the novel CAVA microarchi-

tecture. We use value prediction with confidence estimation.

Based on the confidence, the processor performs different

actions. To simplify our first implementation, we only support

a single outstanding checkpoint at a time.

A checkpointed scheme related to CAVA is Runahead exe-

cution [9]. Runahead checkpoints the processor and continues

execution after an L2 miss. However, in Runahead: (1) The

destination register of the missing load is marked with an

invalid tag, and dependent instructions that propagate this

tag are not used to warm up the branch predictor or prefetch

into the cache; (2) The processor always rolls back execution

when the requested data arrives from memory, irrespective

of its value; (3) The processor buffers some incomplete

speculative state in a buffer rather than the complete state

in L1. For completeness, we compare the performance of

CAVA to Runahead, and to Runahead with value prediction.

We discuss other related schemes in Section V.

Relative to an aggressive conventional superscalar, CAVA

delivers average speedups of 1.14 and 1.34 for SPECint and

SPECfp applications, respectively. Compared to the same

baseline, an implementation of Runahead produces average

speedups of 1.07 and 1.18 for SPECint and SPECfp applica-

tions, respectively.

II. HIDING L2 MISSES WITH CAVA

To support CAVA, we need four components. First, we

need a module that, as soon as an L2 miss occurs, predicts

a value for the requested data and passes it to the processor.

That same module can keep the prediction for later compar-

ison with the correct data coming from memory. Second, we

need support to perform fast register checkpointing. Third,

after the checkpoint, the L1 cache has to mark and buffer all

updated cache lines, preventing their displacement to lower

levels of the memory hierarchy until the prediction is proved

correct. Finally, if the prediction is incorrect, we restore the

checkpoint and invalidate the updated cache lines; if the

prediction is correct, the updated cache lines are committed.

In this paper, we implement the four components in

hardware. We place the value predictor close to the L2 cache

controller. We do this to minimize the modifications to time-

critical modules like the processor core and L1 cache. In

addition, it is easier to train the value predictor with L2

misses (the objective of CAVA), rather than with all loads.
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A. Basic Buffers
CAVA is built around two buffers: one that extends the

Miss Status Holding Registers (MSHRs) [5] of the L2 cache,

and one that buffers predictions in the processor’s load

functional unit. We call them Outstanding Prediction Buffer
(OPB) and Ready Buffer (RDYB), respectively.

In conventional systems, each L2 MSHR keeps the record

of an L2 miss. In CAVA, the OPB entry also obtains a

predicted data value for the requested data from a value

predictor, sends the prediction to the processor, and stores

it locally. Predictions are made at the granularity requested

by the processor (e.g., word, byte, etc). When the requested

cache line arrives from memory, the OPB compares the line’s

data against all the predictions made for data in that line.

The OPB forwards the line upstream to the L1, including in

the message a confirmation or rejection tag for each of the

predictions made. These tags and data will eventually reach

the processor. The OPB then deallocates the entry.

Figure 1-(a) shows the OPB, which is an enhanced MSHR

structure in L2. As a reference, Figure 1-(b) shows the

unmodified MSHR structure in L1. For both the L1 MSHRs

and the L2 OPB, we use the Explicitly-Addressed orga-

nization in [4]. A conventional MSHR in L2 keeps line

address information. An OPB entry extends it with additional

information to support several predicted words in that line.

For each such word, the OPB contains the word offset,

the destination register, and the predicted value sent to the

processor.
Offset
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Fig. 1. Buffers used in CAVA. The shaded areas are the fields added
to support CAVA. In the figure, “register” means a physical register
name.

The L1 MSHR structure (Figure 1-(b)) is unmodified,

although its control logic is changed slightly. Specifically, all

loads that miss in the L1 are propagated to the L2, including

loads on words whose line is already requested by L1. The

reason is that the OPB has to observe all the L1 load misses

to be able to supply predictions if they miss in the L2 as

well.

On the processor side, the RDYB temporarily buffers the

value predictions forwarded by the OPB. A new RDYB entry

is allocated when the processor receives a prediction. When

the processor receives the final value with a confirmation or

rejection tag, the entry is deallocated.

Figure 1-(c) shows the RDYB structure. The first field

contains the OPB Subentry ID, which is an ID sent by the

OPB together with the data value prediction at the time the

RDYB entry is allocated. It identifies the location in the OPB

that holds the prediction. When the OPB sends the final

data to the processor with a confirmation or rejection tag,

it includes the OPB Subentry ID. The latter is used to index

the RDYB – the physical register number cannot be used

because the register may have been reused. Missing loads

that are about to speculatively retire obtain predicted data by

indexing the RDYB with the destination physical register.

The RDYB also stores the Consumed (C), LowConfidence

(LC), and Stale (S) bits. C is set when the entry is consumed.

LC is set when the value predictor sends to the processor

a low-confidence prediction. S is set when the processor

is rolled back. S entries are retained as stale until a value

prediction confirmation or rejection message arrives from

memory and deallocates them.

B. Value Predictor

The L2 controller contains a Value Prediction module that

is closely coupled with the OPB. When an L2 miss occurs,

the value predictor predicts the value of the requested word.

We use a hybrid value predictor organization, with one global

and one local value predictor, along with a selector. The

predictor also estimates the confidence of each prediction.

In our configuration, the total size of the predictors, selector

and estimator is 72 Kbits.

C. Additional Processor Support

The processor supports fast, hardware-based register

checkpointing as in [1], [3], [8], [9]. Checkpoints include

architectural registers and branch history.

A Status Register indicates in which mode the processor is

currently running. It can run speculatively under a checkpoint

generated by a high-confidence prediction (Chk-High Mode)

or a low-confidence one (Chk-Low Mode), or it can run non-

speculatively (Non-Chk Mode).

D. Additional Cache Hierarchy Support

Following a checkpoint, the processor generates specula-

tive memory state that needs to be buffered separately. We

can use a special buffer as in [1], [3], [9] or the L1 cache as

in [8]. Without loss of generality, this paper uses the L1.

All L1 lines updated speculatively are marked with a

Speculative (S) bit in the tag (this is the same as the Volatile
bit in [8]). If the line was dirty before the speculative update,

the line is written back to memory before accepting the

update. Lines with the S bit set cannot be evicted.

When all value predictions are confirmed and the processor

transitions to Non-Chk mode, the cache clears the S bits. If,

instead, a prediction fails, all the lines with a set S bit are

invalidated. These two operations are done as in [8], with a

hardware signal that takes a few cycles.

If the L1 runs out of space for speculative lines, it signals

the processor. The latter then stalls until either it rolls back

due to a prediction rejection or all outstanding predictions are

confirmed. We note that this event is extremely rare because

execution in speculative mode is usually short (Table II). It

almost never happened in our simulations.
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E. Overview of Operation
When the L2 detects a miss, the OPB allocates a free

subentry in an existing or new OPB entry. A prediction is

then generated and sent to the processor, together with the

confidence in the prediction. In the processor, the prediction

is stored in a newly allocated RDYB entry. If appropriate,

the LowConfidence bit in the entry is set.

When a load reaches the head of the ROB, it waits until

either its destination register is loaded with actual data, or an

entry with a predicted value for that register is found in the

RDYB. If the latter occurs, the processor checkpoints (if it is

in Non-Chk mode), the value is forwarded to the destination

register, and the Consumed bit in the RDYB entry is set.

At this point, the load speculatively retires. The execution

mode becomes Chk-Low or Chk-High, depending on the

LowConfidence bit. If the processor was in Chk-High mode

and the LowConfidence bit is set, the processor waits until it

can commit the current speculative section; then it performs

a new checkpoint and resumes in Chk-Low mode.

Eventually, the cache hierarchy replies with the requested

data, together with a confirmation or rejection (prediction

was incorrect) tag. If the corresponding entry is found in the

RDYB with its Consumed bit clear, the incoming data is sent

to the destination register and the RDYB entry is deallocated.

If the response has a rejection tag and finds the entry

in the RDYB with the Consumed bit set, it means that the

processor has consumed incorrect data. The RDYB entry is

then deallocated, all the other valid RDYB entries set their

Stale bit, and the processor rolls back.

If the response has a confirmation tag and finds the entry

in the RDYB with its Consumed bit set, it means that

the processor has consumed correct data. The RDYB entry

is deallocated. When all the non-stale RDYB entries are

deallocated, a hardware signal triggers a move to Non-Chk

mode and the speculative data is committed.

It is best to limit the duration of speculative execution

— a miss-speculation after running speculatively for a long

time will waste much work. Consequently, after running

speculatively for Tchk cycles, no more predictions are made

and misses are handled normally. This will result in the

eventual termination of the speculation.

Finally, during or after a rollback, the OPB will continue to

send messages with rejection or confirmation tags that will

find RDYB entries with the Stale bit set. In this case, the

RDYB entry is simply deallocated. This behavior seamlessly

supports branch mispredictions and load replays. For exam-

ple, consider loads that are in a wrong branch path. If they

miss in L2 and the OPB provides predictions, RDYB entries

will be allocated. When the processor knows that these entries

are useless, it sets their Stale bit. When the correct value

finally arrives from memory, the RDYB entry is deallocated.

III. EXPERIMENTAL SETUP

We evaluate CAVA using execution-driven simulations

with a detailed model of a processor and memory subsystem

(Table I). The configurations modeled are: Base (plain su-

perscalar), Runahead/C (Runahead that stores the speculative

state in the L1 rather than in the smaller Runahead cache [9]),

Runahead/C with VP (Runahead/C that uses the value pre-

dictor of CAVA rather than marking the destination register

of the missing load as invalid [9]), CAVA, CAVA Perf VP
(CAVA with a perfect value predictor), and Perf Mem (Base
with a 100% hit-rate L2 cache). All configurations include

an aggressive prefetcher (Table I) that supports multiple non-

unit stride streams and uses the algorithm in [10]. Prefetched

data goes to a separate buffer, instead of the L2 cache.
TABLE I

SIMULATED PROCESSOR PARAMETERS.

Processor

Frequency: 5.0 GHz with 70 nm
Branch penalty: 13 cyc (min)
RAS: 32 entries
BTB: 2K entries, 2-way assoc.
Branch predictor (spec. update):

bimodal size: 16K entries
gshare-11 size: 16K entries

Fetch/issue/comm width: 6/4/4
I-window/ROB size: 60/152
Int/FP registers: 104/80
LdSt/Int/FP units: 2/3/2
Ld/St queue entries: 54/46

Cache I-L1 D-L1 L2

Size: 16KB 16KB 1MB
Round Trip: 2 cyc 2 cyc 10 cyc
Assoc: 2-way 4-way 8-way
Line size: 64B 64B 64B
Ports: 1 2 1
MSHRs: 4 128 128
CAVA specific:
OPB: 128 entries
Val. pred. table size: 2048 entries
Max. ckpt. duration (Tchk): 1280 cyc

HW Prefetcher:
16-stream stride prefetcher
8KB prefetch buffer

Memory: DDR-2
Bus frequency: 533MHz
Bus width: 128bit
DRAM bandwidth: 8.528GB/s
Round Trip: 98ns (490 cyc)

We run most of the SPECint and some SPECfp codes. We

do not use the whole SPEC suite because our compiler and

simulator do not support C++, Fortran90, and some system

calls. We use gcc 3.4 -O3 to compile into MIPS binaries. We

simulate 0.6-1 billion instructions after initialization.

IV. EVALUATION

Figure IV presents speedups relative to Base. It shows that

the geometric mean speedup of CAVA over Base is 1.14 for

SPECint codes and 1.34 for SPECfp codes. CAVA Perf VP
further improves the speedups, but it is not as fast as Perf
Mem. The reason is that, unlike Perf Mem, CAVA Perf VP
uses L1 MSHRs and OPB entries for a long time. As a result,

it may run out of them and stall.

In contrast, Runahead/C delivers a geometric mean

speedup of only 1.07 and 1.18 for SPECint and SPECfp

codes, respectively. When we combine it with value pre-

diction (Runahead/C with VP), its speedups get close to

CAVA for SPECint, but not for SPECfp. The reason for

the difference is that, in Runahead, even correctly-predicted

speculative sections are re-executed.

Our Runahead numbers are not directly comparable to

those in [9]. The reason is that the processor and memory

subsystem modeled are different (4-issue and 1MB L2 for us

vs. 3-issue and 512KB L2), and so are the codes used.

Table II shows more details on the behavior of CAVA.

The distance between a checkpoint and the termination of

speculative execution is called a Checkpointed Run. From left

to right, the table shows the distance between checkpoints, the

duration of a checkpointed run, the number of value-predicted

L2 misses in a checkpointed run, the fraction of failed

checkpointed runs, the fraction of instructions wasted due to

failed checkpointed runs, the value prediction accuracy, the

confidence estimation accuracy (how often high-confidence

IEEE Computer Architecture Letters Vol. 3, 2004
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Fig. 2. Speedups normalized to Base.

predictions are correct and low-confidence ones incorrect),

the L2 miss rate in Base, and the IPC of three different

systems: Base without prefetching (Nopref), Base, and CAVA.

Space limitations prevent us from further discussion.
TABLE II

CHARACTERIZATION OF CAVA EXECUTION.

Checkpointed Run Frac. Val. Conf. Base
App. Avg. Avg. Avg. # Frac. inst pred. est. L2 miss IPC

dist. size of L2 fail wasted acc. acc. rate Nopref,Base,CAVA
(inst) (inst) misses (%) (%) (%)

bzip2 48702 167 1.7 0.94 0.00 58.4 96.0 0.0 1.97, 2.24, 2.24
crafty 27877 1054 2.3 0.48 0.02 61.6 81.9 0.0 2.23, 2.19, 2.24
gap 645 215 6.4 0.87 0.23 50.1 85.4 1.4 0.61, 0.91, 1.31
gcc 26939 178 1.2 0.56 0.00 48.4 76.7 0.0 1.69, 1.72, 1.73
gzip 25559 270 52.7 0.97 0.01 3.9 97.1 0.1 1.66, 1.56, 1.57
mcf 211 182 9.2 0.67 0.78 59.8 80.5 14.8 0.09, 0.11, 0.15
parser 1557 326 3.3 0.61 0.16 51.2 81.0 0.4 0.91, 1.12, 1.34
perlbmk 4583 162 3.0 0.73 0.03 74.1 90.1 0.2 2.02, 2.15, 2.44
twolf 646 395 4.3 0.64 0.45 39.1 73.1 0.9 0.58, 0.55, 0.75
vortex 6730 633 13.1 0.72 0.08 61.8 85.0 0.1 2.39, 2.42, 2.46
vpr 2295 708 3.9 0.71 0.24 21.3 88.4 1.2 1.21, 1.28, 1.43

applu 16985 1043 45.6 0.55 0.03 59.0 99.4 0.2 1.72, 2.09, 2.58
art 412 308 30.6 0.56 0.38 54.7 92.6 30.4 0.35, 0.43, 0.66
equake 250 191 13.1 0.53 0.55 47.1 76.6 3.5 0.33, 0.64, 0.86
mesa 11147 445 3.1 0.69 0.03 31.5 81.1 0.2 2.49, 2.44, 2.51
mgrid 695 464 15.1 0.62 0.27 75.1 99.2 1.2 0.53, 1.37, 1.89
wupwise 1580 778 33.2 0.76 0.28 46.1 88.7 1.2 1.22, 1.30, 2.05

Int Avg 13249 390 9.2 0.71 0.18 48.2 85.0 1.6 1.40, 1.48, 1.61
FP Avg 5178 538 23.4 0.61 0.25 52.3 89.6 6.1 1.34, 1.38, 1.76

V. RELATED WORK

Runahead execution [9] checkpoints the processor and

speculatively removes a long-latency load from the head of

the ROB, marking its destination register as containing invalid

data. Dependent instructions propagate the invalid mark and

are also removed from the head of the ROB. When the data

is received from memory, the processor rolls back and re-

executes from the load. Hopefully, code independent of the

missing load has warmed up caches and branch predictors.

Zhou and Conte [12] used value prediction on missing

loads to continue executing (speculatively). Speculative in-

structions remain in the issue queue, since no checkpointing

is made. When the actual data is received from memory,

the speculative instructions are always re-executed. As in

Runahead, speculative execution is employed for prefetching.

There are several works on value prediction (e.g., [2], [7],

[11]). We have used their insights for our value predictor with

confidence estimation.

Martinez et al. [8] proposed Cherry, where resources are

recycled early by leveraging checkpoints. Akkary et al. [1]

and Cristal et al. [3] used checkpoints to increase the number

of in-flight instructions in a ROB-less processor. Lebeck

et al. [6] increased the number of in-flight instructions by

temporarily moving instructions dependent on a long-latency

one out of the issue queue.

VI. CONCLUSION

This paper presented CAVA, a new technique that hides

L2 cache misses by checkpointing the processor, using a

predicted value, and speculatively retiring the load and sub-

sequent instructions. When the memory response arrives,

the prediction is validated: if correct, execution resumes;

otherwise, the processor rolls back to the checkpoint. We

support a single checkpoint at a time to make hardware

simpler. Value prediction confidence estimation is used to

make checkpointing decisions that improve performance. The

microarchitecture necessary to implement CAVA requires a

small chip area. Overall, CAVA delivers significant speedups:

the geometric mean speedup is 1.14 and 1.34 for SPECint

and SPECfp applications, respectively. CAVA significantly

outperforms Runahead.
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