
The Bimode++ Branch Predictor

Kenji Kise†,‡, Takahiro Katagiri†, Hiroki Honda†, and Toshitsugu Yuba†
† Graduate School of Information Systems
The University of Electro-Communications

‡ PRESTO, Japan Science and Technology Agency (JST)
{kis, katagiri, honda, yuba}@is.uec.ac.jp

Abstract

Modern wide-issue superscalar processors tend to adopt
deeper pipelines in order to attain high clock rates. This
trend increases the number of on-the-fly instructions in pro-
cessors and a mispredicted branch can result in substantial
amounts of wasted work. In order to mitigate these wasted
works, an accurate branch prediction is required for the
high performance processors.

In order to improve the prediction accuracy, we propose
the bimode++ branch predictor. It is an enhanced version
of the bimode branch predictor. Throughout execution from
the start to the end of a program, some branch instructions
have the same result at all times. These branches are de-
fined as extremely biased branches. The bimode++ branch
predictor is unique in predicting the output of an extremely
biased branch with a simple hardware structure. In addi-
tion, the bimode++ branch predictor improves the accuracy
using the refined indexing and a fusion function.

Our experimental results with benchmarks from SpecFP,
SpecINT, multi-media and server area show that the bi-
mode++ branch predictor can reduce the mispredict rate
by 13.2% to the bimode and by 32.5% to the gshare.

1 Introduction

Modern wide-issue superscalar processors tend to adopt
deeper pipelines[2, 3, 10] in order to attain high clock rates.
This trend increases the number of on-the-fly instructions
in processors and a mispredicted branch can result in sub-
stantial amounts of wasted work. In order to mitigate these
wasted works, an accurate branch prediction is vital for the
high performance processors.

Since Smith[9] discussed the branch prediction strategies
in 1981, many branch prediction schemes have been inves-
tigated. McFarling[8] proposed the gshare predictor widely
used in commercial microprocessors. The gshare improves
the two-level adaptive predictor using the “Exclusive OR”

function of the global branch history register (BHR) and the
branch address to generate the index into the pattern history
table (PHT).

Lee and Mudge[7] introduced the bimode branch pre-
dictor. The organization of the bimode predictor is shown
in figure 1. It is an attempt to replace destructive aliasing of
the gshare predictor with neutral aliasing with three PHTs:
choice, taken and untaken1 PHTs. The taken PHT and the
untaken PHT are referred to direction PHTs. The direction
PHTs are indexed by the “Exclusive OR” function of branch
address and the BHR. The choice PHT selects the one of di-
rection PHTs to be used, and the two-bit saturating counter
of the selected PHT makes a prediction.

Recently new approaches like neural predictor[5, 4] have
been proposed. These predictors achieves good accuracy.
But, their structures are too complex to be implemented in
hardware. We propose the bimode++ branch predictor. It is
based on the bimode branch predictor because of its hard-
ware simplicity. Throughout execution from the start to the
end of a program, some branch instructions have the same
result at all times. These branches are defined as extremely
biased branches. The bimode++ branch predictor is unique
in predicting the output of the extremely biased branch with
a simple hardware structure. In addition, the bimode++
branch predictor improves the accuracy using the refined
indexing for choice PHT and a fusion function of outputs
from three PHTs.

The accuracy of the branch predictor is evaluated using
the framework for the branch predictor contest (Champi-
onship Branch Prediction[12]) that was held with support of
Intel MRL and IEEE TC-uARCH. The framework contains
20 benchmark traces from SpecFP, SpecINT, multi-media
and server area. We show that the bimode++ achieves bet-
ter prediction accuracy than the gshare and the bimode.

The rest of this paper is organized as follows. Section 2
proposes the bimode++ branch predictor. Section 3 reports
the evaluation results. Section 4 is a discussion and Section

1The word “untaken” is used to indicate that the branch prediction out-
put is “not taken”.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’05)
1527-1366/05 $20.00 © 2005 IEEE

Figure 1. Bimode branch predictor.

5 contains some concluding remarks. In this paper, a branch
predictor may be called a predictor in short.

2 The Bimode++ Branch Predictor

We discuss three techniques which improve the accuracy
of the bimode predictor. They are orthogonal and can be ap-
plied simultaneously. Then the bimode++ predictor is pro-
posed by combining these techniques.

2.1 Fusion Function

The first technique is to use a fusion function. In the
bimode predictor in Figure 1, choice PHT selects the one
of direction PHTs to be used. The prediction is made with
one counter in the selected direction PHT. Our intuition for
proposing to use a fusion function is that a certain amount
of information is separately stored in choice, taken, and un-
taken PHT. Not only using one counter in the selected di-
rection PHT, but also using three counters makes better pre-
diction.

We propose to use a fusion function as shown in Figure
2. This predictor is called the bimode-fusion. The input of
the fusion function is six bit from the outputs of choice PHT,
taken PHT and untaken PHT. The output is one bit predic-
tion. The question is that what kind of fusion function is
suitable for the bimode-fusion predictor? As a promising
candidate of a fusion function, we propose to use a majority
vote and the property of a transient state of two-bit saturat-
ing counter.

2.1.1 Transient State

The two-bit saturating counter is a component used in
branch predictors. In the bimode predictor, three PHTs are

Figure 2. Bimode-fusion branch predictor.

Figure 3. Two-bit saturating up-down counter.
The states close to the threshold are defined
as transient state.

the table of two-bit saturating counters. The state transition
of a two-bit saturating counter is shown in figure 3. The
four states of 3, 2, 1 and 0 indicate strongly taken, likely
taken, likely untaken and strongly untaken, respectively.

The states close to the threshold (likely taken and likely
untaken in a two-bit saturating counter) are defined as the
transient state because the prediction in their state may
change in a short period. In case of a three-bit saturating
counter, the states around the value of three or four will
be the transient state. We investigated the accuracy and the
value of a saturating counter in the direction PHT and found
that the prediction accuracy in the transient state is some-
what lower than the accuracy in the non-transient state.

From this consideration, we propose a fusion function to
use a majority vote. If the value of a saturating counter in
the selected direction PHT is in the transient state, a ma-
jority vote of three two-bit counters from choice, taken and
untaken PHTs is used to make the prediction. If the sat-
urating counter is not in the transient state, the prediction
is made with a two-bit counter from the selected direction
PHT like the bimode predictor.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’05)
1527-1366/05 $20.00 © 2005 IEEE

Figure 4. Bimode-indx branch predictor.

2.2 Refined Indexing

The second technique is a simple modification of index-
ing. In the bimode predictor, the index of the choice PHT
is generated using the program counter. Note that the in-
dex of the direction PHTs is generated using the “Exclusive
OR” function of the branch history register and the program
counter.

It was incomprehensible why “Exclusive OR” function
is not used for the indexing into choice PHT. We tested and
found that the use of the “Exclusive OR” function of the
branch history register and the program counter to generate
the index into choice PHT improves the prediction accuracy.

A predictor modified to use the refined indexing of the
choice PHT is shown in figure 4. This predictor is called
the bimode-indx. Since the main purpose of choice PHT
is to catch the behavior of each static branches, the use of
only a few BHR bits (two or three bit in the 8KB hardware
budget) for the choice PHT index is sufficient to improve
the accuracy.

2.3 Bias Table

The third technique is a bias table for the extremely bi-
ased branches. In execution of a program from start to fin-
ish, some branch instructions have the same result at all
times. The branch instruction to detect a program error is
one of such example. In most cases, no errors occur and the
branch result is always untaken.

We define branches that has the same result from start to
the prediction as extremely biased branches. We have pro-
posed the bimode-plus predictor[6], which uses the prop-
erty of extremely biased branches. In Figure 5, the block
diagram of the bimode-plus predictor is shown. The shaded
area is a part of bimode predictor. We use the taken and un-

Figure 5. Bimode-plus branch predictor.

taken tables (each entry is a one-bit flag) to record whether
the branch is an extremely biased branch. The taken and
untaken tables are referred to the bias table.

First, all entries of the bias table are initialized to zero.
Then, when the branch outcome is known to be taken, the
entry of the untaken table is updated with the value of one.
When the branch outcome is known to be untaken, the entry
of the taken table is updated with the value of one. Note that
once a flag is set to one, it does not return to zero.

If an entry of untaken table has the value of zero, it in-
dicates that the all history of the branch was untaken. Then
the branch may be an extremely biased untaken branch and
the predictor makes the prediction of untaken. If an entry of
taken table has the value of zero, then the branch may be an
extremely biased taken branch and the predictor makes the
prediction of taken; otherwise, the outcome of the bimode
predictor is used as a prediction.

The choice, taken, and untaken PHT are updated only
when the prediction is not made with the bias table. By
eliminating the entry for the extremely biased branches
from these PHTs, it is possible to mitigate the table inter-
ference.

If the rich hardware resource is available for a branch
predictor, the bimode-plus with the taken and untaken tables
brings good accuracy. In case of the restricted hardware
budget, the configuration with only the untaken table may
achieve better accuracy.

2.4 Bimode++ Branch Predictor

We propose the bimode++ predictor. Three techniques
discussed in sections 2.1, 2.2, and 2.3 can be applied to the
bimode predictor simultaneously. Basically the bimode++
predictor is the combination of these techniques.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’05)
1527-1366/05 $20.00 © 2005 IEEE

Figure 6. Bimode++ branch predictor.

A block diagram of the bimode++ predictor is shown in
Figure 6. The bimode++ predictor uses the bias table for
the extremely biased branches. All entries of the bias ta-
ble are initialized to zero. When the branch outcome is
known to be taken(untaken), the entry of the untaken(taken)
table is updated with the value of one. If an entry of the
taken(untaken) table has the value of zero, the predictor
makes the prediction of taken(untaken). The bias table is
indexed with the “Exclusive OR” function of the program
counter and the branch history register.

The shaded area is the combination of the bimode-fusion
and the bimode-indx. The index of three PHTs is generated
using the “Exclusive OR” function of the branch history
register and the program counter. The prediction is made
by a fusion function whose input is six bit from the out-
puts of choice, taken and untaken PHTs. The choice, taken,
and untaken PHT are updated with the same manner of the
bimode only when the prediction is not made by the bias
table.

Three PHTs are updated only when the prediction is not
made by the bias table. In the same way, should the branch
history register be updated only when the prediction is not
made by the bias table? Should the branch history register
be updated by all branch outcomes? We found that the deci-
sion is not simple and our solution is a dynamic adaptation
among two branch history registers.

2.4.1 Dynamic Branch History Register Selection

We propose to use two BHRs updated using different poli-
cies and select an appropriate BHR from among them. One
BHR, denoted as BHR ALL, is updated with the results of

all conditional branch instructions. This policy is similar
to that used in the traditional bimode predictor. The other
BHR, denoted BHR NOB, is updated using the results of
non-biased conditional branches. The BHR selector con-
trols the selection of either BHR ALL or BHR NOB. These
registers and the selector are shown at the upper-left of fig-
ure 6.

The appropriate algorithm and implementation of the
BHR selector is another issue. By the preliminary evalu-
ation, we found that BHR ALL is suitable for a benchmark
having many extremely biased branches (such as server
benchmarks). In order to detect the number of executed
extremely biased branches, we use the saturating counter
denoted as bias mod cnt, which is incremented when the
content of the bias table entry is modified. If the counter
has the maximum value and saturation, the BHR ALL is
selected.

3 Evaluation

The prediction accuracy is evaluated using the com-
mon evaluation framework version 3 for the champi-
onship branch prediction sponsored by Intel MRL and
IEEE TC-uARCH. The framework contains 20 bench-
mark traces classified into 4 categories. The categories
are SPECfp (FP), SPECint (INT), Multimedia (MM) and
Server (SERV). The predictor parameters are optimized for
the 8KB hardware budget.

Each branch predictor has many configuration parame-
ters. From the results of parameter tuning on 8 KB hard-
ware budget, the following parameters are used. For the 16
KB hardware budget configuration, the number of entries in
each table is set to double that for 8 KB.

For the bimode, the bimode-fusion, and the bimode-
indx, the number of entries for choice PHT is set to double
of direction PHTs. An 8 KB predictor, for example, has 4
KB choice PHT, 2 KB taken PHT, and 2 KB untaken PHT.

For the bimode-plus, the same number of entries is used
for choice PHT and direction PHT. We use only the untaken
table as the bias table. The number of entries for the bias
table is double of PHTs. An 8 KB bimode-plus predictor
has 2 KB choice PHT, 2 KB taken PHT, 2 KB untaken PHT,
and 2 KB the bias table.

For the bimode++, the number of entries for taken PHT
is set to four times that for choice PHT. The number of en-
tries for untaken PHT is set to double that for choice PHT.
The number of entries for the bias table double of choice
PHT. An 8 KB bimode++ predictor has 1 KB choice PHT,
4 KB taken PHT, 2 KB untaken PHT, and 1 KB bias table.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’05)
1527-1366/05 $20.00 © 2005 IEEE

Figure 7. Comparing the prediction accuracy of branch predictors in 8 KB hardware budget. The
data is obtained with the common evaluation framework version 3 for the championship branch
prediction.

Figure 8. Comparing the prediction accuracy of branch predictors in 16 KB hardware budget.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’05)
1527-1366/05 $20.00 © 2005 IEEE

3.1 Prediction Accuracy

The prediction accuracy of 8 KB and 16 KB predictors
is summarized in Figures 7 and 8. The graphs show the
data of the five branch predictors called the bimode, the
bimode-fusion, the bimode-indx, the bimode-plus, and the
bimode++.

Figure 7 gives the results of the predictions when the
hardware budget is 8 KB. The number of mispredictions
per 1000 instructions is 4.62 for the base predictor of bi-
mode. By comparing the bimode and the bimode-fusion,
the influences of the mechanism using a fusion function are
understood. The bimode-fusion improves the production
accuracy in several benchmarks of SpecINT (INT-1, INT-
3) and multimedia (MM-1, MM-2) but lowers the accuracy
in the server benchmarks. Compared with the bimode, the
bimode-fusion reduces the prediction errors by 0.17% on
average. By comparing the bimode and bimode-indx, the
influences of the refined indexing of choice PHT are under-
stood. The bimode-indx improves the prediction accuracy
in INT-2, INT-3, and SERV-5. Compared with the bimode,
the bimode-indx reduces the prediction errors by 1.81% on
average. By comparing the bimode and bimode-plus, the
influences of the bias table are understood. The bimode-
plus improves the prediction accuracy in FP-1 and MM-3
significantly. Compared with the bimode, the bimode-plus
reduces the prediction errors by 5.54% on average. The bi-
mode++ branch predictor achieves the highest prediction
accuracy. Compared with the bimode, the bimode++ re-
duces the prediction errors by 13.7%. In summary, the pre-
diction error reduction rates from the bimode are 0.17% for
the bimode-fusion, 1.81% for the bimode-indx, 5.54% for
the bimode-plus, and 13.7% for Bimode++ on 8KB config-
uration.

Figure 8 gives the results of the predictions when the
hardware budget is 16 KB. The number of prediction errors
per 1000 instructions is 4.23 for the bimode. The predic-
tion error reduction rates from the bimode are 1.52% for
the bimode-fusion, 0.96% for the bimode-indx, 6.53% for
the bimode-plus, and 13.2% for the bimode++.

We confirmed that the bimode++ predictor reduces the
prediction errors by more than 13% compared with the bi-
mode on both 8 KB and 16 KB configurations.

4 Discussion

4.1 Hardware Complexity and Related Works

To realize the proposed bimode++ predictor, it is nec-
essary to augment a bias table and several circuits to the
bimode predictor. These are not huge modifications. Com-
pared with the bimode branch predictor, the bimode++

Figure 9. Agree predictor.

Figure 10. Filter mechanism.

branch predictor does not require significant latency in-
crease for prediction. Compared with the bimode branch
predictor, the perceptron branch predictor[5] proposed in
2001 reduces the prediction errors by 8.2%. The percep-
tron predictor, however, has such disadvantages as compli-
cated hardware and long prediction latency. According to
the reference[4], the prediction latency of the 8 KB percep-
tron predictor is estimated to be four cycles even if the la-
tency reduction techniques are used. Compared with the
perceptron predictors, the structures of the bimode++ pre-
dictor are very simple. While keeping the simple hardware
configuration, the bimode++ predictor reduces prediction
errors by more than 13% compared with the bimode branch
predictor.

The proposed predictor using extremely biased branches
has some common features with the agree predictor[11]
shown in Figure 9. By regarding a branch direction stored
in a bias bit of the BTB (branch target buffer), the agree
predictor makes a prediction based on an agreement or

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’05)
1527-1366/05 $20.00 © 2005 IEEE

disagreement with the bias bit. A big difference of the
agree predictor is that the bimode++ predictor can detect ex-
tremely biased branches by considering the long execution
history of a branch. In addition the bimode++ prediction
has advantage not to change the structure of the BTB.

The bimode++ predictor using the property of extremely
biased branches also has some common features with the
filter mechanism[1] shown in Figure 10. By using a counter
added to the BTB, the filter mechanism predicts the biased
branches with a history of certain period intervals. The filter
mechanism is similar to our approach in theory but greatly
differs in that the mechanism uses a counter. In the learn-
ing period until a counter is saturated, the filter mechanism
uses a PHT for prediction. In addition, the filter mechanism
requires the appropriate setting of a threshold to determine
when the counter is saturated. In terms of hardware bud-
get, our approach to use a flag has an advantage because it
does not use a counter. In addition, the bimode++ predic-
tor generates a bias table index using the program counter
and the branch history register. This is difficult for the fil-
ter mechanism which changes the structure of the BTB. The
bimode++ predictor does not require the BTB modification
and does not refer the BTB to obtain a prediction.

4.2 Parameter Tuning

In this paper, we used a predictor where its configura-
tion parameters were optimized to achieve better accuracy
on average under the 8 KB hardware budget. The optimum
parameters may be different for each benchmark. If the re-
sources can be allocated dynamically, the prediction accu-
racy may improve dramatically. The parameter tuning, in-
cluding the dynamic resource allocation, is a future research
subject.

4.3 Processor Performance

By measuring and comparing the prediction accuracy of
the bimode++ predictor with that of the conventional pre-
dictor, we verified great accuracy improvement.

It is necessary to study the influences of the processor
performance and the predictor accuracy. The detailed per-
formance evaluations with clock-level processor simulators
are required. In an SMT (simultaneous multi-threading) en-
vironment, sharing of branch prediction tables may cause
the significant performance degradation. Discussions and
evaluations not only in a uni-processor and single-thread en-
vironment but also in various processor models are required
as a future research subject.

5 Summary

Modern wide-issue superscalar processors tend to adopt
deeper pipelines to attain high clock rates. This trend in-
creases the number of on-the-fly instructions in processors
and a mispredicted branch can result in substantial amounts
of wasted work. In order to mitigate these wasted works, an
accurate branch prediction is required for the high perfor-
mance processors.

In order to improve the prediction accuracy, we proposed
the bimode++ branch predictor. Throughout execution from
the start to the end of a program, some branch instructions
have the same result at all times. These branches are de-
fined as extremely biased branches. The bimode++ branch
predictor is unique in predicting the output of an extremely
biased branch with a simple hardware structure. In addi-
tion, the bimode++ branch predictor improves the accuracy
using the refined indexing and the fusion function.

The accuracy of the branch predictor was evaluated using
the framework for the branch predictor contest. The frame-
work contains 20 benchmark traces from SpecFP, SpecINT,
multi-media and server area. Our experimental results
showed that the bimode++ branch predictor reduces predic-
tion errors by 13.7% when the hardware budget is 8 KB and
by 13.2% when the hardware budget is 16 KB compared
with the conventional bimode branch predictor.

Acknowledgements

This study was partially supported by PRESTO, Japan
Science and Technology Agency (JST).

References

[1] Po-Yung Chang, Marius Evers, and Yale N. Patt. Im-
proving branch prediction accuracy by reducing pat-
tern history table interference. In International Con-
ference on Parallel Architectures and Compilation
Techniques, 1996.

[2] A. Hartstein and Thomas R. Puzak. The optimum
pipeline depth for a microprocessor. In Proceedings
of the 29th annual international symposium on Com-
puter architecture, pages 7–13. IEEE Computer Soci-
ety, 2002.

[3] M. S. Hrishikesh, Doug Burger, Norman P. Jouppi,
Stephen W. Keckler, Keith I. Farkas, and Premkishore
Shivakumar. The optimal logic depth per pipeline
stage is 6 to 8 fo4 inverter delays. In Proceedings
of the 29th annual international symposium on Com-
puter architecture, pages 14–24. IEEE Computer So-
ciety, 2002.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’05)
1527-1366/05 $20.00 © 2005 IEEE

[4] Daniel A. Jimenez. Fast path-based neural branch pre-
diction. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
243–252, 2003.

[5] Daniel A. Jimenez and Calvin Lin. Dynamic branch
prediction with perceptrons. In Proceedings of the 7th
International Symposium on High-Performance Com-
puter Architectuer, pages 197–206, 2001.

[6] Kenji Kise, Takahiro Katagiri, Hiroki Honda, and
Toshitsugu Yuba. The Bimode-Plus Branch Predic-
tor. In IEICE Technical Report CPSY-2003-10 (in
Japanese), pages 25–30, 2003.

[7] Chih-Chieh Lee, I-Cheng K. Chen, and Trevor N.
Mudge. The bi-mode branch predictor. In Proceed-
ings of the 30th Annual ACM/IEEE International Sym-
posium on Microarchitecture, pages 4–13, 1997.

[8] S. McFarling. Combining branch predictors. Techni-
cal report, Digital Equipment Corporation WRL TN-
36, 1993.

[9] James E. Smith. A study of branch prediction strate-
gies. In Conference proceedings of the eighth annual
symposium on Computer Architecture, pages 135–
148, 1981.

[10] Eric Sprangle and Doug Carmean. Increasing proces-
sor performance by implementing deeper pipelines. In
Proceedings of the 29th annual international sympo-
sium on Computer architecture, pages 25–34. IEEE
Computer Society, 2002.

[11] Eric Sprangle, Robert S. Chappell, Mitch Alsup, and
Yale N. Patt. The agree predictor: A mechanism
for reducing negative branch history interference. In
Proceedings of the 24th International Symposium on
Computer architecture, pages 284–291, 1997.

[12] The Journal of Instruction-Level Parallelism. Cham-
pionship branch prediction, http://www.jilp.org/cbp.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’05)
1527-1366/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

