
Workload Characterization of Biometric Applications
on Pentium 4 Microarchitecture

Chang-Burm Cho1, Asmita V. Chande2, Yue Li3 and Tao Li4

Intelligent Design of Efficient Architecture Lab (IDEAL)
Department of Electrical and Computer Engineering

University of Florida

E-mails:1 choreno@.ufl.edu, 2 asmita11@.ufl.edu, 3 yli@ecel.ufl.edu, 4 taoli@ece.ufl.edu

Abstract
Biometric computing is a technique that uses

physiological and behavioral characteristics of persons to
identify and authenticate individuals. Due to the increasing
demand on security, privacy and anti-terrorism, biometric
applications represent the rapidly growing computing
workloads. However, very few results on the execution
characteristics of these applications on the state-of-the-art
microprocessor and memory systems have been published
so far.

This paper proposes a suite of biometric applications
and reports the results of a biometric workload
characterization effort, focusing on various architecture
features. To understand the impacts and implications of
biometric workloads on the processor and memory
architecture design, we contrast the characteristics of
biometric workloads and the widely used SPEC 2000
integer benchmarks.

Our experiments show that biometric applications
typically show small instruction footprint that can fit in the
L1 instruction cache. The loads and stores account for
more than 50% of the dynamic instructions. This indicates
that biometric applications are data-centric in nature.
Although biometric applications work across large-scale
datasets to identify matched patterns, the active working
sets of these workloads are usually small. As a result,
prefetching and large L2 cache effectively handle the data
footprints of a majority of the studied benchmarks. Branch
misprediction rate is less than 4% on all studied
workloads. The IPC of the studied benchmarks ranges from
0.13 to 0.77 indicates that out-of-order superscalar
execution is not quite efficient.

The developed biometric benchmark suite (BMW) and
input data sets are freely available and can be downloaded
from http://www.ideal.ece.ufl.edu/BMW.

1. Introduction
Biometric computing is a technique that uses

physiological and behavioral characteristics (e.g. face,
fingerprint, iris, signature, voice, or gait) of persons to
identify and authenticate individuals. Due to the increasing
demand on security, privacy and anti-terrorism, biometric
applications are being deployed in many areas, such as
passport authentication, airport and border control,
electronic banking, financial transactions, law enforcement,
health and social services. Unlike traditional methodologies

(e.g. smart cards, encryption keys and digital signatures),
biometric identifiers are inextricably linked to persons
themselves and therefore can not be forgotten,
counterfeited, or stolen. The trend of biometric growth is
reported to be on the rise and biometric industry revenue is
expected to grow as high as $4,639 million by 2008 [1].
Clearly, computing systems that can deliver high-
performance on the representative biometric applications
play an important role on the further growth of biometric
computing market.

Despite the widespread usage of biometric applications,
their execution characteristics on the state-of-the-art
microprocessor and memory systems are largely unknown.
In order to ensure good hardware performance on
biometric applications, designers need to use the key
benchmarks from this application domain for the
performance measurement and evaluation. Therefore, there
is a clear need for representative biometric workloads and
detailed workload characterization of these applications.
This paper deals with the collection of benchmarks to
characterize the various architectural aspects of different
biometric applications, such as handwriting, fingerprint,
face, voice and gait recognition, and evaluation of the
effectiveness of numerous architectural features, such as
trace cache, out-of-order and speculative execution, branch
prediction and memory system behavior. The goal of this
paper is to understand the workload characteristics of
important biometric techniques and to provide computer
architects and the implementers of biometric software with
detailed execution characteristics of the workloads, which
may be useful in the hardware/software design trade-offs
for the cost-effective biometric computing platforms.

Depending on the context, a biometric system can be
either a verification (authentication) system or an
identification system. Verification (Am I whom I claim I
am?) involves confirming or denying a person’s claimed
identity. In identification, one has to establish a person’s
identity (Who am I?). Each one of these approaches has its
own complexities and could probably be solved best by a
certain biometric system. As of today, most embedded
processors focus on applications used for authentication.
For example, Texas Instruments TMS320C600 and
TMS320C500 processors are used for the FADT
(Fingerprint Authentication Development Tool) [2]. Atmel
has launched biometric systems based on Atmel’s
AT91RM9200 ARM9 micro controller [3]. It has been
designed for applications such as locks, and time and

76 0-7803-9461-5/05/$20.00 ©2005 IEEE

attendance systems or other secure authentication
applications. Identification systems are highly computation
intensive and the use of general purpose processors is more
common for these systems. This paper focuses on
characterizing benchmarks for complex identification
systems unlike the authentication systems catered by
today’s embedded processors. Hence we selected a general
purpose processor like the Pentium 4 as our baseline
architecture due to its state-of-the-art design and
popularity.

The paper makes the following contributions:
• First, it proposes a suite of representative biometric

applications that could be used to evaluate the
design of future processor and memory architecture
on this emerging application domain.

• Second, it provides a detailed quantitative workload
characterization of important biometric applications.
We use hardware performance counters to measure a
wide range of architectural features of a Pentium 4
based machine running various biometric
applications. We study the basic workload
characteristics and examine the efficiency of
caching, out-of-order execution, branch prediction
and speculative execution. Our analysis is
specifically oriented towards the microprocessor and
memory architecture efficiency for biometric
applications, where very few results have been
published so far.

The rest of this paper is organized as follows: Section 2
presents the proposed biometric benchmark suite - BMW.
Section 3 describes the experimental methodology used in
this study. Section 4 presents the detailed workload
characterization results and discusses their architectural
implications. In Section 5, we conclude the paper and
outline our future work.
2. The BMW (BioMetric Workload) Suite

To characterize the architectural aspects of biometric
applications, various sets of benchmarks are collected.
Currently, the proposed biometric benchmark suite (BMW)
contains five applications (i.e., handwriting, fingerprint,
face, voice and gait recognition) which cover a variety of
the major biometric technique (see Table 1 for benchmark
description and S100 input data sets). The datasets we used
were collected from several popular databases released by
NIST (National Institute of Standards and Technology).
We provide three input data sets – S1, S10 and S100 for
each benchmark. This section describes the selected
applications.
2.1 Handwriting

We use hsfsys2, a form-based optical character
recognition (OCR) system developed by the National
Institute of Standards and Technology (NIST) [4, 5]. The
hsfsys2 performs various tasks such as form
registration/removal, field isolation/segmentation,

character normalization, feature extraction, character
classification, and dictionary based post-processing. Each
handwriting form contains 34 fields including the digit
fields, lower case field, upper case field, and the
constitution box. As the first phase of handwriting
recognition, the forms are registered or aligned so that
fields in the image correspond with the prototypical
template of fields. To extract the featured vectors from
characters, all characters are represented by 1024 binary
pixel values. The Karhunen Loève (KL) [6] transform is
applied to these binary pixel vectors to reduce
dimensionality, suppress the noise, and produce optimally
compact features for classification. The hsfsys2 system
uses Multi-Layer Perceptron [7] method for character
recognition. To classify a character, the appropriate
eigenvectors and MLP weight matrices are first loaded.
Using the eigenvectors, the normalized image is
transformed into a feature vector. The feature vector is
then presented to the MLP network. The result is assigned
classification along with a confidence value. After spell-
correct processing, hsfsys2 system yields the final output
as assigned class for each field and its associated
confidence as determined by MLP classifier.
2.2 Face

We choose Colorado State University’s Face
Identification Evaluation System [8] as a face recognition
application. It provides standard face recognition
algorithms and statistical methods for comparing face
recognition algorithms. The system includes standardized
image pre-processing software and four distinct face
recognition algorithms. Preprocessing consists of five
steps in converting an original PGM FERET image to a
normalized image. These steps include integer to float
conversion, geometric normalization, masking, histogram
equalization and pixel normalization. Using principle
components analysis (PCA) [9] algorithm, feature vectors
are formed by concatenating the pixel values from the
images. Linear discriminant analysis (LDA) [10] is then
applied to form a subspace that is linearly separable
between classes. Bayesian intrapersonal/extrapersonal
classifier estimates the statistical properties of two
subspaces based on a maximum a posteriori (MAP) and
maximum likelihood (ML) classifier [11]: one for
difference images that belong to the intrapersonal class
which originates from two photos of the same subject and
another for difference images that belong to the
extrapersonal class which originates from two photos of
different subjects. During the testing phase, the classifier
takes each image of unknown class membership and uses
the estimates of the probability distributions as a means of
identification.
2.3 Fingerprint

We use NIST Fingerprint Image Software 2 (NFIS2) as
our biometric fingerprint benchmark. Nfis2 has been

77

adopted by the Federal Bureau of Investigation (FBI) and
Department of Homeland Security (DHS). The nfis2
software is organized into seven major packages [12].
Among them, we choose the PCASYS application which is
a neural network based fingerprint pattern classification
system.

The PCASYS performs various tasks such as
segmentation, image enhancement, ridge-valley orientation
detection, feature set transform, probabilistic and multiple-
layer neural network classification. The segmentor first
reads the input fingerprint image (8-bit grayscale, 512×480
pixels) and cuts a rectangular region of the input image.
The image enhancement routine enhances the segmented
fingerprint image by snips out a sequence of squares each
of size 32×32 pixels, with the snipping positions spaced 16

pixels apart in each dimension to produce overlapping.
Ridge-valley orientation detector finds the local
orientation of the ridges and valleys of the finger surface
image, and produces an array of regional averages of these
orientations. Feature set transformation performs a linear
transform to the orientation array. The Probabilistic Neural
Network (PNN) algorithm classifies an incoming feature
vector. Additionally, the pseudo-ridge tracing step takes a
grid of ridge orientations of the incoming fingerprint and
traces pseudo-ridges, which are trajectories that
approximately follow the flow of the ridges. As the final
processing step, PCASYS takes the outputs of the neural
network classifier and the auxiliary pseudo-ridge tracer,
and makes the decision as to what class, and confidence, to
assign to the fingerprint.

Table 1. Benchmark Description

Software
Package Program Description Input Data Set (S100)

Retired
Instructions

(Billions)

Hand
Writing hsfsys2 Use Multi-Layer Perceptron (MLP)

classification to identify handwriting

NIST Special Database 19(SD19) contains the
full page binary image of 3,699 Handwriting
Sample Form(HSF) and 814,255 segmented
handprinted digit and alphabetic characters form
those form

1,147

Face csuFaceIdEv
al.5.0

The standard statistical methods used for
comparing face recognition algorithms

The original Facial Recognition Technology
(FERET) Database (released in 2001) consists of
14,051 grayscale images

534

Finger
Print nfis2 Neural network based fingerprint pattern

classification system (PCASYS)
A set of 2,700 WSQ compressed grayscale
fingerprint images 254

Voice Sphinx3-0.5
Voice recognition system with an
acoustic trainer, text recognition decoder
and phoneme recognition decoder

CMU Microphone array database and census
database(AN4) 324

Gait GaitBaseline
V1.7 Identification of people from gait

The USF-NIST data set consists of 1,870
sequences from 122 subjects spanning 5
covariates

484

2.4 Voice
The voice recognition system we use is Sphinx-3 [13,

14], which is one of the series of Sphinx system developed
by CMU. It includes both an acoustic trainer and various
decoders, i.e., text recognition, phoneme recognition, N-
best list generation, etc. A microphone converts the
acoustic vibrations into an analog signal. This analog
signal is then filtered to eliminate the frequency
components of the signal. The filtered signal is then
digitized using a sampling and quantization phase. The
digitized waveform is then partitioned into fixed-duration
time-slices, frames. In the encoding phase, audio signals
are compressed and yield a stream of feature vectors. Each
signal transformed from time domain to the frequency
domain with fixed loop bounds. The Hidden Markov
Model, HMM [15] is used as the primary algorithm to
recognize the voice. An HMM is a graph of states with arcs

weighted by transition probabilities between the states, and
recognition is performed by determining the most probable
path through the HMM graph corresponding to a given
input sequence of frames. Sphinx-3 performs recognition
with the help of a dictionary broken down into four
probabilistic models, i.e., phone model, acoustic model,
language model and pronunciation dictionary model. At
runtime, Sphinx-3 finds the highest probability path in a
given input sequence of frames using a beam search. As a
result of that, beam search yields a set of candidate frames
and then Sphinx-3 selects the candidate with the highest
probability and sequentially retraces its path to recreate the
constructed sentence.
2.5 Gait

Gait recognition systems use the video-sequence
footage of a walking person to measure several different
movements of each articulate joint. It is input intensive and

78

computationally expensive. Gait recognition algorithm [16]
consists of four-parts, namely, define bounding box,
silhouette extraction, gait period detection and similarity
computation.

As the first part, gait algorithm semi-automatically
defines bounding boxes around the moving person in each
frame of a sequence. Prior to extracting the silhouette, a
background model of the scene is built. In the first pass
through a sequence, the software computes the mean and
the covariances of the RGB values at each pixel location.
Based on the Mahalanobis distance [17, 18], pixels are
classified into foreground or background. Gait period
detection is estimated by such methods that count the
number of foreground pixels in the silhouette in each frame
over time and compute the median of the distances
between minima. Using those methods, two kinds of
estimated gait cycles are generated and the average of
these two median would be the final estimated gait period.
The output from the gait recognition algorithm is a
complete set of similarity scores between all gallery and
probe gait sequences. Similarity scores are computed by
spatial-temporal correlation.

Table 1 summarizes the collected benchmarks as well as
their default input data sets (S100). We provide three
different input data sets (i.e. S1, S10, and S100) for each
benchmark. The S10 data sets were created by scaling
down the S100 data sets with a factor 10. Similarly, the S1
data sets were made by scaling down the S10 data sets with
a factor 10.

3. Experimental Setup
This section describes our experimental infrastructure,

including the configuration of our machine, the
microarchitecture features of the Pentium 4 processor and
the methodology for collecting and analyzing hardware
counter data. We choose Pentium 4 as our baseline
architecture due to its state-of-the-art design and
popularity. The use of performance counters allows us to
examine the characteristics of entire program execution
because these programs are fairly long-running.
3.1 Machine Configuration

Our system consists of a 3.0GHz Pentium 4 (Prescott)
processor, populated with 1GB main memory (Samsung
DDR2-SDRAM, 400MHz). The machine runs Red Hat
Linux 9.0 kernel version 2.4.26. The system is configured
with an 80GB Seagate 7200.7 SATA hard disk that stores
the biometric datasets. The benchmarks have been
compiled using the gcc compiler for Linux. All biometric
benchmarks are executed to completion. To contrast the
execution characteristics of biometrics workloads and the
well known benchmark suite, we run all SPEC 2000
integer benchmarks with their reference input datasets. Due
to the space limitation, we only present the average
statistics of the SPEC benchmarks. For some architecture

characteristics, we also show the best and the worst
scenarios in the SPEC integer suite.
3.2 Pentium 4 Microarchitecture

This section briefly describes the key features of the
Intel Pentium 4 microarchitecture and provides the
technical background to understand the results we present
in Section 4.

The front end of the Pentium 4 micro-architecture
fetches and decodes instructions. Its builds the decoded
instruction into sequences of µops called traces, which are
stored in the execution trace cache. The Pentium 4 trace
cache can hold approximate 12,000 µops. The Pentium 4
processors have two areas where branch predictions are
performed - in the front end of the pipeline, and at the
execution trace cache (the trace cache uses branch
prediction when it builds a trace). Front-end BTB (Branch
Target Buffer, 4K entries) is accessed on a trace cache miss
and smaller Trace-cache BTB (2K entries) is used to detect
next trace line. The trace cache BTB, together with the
front-end BTB, uses a highly advanced branch prediction
algorithm. Static branch prediction will occur at decode
time if the front-end BTB has no dynamic branch
prediction data for a particular branch. Dynamic branch
prediction accuracy is also enhanced by adding an indirect
branch predictor. The out-of-order execution engine
consists of the allocation, renaming, and scheduling
functions. The processor can issue multiple µops per cycle
to the next pipeline stage. To exploit the instruction level
parallelism (ILP) in the programs, the Pentium 4
microarchitecture provides a very large window of
instructions from which the execution units can choose.
The Pentium 4 processor has an 8-way, 16KB L1 data
cache and an 8-way, 1MB, write-back L2 unified cache
with 128 bytes/cache line.
3.3 Pentium 4 Performance Counters

We used the Pentium 4 hardware counters to measure
architectural events [19]. The Pentium 4 performance
counting hardware includes 18 hardware counters that can
count 18 different events simultaneously in parallel with
pipeline execution. The 18 Counter Configuration Control
Registers (CCCRs), each associated with a unique counter,
configure the counters for specific counting schemes such
as event filtering and interrupt generation. The 45 Event
Selection Control Registers (ESCRs) specify the hardware
events to be counted and some additional Model Specific
Registers (MSRs) for special mechanisms like replay
tagging. These counters collect various statistics including
the number and type of retired instructions, mispredicted
branches, cache misses etc. We used a total of 59 event
types for the data presented in this paper.
4. Experimental Results

This section presents a detailed characterization of the
Pentium 4 processor running the proposed biometric

79

benchmark suite. We examine benchmark basic
characteristics, cache, TLB and memory system behavior,
and superscalar execution.
4.1 Benchmark Basic Characteristics

0%
20%
40%
60%
80%

100%

han
dwriti

ng
fac

e

fin
gerp

rin
t

vo
ice gait

Biometr
ic_

AVG

Spec
_A

VG

%
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

Load Store Branch
FP Integer

Figure 1. Dynamic Instruction Mix
Figure 1 shows the dynamic instruction mix of the

biometric applications. On the average, the load, store,
branch, floating point, and integer instructions account for
41.9%, 13.5%, 16.1%, 12.1% and 16.4 % of the dynamic
instructions respectively. On benchmarks handwriting,
face, fingerprint and voice, loads comprise above 40% the
dynamic instructions. These applications tend to find or
generate information by working on large data sets. The
proportion of store instructions ranges from 8.6% on voice
to 16.51% on gait. The studied biometric workloads show
large variation in floating point instruction distribution
from 3.14% on gait to 21.15% on voice. And also in Figure
1 and other figures, we add average SPEC 2000 integer
benchmark data to compare the biometric benchmark data.

0.0

0.5

1.0

1.5

2.0

han
dw

rit
ing

fac
e

fin
ge

rp
rin

t
vo

ice gait

Biometr
ic_

AVG

Spe
c_

AVG

µo
ps

 p
er

 In
st

ru
ct

io
n

Figure 2. µops per Instruction

In order to improve the efficiency of the superscalar
execution and the parallelism of the program, each x86
instruction is translated into one or more µops inside the
Pentium 4 processor. Typically, a simple instruction is
translated into around one to three µops. Figure 2 shows
the average number of µops executed per instruction for
each of the biometric benchmark. The range is from 1.44 to
1.61, with an average around 1.51. Compared with SPEC
benchmarks, biometric applications show similar number
in µops per instruction.
4.2 IPC and µPC

The instructions-per-cycle (IPC) metric indicates how
efficiently a microprocessor performs its functions. Using
the Pentium 4 events that count the number of cycles,
number of instructions retired and number of µops retired
during the measurement period, we computed the IPC and
µops per cycle (µPC) metrics for the biometric workloads
(as shown in Figure 3). The biometric application IPC
ranges from 0.13 to 0.77, with an average around 0.47. A
lower IPC can be caused by an increase in cache misses,
branch mispredictions, or pipeline stalls in the CPU. The
IPCs are low on benchmarks face and voice due to the
excessive data cache misses. On these two benchmarks,
large data structures (e.g. HMM) are first created and then
intensively accessed during the computation. The memory
references to these data structures cause high miss rates due
to their poor locality. Interestingly, the benchmark gait
shows low IPC despite of its good cache and branch
prediction performance.

0.0

0.5

1.0

1.5

ha
nd

writ
ing

fac
e

fin
ge

rp
rin

t

vo
ice ga

it

Biom
etr

ic_A
VG

Spe
c_

AVG

Spec
_g

ap

Spe
c_

mcf

Instruction per Cycle
µops per Cycle

Figure 3. IPC vs. µPC

We believe that the low IPC stems from the limited ILP
inherent to this benchmark. The µPC ranges from 0.2 to
1.17, with an average around 0.7. Only two benchmarks
(handwriting and fingerprint) achieve more than one µops
per cycle. Figure 3 shows that compared with SPEC
benchmarks, biometric applications show slightly lower
IPC and µPC. The greatest IPC (fingerprint) that the
processor can yield on biometric applications is similar to
that on the SPEC benchmarks (gap). The observed lowest
IPC (gait) is still better than the worst case (mcf) of SPEC
benchmarks.
4.3 Trace Cache

As the front end, the Pentium 4 trace cache sends up to 3
µops per cycle directly to the out-of-order execution engine,
without the need for them to pass through the decoding
logic. Only when there is a trace cache miss does the front
end fetches x86 instructions from the L2 cache. There are
some exceedingly long x86 instructions (e.g., the string
manipulation instructions) that decode into hundreds of
µops. For these long instructions, the Pentium 4 processor
fetches µops from a special µops ROM that stores the
canned µops sequence. Figure 4 shows the proportion of
the µops fetched from the L2 cache, the trace cache, and
the µops ROM respectively. As can be seen, a dominant
fraction (97.22%) of the µops is supplied by the trace

80

cache. The L2 cache contributes to less than 0.17% of the
µops on most of the benchmarks. This indicates that the
Pentium 4 trace cache is highly efficient in providing the
µops to the rest of the pipeline.

0%
20%
40%
60%
80%

100%

han
dw

rit
ing

fac
e

fin
gerp

rin
t

vo
ice gait

Biometr
ic_

AVG

Spec
_A

VG

%
 o

f µ
op

s

L2 Cache Trace Cache µops ROM

Figure 4. Source of the µops

The trace cache operates in two modes: deliver mode
and build mode. The deliver mode is the mode in which the
trace cache is feeding stored traces to the execution logic to
be executed. This is the mode that the trace cache normally
runs in. When there is a trace cache miss, the trace cache
goes into build mode. In this mode, the front end fetches
x86 instructions from the L2 cache, translates into µops,
builds a trace segment with it, and loads that segment into
the trace cache to be executed. Figure 5 shows the
percentage of non-sleep cycles that the trace cache is
delivering µops from the trace cache, vs. decoding and
building traces. As can be seen, the utilization of the trace
cache is extremely high except on the benchmark
fingerprint. The trace cache BTB yields high misprediction
rate on the benchmark fingerprint. After branch outcomes
are resolved, the speculatively built traces have to be
squashed and rebuilt again. Figure 5 shows that the fraction
of trace cache deliver mode on biometric application is
higher than that on SPEC benchmarks.

0
20
40
60
80

100

han
dwrit

ing
fac

e

fin
gerp

rin
t

vo
ice gait

Biometr
ic_

AVG

Spec
_A

VG

%
 in

 D
el

iv
er

 M
od

e

Figure 5. Trace Cache: % of Cycles in Deliver Mode

(fraction of all non-sleep cycles that the trace cache is
delivering µops from vs. decoding and building traces)

4.4 Cache Misses
Figure 6 presents the counts of cache misses per 1000

instruction retired. We see that instruction related cache
misses are nearly fully satisfied by the trace cache. In most
cases the trace cache misses are so small that they don’t

even shown on the scale used in Figure 6. Data cache miss
ratios are higher because the data footprint is much larger
than the instruction footprint. For example, the benchmarks
face and voice can cause more than 32 L1 data cache
misses on every thousand instructions executed. On the
average, the studied biometrics applications generate 16.69
L1 cache misses per thousand retired instructions. Note
that this number is likely to increase as (1) the size of the
biometric databases grows and (2) the analysis methods get
more complicated. Figure 6 shows that in the worst case
(mcf), SPEC benchmarks yield a cache miss rate 6.5 times
higher than the worst case of biometric workloads. On the
average, the L1 D-cache miss rate on SPEC benchmarks is
three times higher than that on biometric workloads.

0
10
20
30
40
50
60

han
dwrit

ing
fac

e

fin
ge

rp
rin

t
vo

ice gait

Biometr
ic_

AVG

Spec
_A

VG

Spec
_e

on

Spec
_m

cf

Trace Cache Misses per Thousand Instructions
L1-D Cache Misses per Thousand Instructions
L2 Cache Load Misses per Thousand Instructions

228 73

Figure 6. Cache Misses per Thousand Instructions

We found that the L1 data cache misses on 3 out of the 5
studied benchmarks can be nearly fully satisfied by the L2
cache. The Pentium 4 processors use automatic hardware
prefetch to bring cache lines into the unified L2 cache
based on prior reference patterns. Prefetching is beneficial
because many accesses to the biometric databases are
sequential, and thus, predictable. With prefetching, the L2
cache can handle the working sets of most of the studied
benchmarks. Interestingly, the benchmarks (face and voice)
with the highest L1 data cache misses also have the highest
L2 misses, implying their poor data locality. Due to the
irregular memory access patterns and poor locality, data
accesses on these two benchmarks are difficult to absorb,
even for the 1MB, 8-way set associative L2 cache with
prefetching, which suggests that either larger L2 caches or
better prefetching scheme could be beneficial for them.
Figures 3 and 6 show a fairly strong correlation between
the L2 misses and IPC, indicates that the L2 miss latency is
more difficult to be completely overlapped by out-of-order
execution.

The Pentium 4 L2 cache uses write-back policy. Cache
lines may be in one of four sates: modified (M), exclusive
(E), shared (S) or invalid (I). The Pentium 4 counters allow
us to monitor the MESI state of an L2 cache line on an
access to the L2 cache. Accesses to invalid lines
correspond to cache misses, while accesses to lines in other
states correspond to hits to an L2 line found in that state,
before any modifications due to that access are made.

81

Figure 7 shows the percentages of L2 accesses broken
down by MESI states. Note that these references result in
misses in the L1 cache. As expected, we see that a large
fraction of accesses that hit in the L2 cache are to exclusive
and modified cache lines. The exclusive state is heavily
utilized for loads in the Pentium 4 processor. The high
percentage of load hits to modified lines indicates that the
processor reads data in the same line as it has recently
written.

0%

20%

40%

60%

80%

100%

ha
nd

writ
ing fac

e

fin
ge

rp
rin

t
vo

ice ga
it

Biom
etr

ic_
AVG

Spe
c_

AVG

%
 o

f L
2

A
cc

es
se

s Exclusive Modified
Shared Invalid

Figure 7. MESI Sates of L2 Line on L2 Accesses

4.5 TLB Misses
The Pentium 4 processor uses separate TLB (Translation

Lookaside Buffer) to translate the virtual address into
physical address for instruction and data accesses. Figure 8
presents the ITLB and DTLB miss rates across the studied
benchmarks. The ITLB miss rates are well below 2.0% on
most benchmarks. Benchmark gait yields higher ITLB
miss rates than others. This is due to the fact that gait has a
very large percentage of branches in its instruction mix (as
seen from Figure.1). Figure 8 also shows that most of the
DTLB accesses can be handled very well by the Pentium 4
processor. Nevertheless, benchmarks voice, which exhibits
poor data locality, yields high (2.67%) DTLB miss rates.
Figure 8 also presents the best (eon) and the worst (mcf)
cases of DTLB miss rates on SPEC benchmarks. As can be
seen, compared with SPEC benchmarks, biometrics
applications show better DTLB but worse ITLB
performance.

0%

2%

4%

6%

8%

ha
nd

writ
ing fa

ce

fin
ge

rp
rin

t
vo

ice ga
it

Biom
etr

ic_
AVG

Spe
c_

AVG

Spe
c_

eo
n

Spe
c_

mcf

TL
B

 M
is

s
R

at
es ITLB

DTLB

50%

Figure 8. TLB Miss Rates

We further characterize the DTLB misses on load and
store operations. Figure 9 demonstrates that the DTLB

miss rate of voice on load operation is higher than that on
store operation. Inversely, DTLB miss rate of fingerprint
on store operations is higher than that on load operation.

0%

1%

2%

3%

ha
ndw

rit
ing fac

e

fin
gerp

rin
t

vo
ice ga

it

D
TL

B
 M

is
s

R
at

es DTLB Miss Per Load
DTLB Miss Per Store

Figure 9. DTLB Miss Rates on Load and Store

4.6 Load Replays
Given that a large percentage of dynamic instructions are

loads and stores, we investigate the efficiently of the
processor in handling the load and store operations next.

In an out-of-order-execution processor, stores are not
allowed to be committed to permanent machine state (the
L1 data cache, etc.) until after the store has retired. With
the very deep pipeline of the Pentium 4 processor it takes
many clock cycles for a store to make it to retirement.
Often loads must use the result of one of these pending
stores. The Pentium 4 processor uses a store-to-load
forwarding technique to enable certain memory load
operations (loads from an address whose data has just been
modified by a preceding store operation) to complete
without waiting for the data to be written to the cache.

Memory Order Buffer (MOB) acts as a separate schedule
and dispatch engine for data loads and stores and also
temporarily holds the state of outstanding loads and stores
from dispatch until completion. There are size and
alignment restrictions for store-to-load forwarding cases to
succeed, and when a restriction is not observed, the
memory load operation stalls. Later, the load operation
replays in the MOB. The MOB load replays event,
indicates that store-to-load forwarding restrictions are not
being observed.

0.0
0.1
0.2
0.3
0.4
0.5
0.6

han
dwrit

ing fac
e

fin
ge

rp
rin

t

vo
ice gait

Biometr
ic_

AVG

Spec
_A

VG

Spec
_g

cc

Spec
_m

cf

M
O

B
 R

ep
la

ys

0%

20%

40%

60%

80%

100%

M
O

B
 R

ep
la

ys
 R

et
ire

 R
at

io

MOB Replays per Retired Load
MOB Load Replays Retire Ratio

Figure 10. Load Replays

82

Figure 10 shows the average number of MOB replays
per retired load. One can see that the numbers are small for
most of the benchmarks. There is significant store-to-load
forwarding confliction on the benchmarks voice due to its
irregular memory access patterns. We also plot the
percentage of the MOB replayed loads that reach the
retirement status and find the numbers vary significantly
across different benchmarks. For example, gait shows
higher MOB replayed load retire ratios than the others.
This is because the inherent ILP in benchmark gait is low.

4.7 Branches and Branch Prediction
Figure 11 presents the fraction of branches that belongs

to conditional branches, indirect branches, calls and returns.
Conditional branches, ranging from 47.03% (gait) to
92.90% (fingerprint) of the dynamic branches, dominate
the control flow transfers in the biometric applications.
Indirect branches account for more than 22.69% of the
dynamic branches on benchmarks gait. On the average,
conditional branches, indirect branches, call, and return
contribute to the 78.99%, 8.65%, 6.19% and 6.18% of the
total dynamic branches. Figure 11 shows that compared
with the SPEC benchmarks, biometric applications show
higher ratio of conditional branches in their control flow
transfer instructions.

0%
20%
40%
60%
80%

100%

han
dwrit

ing
fac

e

fin
gerp

rin
t

vo
ice gait

Biometr
ic_

AVG

Spe
c_

AVG

Spec
_eo

n

Spe
c_

mcf

%
 o

f B
ra

nc
he

s

Conditional Indirect Call Return
Figure 11. Dynamic Branch Mix

0%

5%

10%

15%

han
dw

rit
ing

fac
e

fin
gerp

rin
t

vo
ice gait

Biometr
ic_

AVG

Spec
_A

VG

Spec
_tw

olf

Spec
_v

orte
x

M
is

pr
ed

ic
tio

n
R

at
es

Overall Conditional Indirect Call Return
Figure 12. Branch Misprediction Rates

Figure 12 shows the branch misprediction rates on the
biometric applications. Due to the advanced branch
prediction schemes, the overall branch misprediction rates
are very low, except handwriting(3.23%) and voice(4%).

Indirect branch misprediction rates are also low on the
studied benchmarks. The calls and returns can be predicted
accurately by the 16 entries return address stack. The
accuracy of conditional branch prediction largely
determinates the overall branch prediction performance.
Figure 12 shows that SPEC benchmarks yields higher
misprediction rates than biometric benchmarks.

0%
20%
40%
60%
80%

100%

han
dwrit

ing
fac

e

fin
gerp

rin
t

vo
ice gait

Biometr
ic_

AVG

Spec
_A

VG

%
 o

f B
ra

nc
he

s

Predicted Not-taken Branches (%) Predicted Taken Branches (%)
Mispredicted Not-taken Branches (%) Mispredicted Taken Branches (%)

Figure 13. Dynamic Branch Direction

Figure 13 presents the branch directions (i.e., taken or
not-taken) for both correctly predicted and incorrectly
predicted conditional branches. As can be seen, a
significant portion of the conditional branches are taken
branches, implying there are abundant loop structures
within the studied biometric applications. Strongly taken or
strongly not-taken (i.e. strongly-biased) branches can be
easily predicted by the Pentium 4 branch predictors. Even
if the branch information can not be found in its dynamic
branch predictors, the Pentium 4 can still predict the
strongly-biased branches accurately using its static branch
prediction scheme. The mispredicted branches are weakly-
biased in nature by showing the equal distribution on the
taken and non-taken directions. Previous studies [20] show
that the weakly-biased branches, when intermingling with
the strongly-biased branches, can increase branch aliasing
and degrade the prediction accuracy. It will be interesting
to further investigate the branch aliasing caused by the
weakly-biased branches.

4.8 Speculative Execution

0.0

0.5

1.0

1.5

2.0

han
dwrit

ing
fac

e

fin
ge

rp
rin

t
vo

ice gait

Biometr
ic_

AVG

SPEC_A
VG

Spec
_g

cc

Spec
_tw

olf

Instruction Speculative Execution Factor
µops Speculative Execution Factor

Figure 14. Speculation Factor

83

To reach high performance, the Pentium 4 machine
fetches and executes instructions along the predicted path
until the branch is resolved. In case there is a branch
misprediction, the speculatively executed instructions
along the mispredicted path are flushed. The speculative
execution factor or the ratio of the total number of
instructions decoded to the total number of instructions
retired quantitatively captures how aggressively the
processor executes the speculated instructions.

Figure 14 shows the speculative execution factors for
instruction and µops on the biometrics applications. On the
average, the processor decodes 15% more instructions than
it retires. Higher speculation factors are observed on
benchmarks handwriting and voice. Note that there is a
fairly strong correlation between the branch prediction
accuracy and the speculative execution factor on these
programs. Due to the use of deeply pipelined design to
reach high operation clock frequency, the accuracy of
branch prediction plays an important role on Pentium 4
pipeline performance. Biometric benchmarks with higher
mispredicted branches per instruction have higher
speculated instructions, indicating these applications can
further benefit from more accurate branch prediction.

Figure 14 shows that on the average, the speculative factor
on SPEC benchmarks is higher than biometrics workloads.

4.9 Phase Behavior
Recent computer architecture research has shown that

program execution exhibits phase behavior, and these
behaviors can be seen even on the largest of scales [21].
Program phases can be exploited to design adaptive
microarchitecture, guide feedback compiler optimization
and reduce simulation time. To reveal the phase behavior
of biometric applications, we sampled performance
counters at a time interval of 0.1 second. Figure 15 shows
the sampled IPC during program execution. As can be
seen, the studied biometric applications show
heterogeneous phase behavior. For example, benchmark
gait shows periodic spikes where program execution yields
high IPC. Although benchmark face shows irregular
behavior during initialization stage, its phase behavior is
highly predictable for the majority of program execution.
Benchmarks handwriting, fingerprint and voice exhibit
irregular and unpredictable phase behavior during the
entire program execution.

0

0.2

0.4

0.6

0.8

1

1.2

IP
C

100%80%60%40%20%0%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

IP
C

100%80%60%40%20%0%
0

0.2

0.4

0.6

0.8

1

IP
C

100%80%60%40%20%0%

handwriting face fingerprint

0

0.2

0.4

0.6

0.8

1

IP
C

100%80%60%40%20%0%
0

0.2

0.4

0.6

0.8

1

IP
C

100%80%60%40%20%0%

Figure 15. Phase Behavior of
Biometric Applications
(with S100 Data Sets)

voice gait

4.10 Performance Variability under Different
Input Data Sets

To understand the implication of using different data
sets to evaluate the performance of biometric applications,
we run each benchmark with S1 and S10 data sets. Table 2
summarizes performance variability of biometric
workloads under different input data sets. For the purpose

of comparison, we also include the results of S100 data
sets. As we expect, the scales of input data sets can have
significant impact on the miss rates of L1 data cache and
L2 cache. For instance, on benchmark face, the L1 data
cache misses per thousand instructions increase from 19 to
34 when the input data set is scaled from S10 to S100. In
some cases, small data sets perform worse than large data
sets due to cold start effect.

84

Table 2. Performance Variability under Different Input Data Sets

Metrics Hand
writing Face Finger

print Voice Gait

S1 0.75 0.38 0.75 0.46 0.18
S10 0.77 0.31 0.75 0.38 0.28 IPC
S100 0.77 0.3 0.75 0.38 0.13
S1 0.23 0.08 0.04 0.51 0.5
S10 0.22 0.11 0.04 0.13 0.07

Trace Cache Misses per 1000
Instructions

S100 0.13 0.07 0.03 0.12 0.05
S1 12.58 19.48 3.62 23.4 0.71
S10 12.75 19.86 3.66 31.37 0.72

L1-D Cache Misses per 1000
Instructions

S100 10.37 34.3 3.78 32.56 2.43
S1 0.53 2.11 0.08 5.39 0.08
S10 0.52 2.01 0.08 8.74 0.07 L2 Cache Load Misses per

1000 Instructions
S100 0.31 2.77 0.08 8.48 0.11
S1 1.18% 2.2% 0.2% 0.51% 2.28%
S10 1.16% 1.67% 0.21% 1.03% 3.31% I-TLB Miss Rate
S100 0.96% 1.79% 0.62% 1.4% 2.47%
S1 0.82% 2.97% 0.92% 2.65% 0.03%
S10 0.83% 2.39% 0.92% 2.88% 0.05% D-TLB Miss Rate
S100 0.45% 0.78% 0.93% 2.67% 0.09%
S1 86.25% 74.15% 97.26% 92.98% 23.1%
S10 87.82% 75.55% 97.19% 96.26% 34.93% Trace Cache: % of Cycles in

Deliver Mode
S100 98.81% 97.18% 58.58% 99.64% 99.03%
S1 1.81% 0.2% 1.19% 2.87% 0.19%
S10 1.8% 0.11% 1.20% 3.69% 0.07% Overall Branch Misprediction

Rates
S100 3.23% 0.04% 1.17% 4.00% 1.41%
S1 1.91% 0.19% 1.26% 3.54% 0.52%
S10 1.90% 0.21% 1.27% 4.54% 0.21%

Conditional Branch
Misprediction Rate

S100 3.55% 0.04% 1.23% 4.89% 2.99%
S1 1.14 1 1.08 1.25 1.01
S10 1.14 1 1.08 1.28 1.01 Instruction Speculative

Execution Factor
S100 1.23 1 1.07 1.29 1.14

5. Conclusions
Although biometric applications represent a rapidly

growing security computing market, their implications on
the computer architecture design are still unknown. In
order to apply the quantitative approach in computer
architecture design and performance evaluation, there is a
clear need for representative biometric applications and
detailed workload characterization of these applications.

This paper proposes BMW, a group of programs
representative of biometric workloads. These programs
include popular biometrics identifications used for
handwriting, face, fingerprint, voice and gait recognitions.
This paper studies the characteristics of biometric
workloads and evaluates the effectiveness of numerous
architectural features, such as trace cache, out-of-order and

speculative execution, branch prediction and memory
system behavior.

We find that the instruction footprints of biometric
applications are typically small and can fit in the L1
instruction cache. Loads and stores account for 55% of
dynamic instructions executed. This indicates that
biometric workloads are data-centric. Prefetching and the
large L2 cache can efficiently handle the working sets of a
majority of the studied benchmarks. Compared with SPEC
benchmarks, the studied biometric applications show better
performance in terms of data cache, D-TLB miss rates and
branch misprediction rate. The IPC of the studied
benchmarks ranges from 0.13 to 0.77. This indicates that
out-of-order superscalar execution is not quite efficient.

We believe that the development of representative
biometric benchmarks and the workload characterization of

85

these benchmarks will help in understanding the design
issues of processor architecture as well as evaluating
computer system performance on these emerging
workloads. In the future works, we will extend the current
biometric benchmark suite with new applications such as
iris, palm recognitions. It is also very interesting to study
and compare the performance of biometric applications on
other processor paradigms such as SMT (Simultaneous
Multi-Threading) and CMP (Chip Multi-Processor).
Additionally, we will explore the integrated
software/hardware techniques to optimize the performance
of biometric applications.

References
[1] Biometrics Market and Industry Report (2004 – 2008),

International Biometric Group, 2004.
[2] DSP for Smart Biometric Solutions, White Paper, Texas

Instruments, 2003.
[3] http://www.arm.com/iqonline/news/partnernews/6420.ht

ml.
[4] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick,

J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson,
NIST Form-Based Handprint Recognition System, NIST
Internal Report 5469 and CD-ROM, Jul, 1994.

[5] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick,
J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson,
NIST Form-Based Handprint Recognition System(R2),
NIST Internal Report 5959, Jan, 1997.

[6] P. J. Grother, Karhunen Loève Feature Extraction for
Neural Handwritten Character Recognition, NIST
Internal Report 4824, April 1992, and in Proceedings of
Applications of Artificial Neural Networks III, Vol. 1709,
pp. 155-166. SPIE, Orlando, April 1992.

[7] C. L. Wilson, J. L. Blue, O. M. Omidvar, The Effect of
Training Dynamics on Neural Network Performance,
NIST Internal Report 5696, August 1995.

[8] R. Beveridge, D. Bolme, M. Teixeira and B. Draper, The
CSU Face Identification Evaluation System User’s Guide,
V5.0, Colorado State University, May, 2003.

[9] M. A. Turk and A. P. Pentland, Face Recognition Using
Eigenfaces, In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 586 –
591, June 1991.

[10] W. Zhao, R. Chellappa, and A. Krishnaswamy,
Discriminant Analysis of Principal Components for Face
Recognition, In Wechsler, Philips, Bruce, Fogelman-
Soulie, and Huang, Editors, Face Recognition: From
Theory to Applications, pages 73–85, 1998.

[11] B. Moghaddam, C. Nastar, and A. Pentland, A Bayesian
Similarity Measure for Direct Image Matching, ICPR,
B:350–358, 1996.

[12] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R.
M. McCabe, and S. Janet, User's Guide to NIST
Fingerprint Image Software 2,Oct.2004.

[13] K. K. Agaram, S. W. Keckler, and D. C. Burger, A
Characterization of Speech Recognition on Modern
Computer Systems, In Proceedings of the 4th IEEE
Workshop on Workload Characterization, 2001.

[14] http://cmusphinx.sourceforge.net/html/cmusphinx.php.
[15] D. Robert and E. Woodland, A Hidden Markov Model-

based Trainable Speech Synthesizer, Computer Speech
and Language, (13:223-241), 1999.

[16] S. Sarkar, P. J. Phillips, Z. Liu, I. Robledo, P. Grother,
and K. Bowyer, The Human ID Gait Challenge Problem:
Data Sets, Performance, and Analysis”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Aug., 2003.

[17] P. J. Phillips, S. Sarkar, I. Robledo, P. Grother, and K.
Bowyer, Baseline Results for the Challenge Problem of
Human ID using Gait Analysis, In Proceedings of the
International Conference on Automatic Face and Gesture
Recognition, pages 137–142, 2002.

[18] P. J. Phillips, S. Sarkar, I. Robledo, P. Grother, and K.
Bowyer, The Gait Identification Challenge Problem: Data
Sets and Baseline Algorithm, In Proceedings of the
International Conference on Pattern Recognition, pages
385–388, 2002.

[19] B. Sprunt, The Basics of Performance Monitoring
Hardware, IEEE Micro, July-August, page 64-71, 2002.

[20] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt,
The Agree Predictor: A Mechanism for Reducing
Negative Branch History Interference, In Proceedings of
the International Symposium on Computer Architecture,
1997.

[21] T. Sherwood, E. Perelman, G. Hamerly and B. Calder,
Automatically Characterizing Large Scale Program
Behavior , In Proceedings of the International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2002.

86

