
Workload Characterization of Bioinformatics Applications

Yue Li

Department of ECE

University of Florida

yli@ecel.ufl.edu

Tao Li

Department of ECE

University of Florida

taoli@ece.ufl.edu

Tamer Kahveci

Department of CISE

University of Florida

tamer@cise.ufl.edu

José Fortes

Department of ECE

University of Florida

fortes@acis.ufl.edu

Abstract

The exponential growth in the amount of genomic

information has spurred growing interest in large scale

analysis of genetic data. Bioinformatics applications

represent the increasingly important workloads. However,

very few results on the behavior of these applications running

on the state-of-the-art microprocessor and systems have been

published.

This paper proposes a suite of widely used bioinformatics

applications and studies the execution characteristics of these

benchmarks on a representative architecture – the Intel

Pentium 4. To understand the impacts and implications of
bioinformatics workloads on the microprocessor designs, we

contrast the characteristics of bioinformatics workloads and

the widely used SPEC 2000 integer benchmarks.

The proposed bioinformatics benchmark suite as well as

the input datasets can be downloaded from the following

website: http://www.ideal.ece.ufl.edu/BioInfoMark.

1. Introduction
Over the past few decades, advances in biology research

have revolutionized our understanding of the basis of life. As
genomics moves forward, having accessible computational
methods with which to extract, view, and analyze genomic
information, becomes essential. Bioinformatics allows
researchers to sift through the massive biological data (e.g.,
nucleic acid and protein sequences, structures, functions,
pathways and interactions) and identify information of
interest. Bioinformatics is becoming increasingly important
due to the interest of the pharmaceutical industry and
biotechnology companies. A number of recent market
research reports estimate the size of the bioinformatics market
is projected to grow to $243 billion by 2010 [1].

Despite the widespread usage of bioinformatics
applications, very few results on the execution characteristics
of these applications have been published. It is therefore
important to understand how the representative workloads
from this emerging application domain behave on the state-
of-the-art microprocessors and systems. Such studies can
provide insights to computer architects on (1) how suitable
current designs are for bioinformatics software, and (2) what
optimizations will further improve the performance.

This study characterizes the workload behavior of 17
widely used bioinformatics tools. We use hardware
performance counters to measure various architectural
characteristics of a Pentium 4 based machine running the

collected bioinformatics workloads. We chose Pentium 4
architecture due to its state-of-the-art design and popularity.
Since bioinformatics benchmarks are not well-known from
the architecture perspective, we believe that an in-depth
analysis of a wide variety of bioinformatics software on the
representative architecture is crucial in understanding the
implications of bioinformatics tools on today’s market. We
study the basic workload characteristics and examine the
efficiencies of trace cache, out-of-order execution, caches and
TLBs, branch prediction and speculative execution. To better
understand the impacts and implications of bioinformatics
workloads on microprocessor designs, we further contrast the
characteristics of bioinformatics workloads and the widely
used SPEC 2000 integer benchmarks.

To date, most published work related to bioinformatics
applications either uses single program [2][3] or focuses on
the high level, parallel programming issues [4][5]. Compared
with the former work, our study is much wider in scope and
our analysis is specifically oriented towards microprocessor
and memory performance. Compared with a recent study
reported in [6], our (independent) work covers much more (17
vs. 7) bioinformatics tools and includes applications in protein
structure analysis and molecular dynamics simulation.
Moreover, our study is based on the more advanced Pentium
4 microarchitecture whereas in [6] Pentium 3 is used as the
reference machine. Compared with previous studies, the set of
statistics collected in this work is more comprehensive and
fine-grained.

The contributions of this paper include:

• Development of a benchmark suite that could be used to
evaluate computer architecture performance on emerging
bioinformatics applications

• Detailed workload characterization of widely used
bioinformatics tools on a representative architecture – the
Intel Pentium 4

The rest of the paper is organized as follows. Section 2
provides an introductory biology background and a brief
review of bioinformatics study areas. Section 3 describes the
benchmark applications. Section 4 describes the experimental
setup. Section 5 presents detailed characterization of the
benchmarks and their architectural implications. Section 6
summarizes the major findings of this work.

2. Background

This section provides an introductory background for
biology and illustrates the major fields of bioinformatics.

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

2.1 Introduction: DNA, Gene and Proteins

One of the fundamental principles of biology is that within
each cell, DNA that comprises the genes encodes RNA which
in turn produces the proteins that regulate all of the biological
processes within the organism.

DNA is a double chain of simpler molecules called
nucleotides. The nucleotides are distinguished by a nitrogen
base that can be of four kinds: adenine (A), cytosine (C),
guanine (G) and thymine (T). A DNA can be specified
uniquely by listing its sequence of nucleotides, or base pairs.

Proteins are the molecules that accomplish most of the
functions of a living cell, determining its shape and structure.
A protein is a linear sequence of molecules called amino

acids. Twenty different amino acids are commonly found in
proteins. Similar to DNA, proteins are conveniently
represented as a string of letters expressing its sequence of
amino acids.

2.2 Biological Problems

In this section, we illustrate the major problems in
bioinformatics, including sequence analysis, phylogeny,
protein structure analysis/prediction and molecular dynamics.

(1) Sequence Analysis: Sequence analysis is perhaps the
most commonly performed task in bioinformatics. Sequence
analysis can be defined as the problem of finding similar and
dissimilar parts of sequences (nucleotide or amino acid
sequences). Comparison of sequences is crucial in
understanding of their significance and functionality: high
sequence similarity usually implies significant functional or
structural similarity while sequence differences hold the key
information of diversity and evolution. The most commonly
used sequence analysis technique is pairwise sequence
comparison. Multiple sequence alignment compares more
than two sequences.

(2) Phylogeny: Phylogeny infers lines of ancestry of genes
or organisms. Phylogeny analysis provides crucial
understanding about the origins of life and the homology of
various species. Phylogenetic trees are composed of nodes
and branches. Each leaf node corresponds to a gene or an
organism. Internal nodes represent inferred ancestors. The
evolutionary distance between two genes or organisms is
computed as a function of the length of the branches between
their nodes and their common ancestors.

(3) Protein Structure Analysis: Once a protein is produced,
it folds into a three-dimensional shape. Three-dimensional
structures of only a small subset of proteins are known
because expensive wet-lab experimentation is needed.
Computationally determining the structure of proteins is an
important problem as it accelerates the experimentation step
and reduces expert analysis. Usually, the relationship among
chemical components of proteins (i.e. their amino acid
sequences) is used in determining their unique three-
dimensional native structures.

(4) Molecular Dynamics: Molecular dynamics allows
studying the dynamics of large macromolecules, including
biological systems. Dynamic events play a key role in
controlling processes which affect functional properties of

biomolecules. Drug design is commonly used in the
pharmaceutical industry to test properties of a molecule at the
computer without the need to synthesize it (which is far more
expensive).

3. The Selected Bioinformatics Applications

To characterize the architectural aspects of bioinformatics
tools, various sets of applications are collected. Of the many
bioinformatics applications, we currently select a subset of 17
workloads based on their popularity, availability, and how
representative they are in general. This section describes the
selected programs, which can be classified using the
categories we introduced in Section 2.2.

3.1 Sequence Analysis Benchmarks

The Blast (Basic Local Alignment Search Tool) programs
[7] are a set of heuristic methods that are used to search
sequence databases for local alignments to a query sequence.
Blast is one of the most commonly used sequence comparison
program. Over a hundred thousand queries are submitted to
NCBI’s Blast server daily. Similar to Blast, Fasta [8] is a
collection of local similarity search programs for sequence
databases. While Fasta and Blast both do pairwise local
alignment, their underlying algorithms are different. Clustal

W [9] is a widely used multiple sequence alignment program
for nucleotides or amino acids. It first finds a phylogenetic
tree for the underlying sequences. It then progressively aligns
them one by one based on their ancestral relationship. Hmmer

[10] employs hidden Markov models (profile HMMs) for
aligning multiple sequences. Profile HMMs are statistical
models of multiple sequence alignments. Glimmer (Gene
Locator and Interpolated Markov Modeler) [11] finds genes
in microbial DNA. It uses interpolated Markov models
(IMMs) to identify coding and noncoding regions in the DNA.
Emboss (European Molecular Biology Open Software Suite)
[12] is a software package which contains a wide variety of
programs ranging from sequence alignment, protein motif
identification to domain analysis, and codon usage analysis.

3.2 Phylogeny Analysis Benchmarks

Phylip (PHYLogeny Inference Package) [13] is a widely
used package of programs for inferring phylogenies
(evolutionary trees). Methods that are available in the package
include parsimony, distance matrix, maximum likelihood,
bootstrapping, and consensus trees. Data types that can be
handled include molecular sequences, gene frequencies,
restriction sites and fragments, distance matrices, and discrete
characters.

3.3 Protein Structure Analysis Benchmarks

Dali [14] finds the structural neighbors of a protein by
comparing it against the proteins in the PDB [15]. CE

(Combinatorial Extension) [16] finds structural similarities
between the primary structures of pairs of proteins. CE first
aligns small fragments from two proteins. Later, these
fragments are combined and extended to find larger similar
substructures. Predator [17] predicts the secondary structure
of a protein sequence or a set of sequences based on their

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

amino acid sequences. Threader [18] predicts protein fold. It
uses a database of unique protein folds. The new protein is
then threaded to existing proteins in the database.

3.4 Molecular Dynamics Simulation Benchmarks

Gamess (General Atomic and Molecular Electronic
Structure System) [19] is a general ab initio quantum
chemistry package. Gamess can compute SCF wave functions
and a variety of molecular properties. Amber (Assisted Model
Building with Energy Refinement) [20] is a package of

programs that has been widely used for molecular dynamics
simulations of proteins and nucleic acids.

Table 1 summarizes the selected bioinformatics workloads
and their inputs we used in our experiments. The inputs were
chosen from the realistic and highly popular biological
datasets, such as the NCBI nr [21] and bacteria genomes

databases, EMBL [22], PDB [15], and SWISS-PROT [23]
databases. Overall, these input datasets contain several GB
biological data.

Table 1. Benchmark Description

Software

Package
Program Description Input Dataset

Retired

Instructions

(Billions)

Blast blastpgp search the query protein in a protein database
homo sapiens hereditary haemochromatosis
protein, nr (primary databases from NCBI)

78

Fasta fasta34
compare a protein/DNA sequence to a protein/DNA
database

human LDL receptor precursor protein,
NCBI nr database 610

Clustal W clustalw progressively align multiple sequences
317 Ureaplasma’s gene sequences from
the NCBI Bacteria genomes database

852

Hmmer hmmsearch align multiple proteins using profile HMMs
a profile HMM built from the alignment of
50 globin sequences, uniprot_sprot.dat from
SWISS-PROT

681

Glimmer glimmer2
find genes in microbial DNA, especially the
genomes of bacteria and archaea

18 bacteria complete genomes from the
NCBI genomes database

371

diffseq find differences between nearly identical sequences nucleic acid database EMBL 35

megamerger merge two large overlapping nucleic acid sequences nucleic acid database EMBL 35Emboss

shuffleseq shuffle a set of sequences maintaining composition nucleic acid database EMBL 315

dnapenny
find all most parsimonious phylogenies for nucleic
acid sequences

ribosomal RNAs from bacteria and
mitochondria

264

Phylip

promlk
estimate phylogenies from amino acid sequences
using maximum likelihood

protein amino acid sequences of 17 species
ranging from a deep branching bacterium to
humans

936

Dali dalilite find structurally similar proteins to a query protein
5 representatives from 5 superfamilies in
Protein Data Bank

1465

CE ce align C∝ atoms of pairs of proteins
10 representatives from 31 superfamilies in
Protein Data Bank

326

Predator predator
predict protein secondary structure from a single
sequence or a set of sequences

100 Eukaryote protein sequences from
NCBI genomes database

711

Threader threader predict protein fold
a yeast (Candida albicans) POL protein
fragment, threader database

208

Gamess gamess program for ab initio molecular quantum chemistry 37 test examples with Gamess distribution 158

sander simulate and minimize molecular dynamics
in vacuo model of a standard decamer
poly(A)–poly(T) duplex DNA structure

1963
Amber

ptraj analyze trajectories
7mer peptide in a box of periodic water
(1577 Waters)

17

4. Experimental Setup

This section describes our experimental infrastructure,
including the configuration of our machine, the
microarchitecture features of the Pentium 4 processor and the
methodology for collecting and analyzing hardware counter
data.

4.1 Machine Configuration

All experiments were run on a 2.4GHz Pentium 4
processor [24] with 1GB main memory running Red Hat
Linux 9.0 kernel version 2.4.26. The Pentium 4 architecture
was chosen due to its advanced features and high popularity
in today’s bioinformatics computing market. Table 2

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

summarizes the Pentium 4 processor microarchitectural
characteristics.

Table 2. Microarchitectural Characteristics of
Pentium 4 Processor

In Order Front-End
ITLB 128 entries, fully associative

Front-End BTB 4K entries

Instruction Decoder 1 x IA-32 inst. / cycle

Trace Cache 12K µops1, 8-way, 6 µops / line

Trace Cache BTB 2K entries

µop Queue Bandwidth 3 µops / cycle

Pipeline Length 31

Branch Prediction

hybrid predictor chooses between
bimodal, local history, and global
history

Return Address Stack 16 entries

Out-of-order Execution Engine
ROB 126 entries

Load Buffer 48 entries

Store Buffer 24 entries

Write Combining Buffer 8 entries

Dispatch Bandwidth 6 µops / cycle

Retirement Bandwidth 3 µops / cycle

Execution Units
Integer Register Files 128

FP Register File 128

AGU 1 Load + 1 store

Integer ALU 2 Fast + 1 Complex

FP ALU 1 Move + 1 MMX-SSE

L1 Data Cache

16KB, 8-way, 64 Byte/line, write-
through, dual-ported, non-blocking
(4), 2/6 cycles (Int./FP)

DTLB 64 entries, fully associative

Memory Subsystem

L2 Cache

1MB, 8-way, 128 Byte/line, write-
back, non-blocking, 7/7 cycles
(Int./FP) , 108GB/s

System Bus quad pumped 6.4GB/s

4.2 Performance Counters

We used hardware performance counters to measure
architectural events [25]. The Pentium 4 performance
counting hardware includes 18 hardware counters that can
count 18 different events simultaneously in parallel with
pipeline execution. The 18 Counter Configuration Control
Registers (CCCRs), each associated with a unique counter,
configure the counters for specific counting schemes such as
event filtering and interrupt generation. The 45 Event
Selection Control Registers (ESCRs) specify the hardware
events to be counted and some additional Model Specific
Registers (MSRs) for special mechanisms like replay tagging.
These counters collect various statistics including the number

1

In order to improve the efficiency of the superscalar execution and the

parallelism of the program, each x86 instruction is translated into one or
more µops inside the Pentium 4 processor.

and type of retired instructions, mispredicted branches, cache
misses etc. We used a total of 59 event types for the data
presented in this paper.

The benchmarks have been compiled using the Intel C/C++
and FORTRAN compilers for Linux, using generic Pentium 4
optimization options [26].All bioinformatics benchmarks are
executed to completion. To contrast the execution
characteristics of bioinformatics workloads and the well
known benchmark suite, we run all SPEC 2000 integer
benchmarks [27] with their reference input datasets. Due to
the space limitation, we only present the average statistics of
the SPEC benchmarks. For some architecture characteristics,
we also show the best and the worst scenarios in the SPEC
integer suite.

5. Experimental Results

This section presents a detailed characterization of the
Pentium 4 processor running the collected bioinformatics
applications. We examine basic workload characteristics,
trace cache, TLBs and memory system behavior, and
superscalar execution.

5.1 Basic Characteristics

Table 1 shows that the total number of instructions
executed on the studied bioinformatics programs ranges from
tens of billions to thousands of billions. This indicates that the
computational requirement to process the realistic biological
data is non-trivial. The using of performance counters
(instead of simulation) in this study allows us to examine the
characteristics of entire program execution.

0%

20%

40%

60%

80%

100%

bla
stp

gp

fa
st

a3
4

clu
sta

lw

hm
m

sear
ch

glim
m

er
2

diff
se

q

m
eg

am
er

ger

shuffl
es

eq

dnapenny

pro
m

lk

dal
ili

te ce

pre
dato

r

th
re

ad
er

gam
ess

san
der

ptra
j

B
io

_A
VG

S
pec_

A
VG

%
 o

f
D

y
n

a
m

ic
 I

n
s

tr
u

c
ti

o
n

s

Load Store Branch FP Integer

Figure 1. Dynamic Instruction Profile

Figure 1 illustrates the dynamic instruction profile. As can
be seen, sequence alignment and molecular phylogeny
analysis programs contain high percentage loads in their
instruction streams. Sequence alignment programs (e.g.,
blastpgp, fasta34 and hmmsearch) walk through large-scale
databases and query sequences many times to find similar
sequences. For example, for a given query, blastpgp

sequentially slides a window on the database sequences. This
results in many load instructions. Phylogeny analysis tools
(i.e., dnapenny and promlk) iteratively read sequences from
multiple species to build phylogenetic trees. The percentage
of loads is significantly more than that of stores in all
programs. Sequence analysis programs, which typically
employ dynamic programming (DP) algorithms, have to read
multiple entries from the DP matrix to update a single entry.

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

Sequence management programs (e.g., diffseq, meagmerger

and shffleseq) modify biological sequences more frequently
than other programs, resulting in high percentage stores in
their instruction mix.

Compared with SPEC benchmarks, bioinformatics
workloads contain higher percentage of loads (45% vs. 37%).
The store instruction mixes (15% vs. 16%) of both benchmark
suites are very similar. Bioinformatics applications show
large variation in branch instruction mix. For example, on
benchmark sander, branches which are used to form coarse-
grained loops to perform iterative molecular dynamics
simulation, account for less than 4% of total dynamic
instructions. On the other hand, the gene prediction program
glimmer2 heavily uses branches to distinguish and interpret
the gene code segments from a large amount of possible
nucleotides combinations, resulting in 26% branches in its
instruction stream. On the average, compared with SPEC
benchmarks, bioinformatics applications show a slightly
lower branch frequency (15% vs. 19%).

Bioinformatics workloads use floating point operations
non-uniformly: molecular dynamic simulation programs, such
as sander, ptraj and gamess perform many floating point
operations, while sequence comparison tools, such as
blastpgp, fasta34, clustalw and hmmsearch perform none.
Protein structure comparison tools ce and dalilite perform
floating point operations since they involve comparison of
sequences of three dimensional coordinates represented with
real numbers. Promlk uses floating point operations since it
computes the substitution rates between sequences.

5.2 IPC and µPC

Using the events that count the number of cycles, number
of instructions retired and number of µops retired, we
computed the IPC and µops per cycle (µPC) of bioinformatics
workloads. As shown in Figure 2, the highest IPC values
come from multiple sequence alignment program clustalw

and phylogeny analysis application dnapenny. The lowest
IPCs values are programs that manage biological sequences
(i.e. diffseq, megamerger and shuffleseq). The IPCs range
from 0.15 to 0.93, with an average around 0.55. The µPCs
range from 0.25 to 1.5, with an average around 0.82. Only
four benchmarks (clustalw, dnapenny, ce, and threader)
achieve more than one µops per cycle.

A lower IPC can be caused by an increase in cache misses,
branch mispredictions, or stalls due to the long latency
instructions in the pipeline. For example, blastpgp, fasta34

and hmmsearch all perform sequence similarity search in
databases. Hmmsearch yields the highest IPC due to the best
branch prediction and cache performance. Benchmark
blastpgp yields lower IPC than fasta34 due to its higher L1
data cache miss rate, although blastpgp has better branch
prediction accuracy. This can be explained as follows. Both
blastpgp and fasta34 first find exact matches (seeds) of a
certain length. They later stitch and extend these matches to
find longer matches. Blastpgp uses the entire seed set whereas
fasta34 only uses the most promising set of seeds. As a result
of this blastpgp usually maintains and inspects a larger set of
candidates than fasta34 which results in larger amount of

cache misses. Blastpgp uses longer seeds than fasta34.
Therefore, seeds of blastpgp are more likely to yield high
quality matches. This improves the branch prediction
accuracy of blastpgp over fasta34. The IPCs are remarkably
low on benchmarks diffseq, megamerger and shuffleseq due to
their excessive L2 data cache misses. Benchmark gamess

shows lower IPC due to instruction cache misses and the long
latency floating point operations. Figure 2 shows that the
greatest IPC (clustalw) that the processor can yield on
bioinformatics applications is higher than that on the SPEC
benchmarks (gap). The observed lowest IPC (diffseq) is still
better than the worst case (mcf) of SPEC benchmarks.
Overall, compared to SPEC benchmarks, bioinformatics
applications show slightly better IPC and µPC.

0.0

0.5

1.0

1.5

2.0

bla
stp

gp

fa
sta

34

clu
sta

lw

hm
m

searc
h

glim
m

er2

diff
seq

m
egam

erg
er

shuffl
eseq

dnapenny

pro
m

lk

dalil
ite ce

pre
dato

r

th
re

ader

gam
ess

sander
ptra

j

Bio
_AVG

Spec_AVG

Spec_gap

Spec_m
cf

Instruction per Cycle
µops per Cycle

Figure 2. IPC and µPC

5.3 Trace Cache

As the front end, the trace cache sends up to 3 µops per
cycle directly to the out-of-order execution engine, without
the need for them to pass through the decoding logic. Only if
there is a trace cache miss, the front end fetches x86
instructions from the L2 cache. Additionally, for the long x86
instructions, the processor fetches µops from a special µops
ROM that stores the canned µops sequence.

0%

20%

40%

60%

80%

100%

bla
stp

gp

fa
st

a3
4

clu
sta

lw

hm
m

se
ar

ch

glim
m

er
2

diff
se

q

m
eg

am
er

ger

sh
uffl

es
eq

dna
pen

ny

pro
m

lk

dal
ili

te ce

pre
dat

or

th
re

ad
er

gam
ess

sa
nde

r
ptr

aj

B
io

_A
V
G

Spec
_A

VG

%
 o

f
µ

o
p

s

L2 Cache Trace Cache µops ROM

Figure 3. Source of the µops

Figure 3 shows the proportion of µops fetched from the L2
cache, the trace cache, and the µops ROM respectively. As
can be seen, a dominant fraction (97%) of µops is supplied by
the trace cache. Overall, the µops ROM only contributes 3%
of µops and the L2 cache contributes less than 1% of the total
µops. On SPEC benchmarks, the L2 cache can supply up to
11% µops (eon). Overall, the L2 cache contributes 4% of
µops on the SPEC benchmarks. This implies that compared to
SPEC programs, bioinformatics applications exhibit better

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

trace cache performance. On both benchmark suites, the µops
ROM contributes 3% of executed µops.

5.4 Cache Misses

Figure 4 presents the counts of cache misses per 1000
instructions retired. We see that instruction cache misses are
nearly fully satisfied by the trace cache. As can be seen, the
average trace cache miss rate of SPEC benchmarks is higher
than that of bioinformatics applications.

Data cache miss rates are higher because of two main
reasons. First, they process large-scale biological data,
resulting in data footprints which are much larger than the
instruction footprints. Second, they need to maintain very
large data structures to analyze bioinformatics data. On the
average, bioinformatics applications generate 14 L1 cache
misses per thousand retired instructions.

The L1-D cache miss rates on diffseq, megamerger and
shufflesque are significantly higher than other programs. One
reason for excessive amount of data cache misses is that these
programs work on very large sequences. In our experiments,
both diffseq and megamerger work on two large input
sequences: the Homo sapiens chromosome 6p21.3, which
contains 100,000 base pairs and the Homo sapiens MSH55
gene, which contains 184,666 base pairs. Diffseq and
megamerger are based on similar principles. They find short
matches between two sequences. They then use these matches
to find differences between the sequences or to merge the
sequences into a single sequence. Since the input sequences to
these benchmarks are nearly identical, they produce many
short matches resulting in large internal data structures.
Shuffleseq uses the Mus musculus chromosomes with 366
base pairs as its input. It takes an input sequence and produces
multiple shuffled versions of that sequence. It maintains and
traverses multiple linked lists at run-time to store the input
sequences and the shuffled sequences. Due to the poor
locality, the generated memory access patterns can not fit into
the L1 data cache. The L1 D-cache miss rates on diffseq and
megamerger are higher than that on shuffleseq due to the
larger input datasets used by these two programs.

Figure 4 shows that in the worst case (mcf), SPEC
benchmarks yield a cache miss rate four times higher than the
worst case of bioinformatics workloads. On the average, the
L1 D-cache miss rate on SPEC benchmarks is 3 times higher
than that on bioinformatics workloads.

We found that the L1 data cache misses on 14 out of the 17
bioinformatics applications can be nearly fully satisfied by the
L2 cache. The Pentium 4 processors use automatic hardware
prefetch to bring cache lines into the unified L2 cache based
on prior reference patterns. Prefetching is beneficial because
many accesses to the biological sequence databases are
sequential, and thus, predictable. For example, both bastpgp

and fasta34 build a hash table on one sequence and
sequentially scan the other sequence once to find initial
matches. Clusalw sequentially scans one sequence once and
scans the other sequence multiple times to find pairwise
alignments. With prefetching, the L2 cache can handle the
working sets of most of the studied benchmarks. This
indicates that although these bioinformatics tools search

databases containing Giga bytes of biological sequences, their
active working sets are usually small.

The benchmarks (meamerger and diffseq) with the highest
L1 data cache misses also have the highest L2 misses. Due to
the irregular memory access patterns and poor locality, data
accesses on these two benchmarks are difficult to absorb,
even for the 1MB, 8-way set associative L2 cache with
prefetching. Figure 2 and Figure 4 show a fairly strong
correlation between the L2 misses and IPCs, indicates that the
L2 miss latency is more difficult to be completely overlapped
by out-of-order execution. Overall, bioinformatics
applications show better L2 cache performance than SPEC
benchmarks.

0

10

20

30

40

50

60

bl
ast

pg
p

fa
st

a3
4

cl
ust

al
w

hm
m

se
ar

ch

gl
im

m
er

2

dnap
en

ny

pro
m

lk

di
ff
se

q

m
eg

am
er

ge
r

sh
uff

le
se

q

dal
ili

te ce

pre
dat

or

th
re

ad
er

gam
es

s

sa
nder

pt
ra

j

B
io

_A
VG

S
pec

_A
V
G

Spec
_e

on

S
pec

_m
cf

Trace Cache Misses per Thousand Instructions

L1-D Cache Misses per Thousand Instructions

L2 Cache Load Misses per Thousand Instructions

228 73

Figure 4. Cache Misses per thousand Instructions

5.5 TLB Misses

The processor uses separate TLBs (Translation Lookaside
Buffers) to handle translations from virtual addresses to
physical addresses on instruction and data accesses. Pentium
4 has a 128-entry, fully-associative instruction TLB (ITLB)
and a 64-entry, fully associative data TLB (DTLB).

0%

2%

4%

6%

8%

bla
st

pgp

fa
st

a3
4

cl
ust

alw

hm
m

se
ar

ch

glim
m

er
2

diff
se

q

m
eg

am
er

ger

sh
uffl

es
eq

dnap
en

ny

pro
m

lk

dalil
ite ce

pre
dat

or

th
re

ad
er

gam
ess

sa
nder

ptr
aj

B
io

_AVG

Spec
_A

VG

Spec
_e

on

Spec
_m

cf

T
L

B
 M

is
s

 R
a

te
s

ITLB

DTLB

50%

Figure 5. TLB Miss Rates

Figure 5 presents the ITLB and DTLB miss rates. As can
be seen, the ITLB miss rates are well below 1.0% on most
benchmarks. DTLB accesses on most benchmarks can also be
handled very well. Nevertheless, benchmarks diffseq and
meagmerger yield high (7%) DTLB miss rates due to their
poor data locality. We further classify the DTLB misses on
loads and stores and find that the DTLB miss rates on loads
are usually higher than those on store operations. Figure 5
also present the best (eon) and the worst (mcf) cases of DTLB
miss rates on SPEC benchmarks. As can be seen, compared
with SPEC benchmarks, bioinformatics applications show
better DTLB performance.

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

5.6 Branches and Branch Prediction

Figure 6 presents the fraction of branches that belong to
conditional branches, indirect branches, calls and returns.
Conditional branches, ranging from 49% (glimmer2) to 99%
(dnapenny) of the dynamic branches, dominate control flow
transfers in bioinformatics applications. Indirect branches
account for more than 10% of the dynamic branches on
benchmarks glimmer2, diffseq, meagmerger and shuffleseq.
Benchmark glimmer2 heavily uses case-switch statements
(which are translated into indirect branches by the compiler)
to map the encoded DNA/protein sequences to known gene
segments.

0%

20%

40%

60%

80%

100%

bla
stp

gp

fa
st

a3
4

clu
sta

lw

hm
m

sear
ch

glim
m

er
2

diff
se

q

m
eg

am
er

ger

shuffl
es

eq

dnapenny

pro
m

lk

dal
ili

te ce

pre
dato

r

th
re

ad
er

gam
ess

san
der

ptra
j

B
io

_A
VG

Spec_
A
VG

%
 o

f
B

ra
n

c
h

e
s

Conditional Branches Indirect Branches Call Return

Figure 6. Dynamic Branch Mix

The three applications from EMBOSS suite all contain high
percentage of indirect branches. A closer investigation reveals
that these indirect branches come from the shared libraries.
The entire EMBOSS suite contains more than 150 programs.
To facilitate modular design and code reuse, the EMBOSS

applications heavily use the utilities built in its core software
libraries (i.e. AJAX and NUCLEUS) to handle the common
scenarios, such as the pre-processing of sequences. The code
reuse results in the similar control flow transfer instruction
profile between applications. We believe that the amount of
indirect branches is not inherent in the underlying algorithms.
They are rather caused by the implementation.

On the average, conditional branches, indirect branches,
call, and return contribute to 82%, 8%, 5% and 5% of total

dynamic branch execution. Compared with the SPEC
benchmarks, bioinformatics tools show higher ratio of
conditional branches (82% vs. 72%) in their control flow
transfer instructions. This is mainly because the underlying
bioinformatics problems involve exploring a large state space
incrementally where each state depends on a number of other
states. For example, sequence comparison algorithms (e.g.,
blastpgp, fasta34, hmmsearch, and dnapenny) start with an
initial alignment and gradually grow this alignment by
making local decisions to whether insert a new letter or delete
or modify an existing letter. On the other hand, the SPEC
benchmarks show higher frequencies of indirect branches,
calls and returns in the branch instruction profile.

Figure 7 shows the branch misprediction rates. Despite the
advanced branch prediction schemes, the overall branch
misprediction rates exceed 10% on 4 out of the 17
benchmarks. Benchmarks glimmer2 and dnapenny also yield
high indirect branch misprediction rates. Indirect branches
affect the overall branch prediction on benchmark glimmer2,
where indirect branches constitute 26% of total executed
branches. Calls and returns can be predicted accurately by the
16 entries return address stack.

The overall branch prediction performance largely depends
on the accuracy of conditional branch prediction. Sequence
analysis workloads (e.g., blastpgp, fasta34, and hmmsearch)
yield high misprediction rates on conditional branches. These
tools typically compare many combinations at each step to
find a good alignment. Usually only one of these
combinations yields the desired solution. Their algorithms use
dynamic programming as an efficient recursive method to
score all possible alignments according to the PAM or
BLOSUM scoring matrices [7]. The control flow transfers on
these programs highly depend on the contents of input
sequences and the specified scoring matrices, making
accurate branch prediction difficult.

Figure 7 shows that bioinformatics tools can yield branch
misprediction rates higher than the worst case (twolf) in SPEC
benchmarks. Overall, bioinformatics applications show
slightly higher misprediction rate than SPEC benchmarks.

0%
5%

10%
15%
20%

bla
st

pgp

fa
sta

34

cl
ust

al
w

hm
m

se
ar

ch

glim
m

er2

diff
se

q

m
egam

er
ger

sh
uff

le
se

q

dnap
en

ny

pro
m

lk

dalil
ite ce

pre
dat

or

th
re

ader

gam
es

s

sa
nder

ptr
aj

B
io

_A
VG

Spec
_A

V
G

Spec
_t

w
olf

Spec
_v

ort
ex

M
is

p
re

d
ic

ti
o

n
 R

a
te

s

Overall Conditional Branches Indirect Branches Call Return

Figure 7. Branch Misprediction Rates

6. Conclusions

Although bioinformatics applications represent a rapidly
growing computing market, workload characteristics of the
representative applications from this application domain are
still largely unknown. This paper proposes a bioinformatics
benchmark suite and examines the execution characteristics

of popular bioinformatics tools used for sequence alignments,
phylogeny analysis, protein fold prediction, structure
comparison and molecular dynamics.

The major observations from our study are: (1) Memory
reference instructions account for more than 60% of dynamic
instructions. The frequency of memory accesses in
bioinformatics workloads is higher than that in SPEC 2000

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

integer benchmarks. (2) Bioinformatics applications typically
have small instruction footprints which can fit into the
instruction cache. As a result, the trace cache spends high
percentage of time in the trace deliver mode. (3) Compared
with the SPEC benchmarks, bioinformatics workloads yield a
better IPC rate. Nevertheless, tools which manage large and
complex biological sequences show very poor IPC due to the
excessive L2 cache misses. (4) Although bioinformatics tools
search large-scale databases to find useful information, the
active working sets of these workloads are small. As a result,
prefetching and L2 cache can efficiently handle the working
sets of the 14 out of 17 studied workloads. Compared with the
SPEC benchmarks, bioinformatics workloads show better
performance in terms of data cache and TLB miss rates. (5)
Bioinformatics applications show large variation in dynamic
branch instruction frequency and mix. Programs such as gene
prediction tools heavily use case-switch statements to map the
encoded DNA/protein sequences to known gene segments,
resulting in high indirect branch mix. Despite the highly
advanced branch prediction schemes, branch misprediction
rates exceed 10% on the majority of sequence analysis
workloads.

We believe that the study in this paper will help in
understanding the bottlenecks of bioinformatics software
from an architectural point of view. For example, sequence
analysis tools suffer from excessive amount of mispredicted
conditional branches. This implies that the performance of
these applications can be improved by avoiding such
branches. One source of such conditional branches is the
recursive calls of the dynamic programming computation
commonly used in sequence analysis tools. The size of the
problem space for dynamic programming can usually be
reduced by precomputing relationships among data, and
clustering and indexing of the database [28]. Indexing and
clustering methods enable pruning of large portions of the
database without going through complex comparison
methods.

In future work, we will explore integrated
software/hardware techniques to optimize the performance of
bioinformatics applications. We will also characterize the
proposed bioinformatics workloads on different architectures.
The proposed bioinformatics benchmark suite as well as the
input datasets can be downloaded from the following website:
http://www.ideal.ece.ufl.edu/BioInfoMark.

References

1. Bioinformation Market Study for Washington Technology Center,
Alta Biomedical Group LLC, www.altabiomedical.com, June 2003.

2. A. Das, J. Lu, H. Chen, J. Kim, P. Yew, W. Hsu and D. Chen,
Performance of Runtime Optimization on BLAST, International
Symposium on Code Generation and Optimization, 2005.

3. R. Radhakrishnan et al., Performance Characterization of BLAST
on Intel Xeon and Itanium2 Processors, in proceedings of the IEEE
7th Annual Workshop on Workload Characterization, 2004.

4. M. Taufer et al., Performance Characterization of a Molecular
Dynamics Code on PC Clusters, Is there any Easy Parallelism in
CHARMM?, International Parallel and Distributed Processing
Symposium, 2002.

5. T. K. Yap, O. Frieder and R. L. Martino, Parallel Computation in
Biological Sequence Analysis, IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 3, page 283-294, 1998.

6. K. Albayraktaroglu et al., BioBench: A Benchmark Suite of
Bioinformatics Applications, International Symposium on
Performance Analysis of Software and Systems, 2005.

7. S. Altschul, W. Gish, W. Miller, E. W. Meyers and D. J. Lipman,
Basic Local Alignment Search Tool, Journal of Molecular Biology,
vol. 215, no. 3, pages 403-410, 1990.

8. D. J. Lipman and W. R. Pearson, Rapid and Sensitive Protein
Similarity Searches, Science, vol. 227, no. 4693, pages 1435-1441,
1985.

9. J. D. Thompson et al., Clustal W: Improving the Sensitivity of
Progressive Multiple Sequence Alignment through Sequence
Weighting, Positions-specific Gap Penalties and Weight Matrix
Choice, Nucleic Acids Research, vol. 22, no. 22, pages 4673-4680,
1994.

10. S. R. Eddy, Profile Hidden Markov Models, Bioinformatics
Review, vol. 14, no. 9, page 755-763, 1998.

11. S. Salzberg, A. Delcher, S. Kasif, and O. White, Microbial Gene
Identification using Interpolated Markov Models, Nucleic Acids
Research, vol. 26, no. 2, page 544-548, 1998.

12. P. Rice, I. Longden, and A. Bleasby, EMBOSS: The European
Molecular Biology Open Software Suite, Trends in Genetics, vol.
16, no 6, page 276-277, 2000.

13. J. Felsenstein, PHYLIP - Phylogeny Inference Package (version
3.2), Cladistics, 5: 164-166, 1989.

14. L. Holm and J. Park, DaliLite Workbench for Protein Structure,
Bioinformatics Applications Note, vol. 16, no.6, pages 566- 567,
2000.

15. The RCSB Protein Data Bank, http://www.rcsb.org/pdb/

16. I. N. Shindyalov, and P. E. Bourne, Protein Structure Alignment by
Incremental Combinatorial Extension (CE) of the Optimal Path,
Protein Engineering, vol. 11, no. 99, page 739-747, 1998.

17. D. Frishman, and P. Argos, 75% Accuracy in Protein Secondary
Structure Prediction, Proteins, vol. 27, page 329-335, 1997.

18. D. T. Jones, W. R. Taylor, and J. M. Thornton, A New Approach to
Protein Fold Recognition, Nature, vol. 358, page 86-89, 1992.

19. M. W. Schmidt et al., General Atomic and Molecular Electronic
Structure System, Journal of Comput. Chem., vol. 14, page 1347-
1363, 1993.

20. The Amber Molecular Dynamics Package, http://amber.scripps.edu/

21. http://www.ncbi.nlm.nih.gov/Genbank/

22. European Molecular Biology Laboratory, http://www.embl-
heidelberg.de

23. The UniProt/Swiss-Prot Database, http://www.ebi.ac.uk/swissprot/

24. G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, The Microarchitecture of the Pentium 4 Processor,
Intel Technology Journal, 1st quarter 2001.

25. B. Sprunt, The Basics of Performance Monitoring Hardware, IEEE
Micro, July-August, page 64-71, 2002.

26. Intel Pentium 4 Processor Optimization, Reference Manual, Intel
Corporation, 2001.

27. SPEC CPU 2000 Benchmarks, http://www.spec.org/osg/cpu2000/

28. T. Kahveci and Ambuj K. Singh, Optimizing Similarity Search for
Arbitrary Length Time Series Queries, IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 4, page 418-433,
2004.

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

