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Abstract 
The increasing use of microprocessor cores in embedded systems 
as well as mobile and portable devices creates an opportunity for 
customizing the cache subsystem for improved performance. In 
traditional cache design, the index portion of the memory address 
bus consists of the K least significant bits, where K=log2(D) and 
D is the depth of the cache. However, in devices where the 
application set is known and characterized (e.g., systems that 
execute a fixed application set) there is an opportunity to improve 
cache performance by choosing an optimal set of bits used as 
index into the cache. This technique does not add any overhead in 
terms of area or delay. We give an efficient heuristic algorithm for 
selecting K index bits for improved cache performance. We show 
the feasibility of our algorithm by applying it to a large number of 
embedded system applications as well as the integer SPEC CPU 
2000 benchmarks. 

Categories and Subject Descriptors 
B.3.2 [Design Styles] 

General Terms: Algorithms, Performance, Experimentation 

Keywords 
Cache Optimization, Design Space Exploration, Index Hashing 

1. Introduction 
The growing demand for embedded computing platforms, mobile 
systems, handheld devices, and dedicated servers coupled with 
shrinking time-to-market windows are leading to new core based 
system-on-a-chip (SOC) architectures [5][2][3]. Specifically, 
microprocessor cores (a.k.a., embedded processors) are playing an 
increasing role in such systems’ design [4][5][6]. This is primarily 
due to the fact that microprocessors are easy to program using 
well evolved programming languages and compiler tool chains, 
provide high degree of functional flexibility, allow for short 
product design cycles, and ultimately result in low engineering 
and unit costs. However, due to continued increase in functional 
complexity of these systems and devices, the performance of such 
embedded processors is becoming a vital design concern. 

The use of data and instruction caches has been a major factor in 
improving processing speed of today’s microprocessors. 
Generally, a well-tuned cache hierarchy and organization can 
reduce the time overhead of fetching instruction and data from 
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main memory, which in most cases resides off-chip, requiring 
power costly communication over the off-chip system bus. 

Particularly, in embedded, mobile, and handheld devices, 
optimizing of the processor cache hierarchy has received a lot of 
attention from the research community [7][8][9]. This is in part 
due to the large performance gained by tuning caches to the 
application set of these systems. The kinds of cache parameters 
explored by researchers include deciding the size of a cache line 
(a.k.a., cache block), selecting the degree of associativity, 
adjusting the total cache size, and selecting appropriate control 
policies such as write-back and replacement procedures. These 
techniques, typically, improve cache performance, in terms of 
miss reduction, at the expense of area, clock latency, or energy. 

In this work, we propose a zero cost technique for improving 
cache performance (i.e., reduce misses). Our technique involves 
selecting an optimal set of bits used as index into the cache. In 
traditional cache design, the index portion of the memory address 
bus consists of the K least significant bits, where K=log2(D) and D 
is the depth of the cache [lo]. In general, any of the address bits 
can be used for indexing. In our technique, we assume that the 
processor and cache cores are black-box entities to be integrated 
on a single SOC. However, we do assume that the integration of 
cores, more specifically, routing of the address bus wires is 
flexible, as is commonly the case in core-based SOC design. 
We pictorially depict the idea of cache indexing by showing the 
traditional approach, Figure l(a), versus our approach, Figure 
l(b). Here we have a 16-bit processor core connected to a 
1K-cache core, which in turn is connected to 64K of memory. In 
Figure l(a), the least significant address bit is used for the 
byte-offset calculation (assuming the cache is organized with each 
line being two bytes wide). The next nine least significant bits are 
used for cache indexing and the remaining bits are used for tag 
comparison. In Figure l(b), we have swapped bits seven and ten 
in order to achieve better cache indexing. Note that the reverse of 
the indexing scheme is performed on the cache-to-memory side in 
order to preserve functional correctness. 

The problem of cache indexing is one of hashing. In traditional 
cache design, reference A maps to cache location L,  using the 
following hash function: L = A%D . Here, D is the depth of the 
cache. In general, we can use any hash function as 
follows: L = h(A) . Here, h is the arbitrary hash function. While it 
may be possible to compute a perfect hash function, given the 
cache organization and a trace file, in this work, we focus on a 
special class of hash functions, namely those that have zero cost 
overhead (e.g., zero delay, area, power, etc.). In other words, we 
focus on the class of hash function that only swap the address bits. 
In related work, researchers have studied data layout and 
memorykache aware compiler techniques for improved cache 
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Figure 1: Cache indexing: (a) traditional approach, (b) our 
approach. 

performance [11][12][13][14]. In these approaches, the code and 
data segment of a compiled application is moved such as to 
eliminate conflict misses. In the case of the code segment, data 
movement is typically performed at the basic block granularity. In 
the case of data segment, data movement is typically performed at 
array boundaries. A drawback of such approaches is that the 
degree of freedom in moving data is limited (e.g., a large 
continues array or a basic block of code cannot be split). In other 
related work, researchers have studied indexing and hashing in the 
context of IP routing [15][16]. In some of these approaches 
lookup tables are used to define the hash function. In other 
approaches analytical functions that optimize the hashing criteria 
are utilized. These approaches, if applied to processor cache 
indexing, would introduce a large unacceptable overhead, since 
memory access is already a bottleneck in improving processor 
performance. We are unaware of any direct .research related to 
processor cache indexing as stated in this work. 

The remainder of this paper is organized as follows. In Section 2, 
we formulate the problem and give our heuristic solution. In 
Section 3, we state our experiments. In Section 4, we conclude. 

2. Optimal Cache Indexing 
In this section, we first formulate the problem ofoptimal cache 
indexing. Then, we show that the problem of optimal cache 
indexing belongs to the class NP-complete. Last, we provide a 
heuristic that is efficient in running time and produces good 
results when applied in practice. 

2.1 Problem Formulation 
Optimal cache indexing is the problem of selecting K bits among 
all address bits of a processor for indexing into the cache. 
Specifically, let us assume that a processor has an M-bit bus and is 
connected to a cache of size S bytes that is A-way set associative 
and has line size equal to L bytes. K can be computed as follows: 

Here, the term S / (L x A )  gives the depth D of the cache (i.e., the 
number of rows). Note that K is the number of bits used by the 
row decoder of the cache. Since there are a total of Maddress bits, 
we can potentially use any combination of size K for cache 
indexing as follows. 

M !  (z) = K k ( M  - K ) !  

The problem is to find the one combination that reduces cache 
misses for a fixed application set. Specifically, we assume that a 
trace of memory references, corresponding to the application set, 
is available and is the input to our problem. In an exhaustive 
approach, one can find an optimal cache index set by enumerating 
all possible combinations, integrating the processor and cache 
accordingly, and simulating the application trace while keeping 
track of the one combination resulting in minimum misses. Such 
an approach is clearly not tractable as the number of combinations 
is normally very large. For example, assume a 32-bit processor 
connected to an 8192 bytes two-way set associative cache with 
line size equal to four bytes. K=10 is computed as follows. 

K=logz - =10 ( YX93 
The number of possible cache index sets is over 64 million, and is 
computed as follows. 

32! = 64,5 12,240 (yi) = 10!x(32 -lo)! 

We next show that the problem of optimal cache indexing belongs 
to the class NP-complete (i.e., unsolvable in polynomial time). 

2.2 NP Completeness 
The stated problem of optimal cache indexing belongs to the class 
NP-complete. For brevity, we only outline the proof idea. First we 
show that our problem belongs to the class NP. Then, we show 
that the NP-complete set intersection problem [ 171 is polynomial 
time reducible to our problem. Thus, it follows that the problem of 
optimal cache indexing is also NP-complete. 

The problem of optimal cache indexing belongs to the class NP. 
To show this, we non-deterministically select N bits as the cache 
index set, integrate the processor and cache accordingly, and 
simulate the application trace. If the number of cache misses is 
zero we halt, otherwise, we repeat the process, for 1, 2 ... N, 
where N is the length of the trace, misses. The above 
non-deterministic algorithm will find an optimal cache index set 
that results in the least number of cache misses. 
We show that the set intersection problem is reducible to the 
problem of optimal cache indexing. In the set intersection 
problem, we are given a collection of sets SI, Sz, ... S, and an 
integer m. The goal is to find a subset C of SI, S2, ... S, whose 
intersection (i.e., the intersection of all sets in C) has cardinality 
equal to m. Toward this goal, we first show how the problem of 
optimal cache indexing can be stated in a set theoretic form. 

We first define a set U containing all the cold references. Next, we 
extract from the trace M sets X,, X I  ... XM-l where M is the 
address bus width of the processor. A set Xi captures memory 
conflicts that would occur in a cache of depth two and the i" 
address bit used as the cache index. We illustrate this with an 
example. Consider the trace shown in Table 1. 

2 0 1 1 
3 0 0 0 
4 0 0 1 
5 0 1 1 

Table 1: A sample application trace. 
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Here, the address bus width M is three and the trace has five 
entries identified as one, two, three, four, and five. Note that the 
trace has three unique references, namely those identified as one, 
two, and three. References four and five are repetitions of 
previously seen values. The unique set U and the conflict sets Xo, 
XI, andX2 are given as follows. 

The set U contains the unique references in the trace. Each set X, 
contains members that are pairs. The first element of each pair 
corresponds to the reference that results in a miss, given a cache 
of depth two with A;  used as the index bit. The second element of 
each pair, which is a member of U, corresponds to a reference that 
can cause a miss. The second element is a reference that may be 
replaced on a miss caused by the first element of the pair. In our 
example, in a cache of depth two, with A. used as the index bit, 
reference four would be a miss because of reference two, thus 
(4,2) is an entry into the set Xo. Likewise, reference five would be 
a miss because of reference one, thus (5,l) is an entry into the set 
Xo. For AZ,  reference four would be a miss because of reference 
three as well as reference two, thus we have (4,3) and (4,2) as a 
member of the set X,, and so on. 

The unique set U and the conflict sets A',, X I  . . . X,.] fully capture 
the information content of the trace necessary to compute cache 
performance for any arbitrary configuration of the cache. The 
number of cache misses for a cache of depth two and associativity 
of one, using Ai as the index bit, is given by the cardinality of the 
corresponding set X,. plus the cardinality of the unique set U as 
shown in the first three rows of Table 2. 

Index Bits Set Intersections CardinalityhYMisses 
Xo x0 = ((421, (5,111 3 + 2 = 5  
XI 4 = ((4,311 3 + 1 = 4  
X2 x2 = ~ 4 ~ 3 1 ,  (421, ( 5 ~ 1 ,  (5,311 3 + 2 = 5  

Xo and X I  Xo nX, = 0 3 + 0 = 3  
Xo and X, Xo ~ X Z  = {(4,2), (5JN 3 + 2 = 5  
XI andX2 XI n X2 = ((4,311 3 + 1 = 4  

3 + 0 = 3  XO, XI and Xz 
Table 2: Using set intersections to compute number of misses. 

In computing the cardinality, we avoid double counting pairs that 
have identical first element. For example, in X2, (4,3) and (4,l) are 
counted once, as they both refer to the same missed reference, 
namely the reference identified as four. In general, the cardinality 
calculation can be generalized for caches of higher associativity as 
shown in the following function. 

Xo n XI n X2= 0 

Cardinality(X, A)  :=I U I +m 
m = mo + ml + ...+ ?nk 

where 

where 

e j > A  
otherwise 

where 

e .  .=O 
I '  

for  ( i ,  j )  E X 
ei := ej  + 1 

Here, bottom up, we compute for each unique entry in a set X, its 
number of appearance as e;. For example, in X2, the reference 
identified as four appears twice, thus e4 is two, and the reference 
identified as five appears twice, thus e5 is also two. Then, we 

count reference i as a miss, denoted by m,, if its count is greater 
than the degree of the associativity of the cache. The actual 
number of misses, denoted by m, is the sum of mo, m1 . . . mk. 
To continue, let us consider a cache of depth four. Here, the 
misses for each possible index mapping is given by taking the 
cardinality of the pair wise intersection of the conflict sets as 
shown in the middle three rows of Table 2. Likewise, in our 
example, for a cache of depth eight, we take the triple intersection 
of the conflict sets, as shown in the last row of Table 2. 

Generally, once a trace has been captured as a collection of 
conflict sets, the problem of finding an optimal cache indexing 
solution can be found by attempting to find a subset of these 
conflict sets, such that when intersected, has the lowest minimal 
cardinality, as defined by the cardinality function. This is an 
identical problem to the set intersection problem stated earlier. 

2.3 Heuristic Algorithm 
Since the problem of optimal cache indexing is NP-complete, we 
give a heuristic algorithm that is efficient and performs well for a 
large number of applications in our experiments. The first step of 
the algorithm is simply reading a trace into memory. We denote 
the size of the trace as N.  The next step is to reduce the trace to 
the unique references, denoted as N', where N' I N. We next 
describe the remaining parts of the algorithm. 

For each bit in our address space, we compute a corresponding 
quality measure. This quality measure is a real number in the 
range of zero to one. Having a quality of zero would indicate that 
the bit, if used as an index into a cache of depth two, would be a 
poor choice, as it would place all the references into a single 
location in the cache. On the other hand, having a quality of one 
would indicate that the bit, if used as an index into a cache of 
depth two, would be a good choice, as it would equally split all 
the references among the two cache locations. We compute the 
quality Qi for address bit Ai  by taking the ratio of zeros and ones 
along the A:h column. This is shown in the following equation. 

min(Zi , O j )  
Q. = where 

ma(Zi ,  Oi 
Zi : the number of refereces having 0 at bit Ai 
Oi : the number of refereces having 1 at bit Ai 

As an example, consider the trace shown in Table 3. 

A5 A4 A3 Ai AI Ao 
0 1 1 0 1 1 
0 0 1 1 0 0 
0 0 0 1 1 0 
0 1 0 0 1 1 
1 0 1 0 1 1 
0 0 0 1 0 0 
0 1 1 1 0 0 
0 0 0 0 1 1 
0 0 1 0 1 1 
1 n n 1 n n 

Table 3: A sample striped application trace. 
Here, Qo, Ql . . . Q5 are computed as shown in Table 4. 

9 5  Q4 Q3 Qz Ql PO 
Y4 317 1 1 213 1 

Table 4: Quality measures. 
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E23 = 4,023 = 6 

Figure 2: Correlation measure: (a) A.  used as index, (b) A2 used as 
index, (c) A. and A2 used as indices. 

As an example, looking at Table 3 and for Q4, A4* column, there 
are seven zeros and three one bits, thus we compute as follows. 

z 4  =7 ,04  = 3  
min(7,3) 3 

Qo=max(7,3)=7 
For each pair of bits in our address space, we compute a 
corresponding correlation measure. This correlation measure is a 
real number in the range of zero to one. A correlation measure of 
zero indicates that a pair of address bits split the unique references 
in exactly the same way. A correlation measure of one indicates 
that a pair of address bits split the unique references in completely 
different ways. To illustrate further, Figure 2(a) and Figure 2(b) 
pictorially depict how A. and A2 split the trace shown in Table 3. 
(Note that according to our quality measure, both A.  and A2 are 
ideal indices to use in a cache of depth two.) Now consider the 
case where we have a cache of size four, thus needing a pair of 
indices. If we use A. and A2, the trace would be split into the four 
cache locations as shown in Figure 2(c). Note that even though 
the cache has four slots, two slots receive the references, and two 
slots remain empty. The reason for this is that A.  and A2 are 
correlated. From looking at the trace, we can see that the A2 is 
simply the complement of Ao. In such a case, we would have a 
correlation measure C, equal to zero. In general, we can compute 
the correlation C,, for bits Ai andAj as follows. 

min(Eij,Dv) 

max(Eii,Dii) 
e.. = where 

Eij : the number of refereces having identical bits at Ai and Ai 

Dii : the number of refereces having different bits at Ai and Ai 

The correlation measures for our example are given in Table 5. 

As A4 Ai  A2 . Ai Ao 
As 0 1 1 1 213 1 
A4 1 0 213 213 1 213 
A3 1 213 0 213 1 2/3 
At 1 213 213 0 1/9 0 
A ,  213 1 1 119 0 119 

Table 5: Correlation measures. 
As an example, looking at Table 3, for C23, along columns A2 and 
A3,  there are six rows where the bits are different and four rows 
where the bits are identical, thus we compute as follows. 

A0 1 213 213 0 1/9 0 

c23 =)=-=- min(46) 4 2 
max(4,6) 6 3 

During the last step of the algorithm, we use the quality measure 
along with the correlation measure to compute the final index 
mapping as shown in Algorithm 1. 

Algorithm 1 
Input: Qo, Qi . . . QM-i 

Input: Coo, Qoi . . . c(~-i)~ (M-I) 
Output: an ordering of Ao. A I  . . . AM-l 
loop 

select Ab = m a {  Qo, Ql  . . . QM.l } 
for each Qi E I Qo, Qi . . . QM-I 1 

Qi := Qj X cbj 
halt when all Ai's are selected 

This algorithm repeatedly selects an address bit with the highest 
corresponding quality measure and then updates the quality 
measures using the correlations. For example, for the trace given 
in Table 3 and quality/correlation measures computed in Table 4 
and Table 5, the algorithm first select A.  as the best index bit and 
updates the quality measures Qi by multiplying with Coi to obtain 
a new set of quality measures. Next, having the largest quality 
measure, the algorithm selects A3, and update the quality measures 
again, and so on. On termination, we obtain Ao, A3,  As ,  A4, A I ,  A2 
as the final cache index mapping. This ordering defines a 
near-optimal solution to the problem of cache indexing. To build a 
cache of depth two we choose Ao. To build a cache of depth four 
we choose A.  and A3,  and so on. 

In terms of running time complexity, our algorithm takes 
O(Nxlog(N)) to execute. Note that reading the trace takes O(N), as 
the length of the trace is N. Reducing the trace down to only the 
unique references involves what amounts to sorting the trace and 
thus takes O(Nxlog(N)). Computing the quality and correlation 
measures takes O(N'), where hJ' I N is the number of unique 
references, as a single pass over the unique references is needed to 
compute these values. The final phase of the algorithm takes 
O(M) where Mis  the width of the address bus, as the loop iterates 
exactly Mtimes to order Ao, A I  . . . A w l .  In most cases Mis  a small 
number, like 32, and thus is assumed to be a constant. 

3. Experiments 
For experiments, we have used the Powerstone embedded 
benchmarks [4] as well as the integer SPEC CPU 2000 general 
benchmarks [18]. The Powerstone benchmarks include a P E G  
decoder calledjpeg, a modem protocol processor called v42, a 
Unix compression utility called compress, a CRC checksum 
algorithm called crc, an encryption algorithm called des, an 
engine controller called engine, an FIR filter calledjr, a group 
three fax decoder called g3fbx, a sorting algorithm called 
ucbqsort, a rendering algorithm called blit, a POCSAG 
communication protocol for paging calledpocsag, etc. 

We have compiled and executed each benchmark application on a 
MIPS R3000 simulator, instrumented to output memory reference 
traces for both instruction and data accesses. We have run the 
traces through our heuristic algorithm to obtain improved cache 
index mappings. Our results are summarized in Table 6. The last 
column of the table gives the improved cache index sets (the most 
significant 10 bits, as used in our cache configurations are shown). 
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Benchmark #Refs #Unioue Imnroved Cache Index Benchmark Config. A Config. B Config. C 
T P T P T P Name Refs Mappings 

adpcm 
Bent 
Blit 

compress 
Crc 
Des 

engine 
Fir 

g 3 f a  
Jpeg 

pocsag 
Qurt 

ucbqsort 
V42 

Bzip2 
craftu 
Eon 
Gap 
Gcc 
Gzip 
Mcf 

parser 
perlbmk 
Twolf 
vortex 

VPr 

adpcm 
Bent 
Blit 

compress 
Crc 
Des 

engine 
Fir 

g 3 f a  
b e g  

pocsag 
qurt 

ucbqsort 
v42 

bzip2 

eon 
gap 

gzzP 

parser 
perlbmk 

vortex 

crafty 

mcf 

t W O l f  

~ 

PowerStone/Data 
18431 381 4,6,8,9,5,7,12,10,11,13 
456 162 6,4.5,9,7,8,14,15,10,3 
4088 2027 4,5,14,6,7,8,9,10,11,12 
58250 8906 6,9,8,5,4,7,12,10,14,11 
2826 603 4,7,6,3,5,9,11,8,10,2 
20 162 2241 5,4,7,8,6,9,10,14,11,15 
21 1106 225 4,10,17,7,9,5,8,6,3,2 
5608 146 7,4,5,8,6,2,9,10,11,22 

229512 3781 7,2,4,3,6,22,12,8,5,9 
1311693 39302 8,4,6,5,7,10,11,9,12,14 
13467 515 4,7,5,6,2,10,8,3,9,11 
503 84 4,10,5,6,7,8,9,11,15,2 

61939 1144 6,5,8,9,10,4,7,11,16,19 
649168 23942 6,9,4,7,5,8,10,11,12,13 

40.16 91.4M 17,8,14,19,18,28,16,22,23,7 
70.26 1.94M 8,9,10,15,16,20,11,19,21,14 
38.86 0.559M 22,10,14,11,2,6,7,9,5,19 
80.96 67.3M 20,19,21,12,11,17,6,8,25,15 
25G 161M 18,24,6,13,25,8,20,3,7,15 

24.86 89.8M 16,20,8,18,23,26,14,13,2,3 
23.16 198M 16,27,7,28,12,17,14,4,21,5 
1916 38.2M 18,10,17,16,6,7,4,8,25,13 
18.66 77.2M 19,18,6,28,7,11,3,22,20,13 
1126 5.73M 17,24,25,6,16,23,5,9,11,3 
48.26 76.2M 7,25,23,11,16,3,26,12,28,22 
37.16 51.7M 18,14,7,12,11,26,25,10,22,4 

63255 61 1 2,3,8,5,7,4,6,9,12,10 
1337 115 2,3,4,5,6,7,8,11,9,0 

22244 149 2,3,4,5,10,7,8,9,11,12 
137832 73 1 3,2,7,4,11,5,8,6,10,9 
37084 176 2,3,4,6,11,7,9,10,12,8 
121648 570 2,3,7,4,5,8,12,9,10,11 
409936 244 2,3,4,5,7,10,8,6,11,12 
15645 327 7,2,3,8,4,5,6,9,11,12 

1127387 220 2,4,3,6,5,8,7,9,12,13 
4594120 623 2,3,5,4,8,6,7, 13,14,10 
47840 560 2,6,3,5,4,10,9,8,7,11 
1044 179 2,3,5,4,8,6,10,9,7,11 

219710 321 2,3,5,4,6,12,13,8,7,10 
2441985 656 2,3,8,12,13,5,6,4,7,9 

SPEC’OOData 

PowerStone/Instruction 

SPEC’OORnstruction 
109G 0.00487M 7,8,9,10,13,14,15,16,12,6 
192G 0.16M 12,13,14,15,18,19,20,21,5,6 
80.66 0.206M 18,19,20,21,2,3,4,5,6,12 
214G 0.123M 3,4,5,6,13,14,15,16,11,12 
46.16 0.986M 18,19,20,21,14,15,16,17,12,13 
8446 0.00486M 5,6,7,8,2,3,4,11,12,13 
61.9G 0.0475M 9,10,11,12,8,13,14,15,16,7 
5476 0.105M 9,10,11,12,16,17,18,19,5,6 
41.1G 0.328M 2,3,4,5,17,18,19,20,6,7 
3466 0.177M 16,17,18,19,2,3,4,5,6,9 
119G 0.358M 17,18,19,20,4,5,6,7,8,9 

vpr 84.36 0.156M 18,19,20,21,2,3,4,5,15,16 
Table 6: Optimal cache indexing. 

We have simulated the traces under three typical cache 
organization schemes. Configuration A with 4Kb, direct mapped, 
and 4-byte line, configuration B with 8Kb, 2-way, and 8-byte line; 
and configuration C with 16Kb, 4-way, and 16-byte line. 

For each of the three cache configurations, we have measured the 
number of misses when traditional (T) cache indexing as well as 
when the proposed (i.e., improved) (P) cache indexing is used. 
The results are summarized in Table 7. 

adpcm 
bent 
blit 

compress 
crc 
des 

engine 
fir  

s 3 f a  
ipeg 

pocsag 
qurt 

ucbqsort 
v42 

bzip2 

eon 
P P  

gzzP 
mcf 

parser 
perlbmk 

t W O l f  

vortex 
VPY 

adpcm 
bent 
blit 

compress 
crc 
des 

engine 
fir  

crafty 

g3fa 
/Peg 

pocsag 
qurt 

ucbqsort 
v42 

bzip2 
Craftv 
Eon 
Gap 
Gcc 
Gzip 
mcf 

Parser 
Perlbmk 

t W O l f  
Vortex 

5193 
164 

4034 
12659 
694 

15155 
7131 
658 

127828 
267567 

1238 
115 

10862 
157469 

3.15M 
15.8M 
2.97M 
5.45M 
1.69M 
3.64M 
7.81M 
22.9M 
1.71M 
8.95M 
7.25M 
6.62M 

23392 
115 
149 

4435 
176 

23113 
244 
1566 
220 

26097 
3730 
179 

30629 
555022 

8.58M 
43.2M 
6.18M 
14.4M 
3.12M 
124M 
20.9M 
65.6M 
3.78M 
27.7M 
17.9M 

PowerStone/Data 
4175 2181 1813 
164 156 154 

3022 4025 3078 
7772 9603 6414 
416 485 303 

13360 12849 12239 
4479 3482 2277 
637 139 139 

92503 65143 48855 
191542 169490 129399 

757 530 355 
98 77 68 

7955 3309 2463 
150021 111108 107441 

1.74M 1.39M 1.25M 
10.9M 8.46M 6.68M 
2.8M 1.27M 0.874M 
4.53M 1.43M 0.985M 
1.51M 1.15M 1.07M 
3.46M 2.81M 2.45M 
6.64M 7.31M 5.78M 
14.4M 11.2M 10.7M 
1.03M 0.571M 0.462M 
6.71M 2.96M 2.07M 
6.53M 4.52M 4.25M 
4.77M 3.41M 2.63M 
PowerStoneflnstruction 
22204 2824 2691 

115 58 58 
122 75 66 

4054 383 357 
147 90 75 

21938 5993 5889 
226 125 114 
1548 167 167 
197 112 105 

23072 314 286 
3221 311 232 
170 91 86 

28352 166 148 
536798 51230 50613 

6.09M 3.78M 3.17M 
37.5M 23.1M 18.5M 
5.75M 2.63M 2.11M 
10.7M 3.78M 3.59M 
2.53M 2.13M 2.09M 
102M 95.8M 88.lM 
15.5M 19.6M 18.8M 
46.6M 32.2M 28.3M 
2.99M 1.26M 1.05M 
23.OM 9.16M 7.51M 
14.5M 11.2M 10.8M 

SPEC’OO/Data 

SPEC’OO/Instruction 

62 1 
147 

4038 
7861 
228 

10523 
132 
136 

35158 
79258 
268 
73 

804 
87592 

1.07M 
3.20M 
0.288M 
O.886M 
1.04M 
2.30M 
7.18M 
6.65M 
0.340M 
1.48M 
3.47M 
2.02M 

159 
31 
40 
199 
49 
146 
65 
87 
58 
159 
148 
50 
87 
171 

2.92M 
8.77M 
0.597M 
2.34M 
1.92M 
78.2M 
19.2M 
19.OM 

0.751M 
4.56M 
8.56M 

542 
140 

3106 
567 1 
154 

10179 
94 
134 

26940 
61757 

192 
65 
643 

87592 

0.989M 
3.04M 
0.282M 
0.744M 
0.898M 
2.14M 
6.32M 
5.65M 
0.309M 
1.29M 
3.02M 
1.67M 

148 
30 
37 
153 
34 
144 
61 
87 
52 
140 
131 
47 
78 
166 

2.83M 
8.59M 
0.550M 
2.13M 
1.77M 
72.OM 
19.OM 
18.1M 

0.676M 
4.29M 
7.96M 

Vpr 15.1M 10.8M 7.75M 6.35M 4.58M 4.49M 
Table 7: Cache miss comparison. 

On the average, for the datdinstruction traces, the improved cache 
indexing achieved 23%/14%, 19%/10%, and 14%/7.7% reduction 
in cache misses, for cache configurations A ,  B, and C respectively, 
as shown in Figure 3. In some cases the reduction in misses was 
up to 45% for data traces and 31% for instruction traces. For 
smaller caches, or larger application benchmarks, a larger 
reduction was observed. The technique benefited data caches 
more than address caches. 
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Figure 3: Cache miss reduction using improved indexing. 

4. Conclusion 
We have proposed a zero cost technique for improving cache 
performance in embedded systems as well as mobile and portable 
general-purpose devices that execute a known application set. Our 
technique involves selecting an optimal set of bits used for 
indexing into the cache. We have provided an efficient algorithm 
for computing an optimal indexing scheme. Our heuristic 
algorithm produces good results, as demonstrated by experiments 
on a large number of benchmarks. 
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