
50.2

Improved Indexing for Cache Miss Reduction
in Embedded Systems

Tony Givargis

g iva rg is@ics . uci . edu

Department of Computer Science, Center for Embedded Computer Systems
University of California, Irvine, CA 92697

Abstract
The increasing use of microprocessor cores in embedded systems
as well as mobile and portable devices creates an opportunity for
customizing the cache subsystem for improved performance. In
traditional cache design, the index portion of the memory address
bus consists of the K least significant bits, where K=log2(D) and
D is the depth of the cache. However, in devices where the
application set is known and characterized (e.g., systems that
execute a fixed application set) there is an opportunity to improve
cache performance by choosing an optimal set of bits used as
index into the cache. This technique does not add any overhead in
terms of area or delay. We give an efficient heuristic algorithm for
selecting K index bits for improved cache performance. We show
the feasibility of our algorithm by applying it to a large number of
embedded system applications as well as the integer SPEC CPU
2000 benchmarks.

Categories and Subject Descriptors
B.3.2 [Design Styles]

General Terms: Algorithms, Performance, Experimentation

Keywords
Cache Optimization, Design Space Exploration, Index Hashing

1. Introduction
The growing demand for embedded computing platforms, mobile
systems, handheld devices, and dedicated servers coupled with
shrinking time-to-market windows are leading to new core based
system-on-a-chip (SOC) architectures [5][2][3]. Specifically,
microprocessor cores (a.k.a., embedded processors) are playing an
increasing role in such systems’ design [4][5][6]. This is primarily
due to the fact that microprocessors are easy to program using
well evolved programming languages and compiler tool chains,
provide high degree of functional flexibility, allow for short
product design cycles, and ultimately result in low engineering
and unit costs. However, due to continued increase in functional
complexity of these systems and devices, the performance of such
embedded processors is becoming a vital design concern.

The use of data and instruction caches has been a major factor in
improving processing speed of today’s microprocessors.
Generally, a well-tuned cache hierarchy and organization can
reduce the time overhead of fetching instruction and data from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6,2003, Anaheim, Califomia, USA.
Copyright 2003 ACM 1-581 13-688-9/03/0006 ... $5.00.

main memory, which in most cases resides off-chip, requiring
power costly communication over the off-chip system bus.

Particularly, in embedded, mobile, and handheld devices,
optimizing of the processor cache hierarchy has received a lot of
attention from the research community [7][8][9]. This is in part
due to the large performance gained by tuning caches to the
application set of these systems. The kinds of cache parameters
explored by researchers include deciding the size of a cache line
(a.k.a., cache block), selecting the degree of associativity,
adjusting the total cache size, and selecting appropriate control
policies such as write-back and replacement procedures. These
techniques, typically, improve cache performance, in terms of
miss reduction, at the expense of area, clock latency, or energy.

In this work, we propose a zero cost technique for improving
cache performance (i.e., reduce misses). Our technique involves
selecting an optimal set of bits used as index into the cache. In
traditional cache design, the index portion of the memory address
bus consists of the K least significant bits, where K=log2(D) and D
is the depth of the cache [lo]. In general, any of the address bits
can be used for indexing. In our technique, we assume that the
processor and cache cores are black-box entities to be integrated
on a single SOC. However, we do assume that the integration of
cores, more specifically, routing of the address bus wires is
flexible, as is commonly the case in core-based SOC design.
We pictorially depict the idea of cache indexing by showing the
traditional approach, Figure l(a), versus our approach, Figure
l(b). Here we have a 16-bit processor core connected to a
1K-cache core, which in turn is connected to 64K of memory. In
Figure l(a), the least significant address bit is used for the
byte-offset calculation (assuming the cache is organized with each
line being two bytes wide). The next nine least significant bits are
used for cache indexing and the remaining bits are used for tag
comparison. In Figure l(b), we have swapped bits seven and ten
in order to achieve better cache indexing. Note that the reverse of
the indexing scheme is performed on the cache-to-memory side in
order to preserve functional correctness.

The problem of cache indexing is one of hashing. In traditional
cache design, reference A maps to cache location L, using the
following hash function: L = A%D . Here, D is the depth of the
cache. In general, we can use any hash function as
follows: L = h(A) . Here, h is the arbitrary hash function. While it
may be possible to compute a perfect hash function, given the
cache organization and a trace file, in this work, we focus on a
special class of hash functions, namely those that have zero cost
overhead (e.g., zero delay, area, power, etc.). In other words, we
focus on the class of hash function that only swap the address bits.
In related work, researchers have studied data layout and
memorykache aware compiler techniques for improved cache

875

Offset wire(s) - Index wires T d r e s -

I I
(a) DataBus (b) DataBus

Figure 1: Cache indexing: (a) traditional approach, (b) our
approach.

performance [11][12][13][14]. In these approaches, the code and
data segment of a compiled application is moved such as to
eliminate conflict misses. In the case of the code segment, data
movement is typically performed at the basic block granularity. In
the case of data segment, data movement is typically performed at
array boundaries. A drawback of such approaches is that the
degree of freedom in moving data is limited (e.g., a large
continues array or a basic block of code cannot be split). In other
related work, researchers have studied indexing and hashing in the
context of IP routing [15][16]. In some of these approaches
lookup tables are used to define the hash function. In other
approaches analytical functions that optimize the hashing criteria
are utilized. These approaches, if applied to processor cache
indexing, would introduce a large unacceptable overhead, since
memory access is already a bottleneck in improving processor
performance. We are unaware of any direct .research related to
processor cache indexing as stated in this work.

The remainder of this paper is organized as follows. In Section 2,
we formulate the problem and give our heuristic solution. In
Section 3, we state our experiments. In Section 4, we conclude.

2. Optimal Cache Indexing
In this section, we first formulate the problem ofoptimal cache
indexing. Then, we show that the problem of optimal cache
indexing belongs to the class NP-complete. Last, we provide a
heuristic that is efficient in running time and produces good
results when applied in practice.

2.1 Problem Formulation
Optimal cache indexing is the problem of selecting K bits among
all address bits of a processor for indexing into the cache.
Specifically, let us assume that a processor has an M-bit bus and is
connected to a cache of size S bytes that is A-way set associative
and has line size equal to L bytes. K can be computed as follows:

Here, the term S / (L x A) gives the depth D of the cache (i.e., the
number of rows). Note that K is the number of bits used by the
row decoder of the cache. Since there are a total of Maddress bits,
we can potentially use any combination of size K for cache
indexing as follows.

M ! (z) = K k (M - K) !

The problem is to find the one combination that reduces cache
misses for a fixed application set. Specifically, we assume that a
trace of memory references, corresponding to the application set,
is available and is the input to our problem. In an exhaustive
approach, one can find an optimal cache index set by enumerating
all possible combinations, integrating the processor and cache
accordingly, and simulating the application trace while keeping
track of the one combination resulting in minimum misses. Such
an approach is clearly not tractable as the number of combinations
is normally very large. For example, assume a 32-bit processor
connected to an 8192 bytes two-way set associative cache with
line size equal to four bytes. K=10 is computed as follows.

K=logz - =10 (YX93
The number of possible cache index sets is over 64 million, and is
computed as follows.

32! = 64,5 12,240 (yi) = 10!x(32 -lo)!

We next show that the problem of optimal cache indexing belongs
to the class NP-complete (i.e., unsolvable in polynomial time).

2.2 NP Completeness
The stated problem of optimal cache indexing belongs to the class
NP-complete. For brevity, we only outline the proof idea. First we
show that our problem belongs to the class NP. Then, we show
that the NP-complete set intersection problem [171 is polynomial
time reducible to our problem. Thus, it follows that the problem of
optimal cache indexing is also NP-complete.

The problem of optimal cache indexing belongs to the class NP.
To show this, we non-deterministically select N bits as the cache
index set, integrate the processor and cache accordingly, and
simulate the application trace. If the number of cache misses is
zero we halt, otherwise, we repeat the process, for 1, 2 ... N,
where N is the length of the trace, misses. The above
non-deterministic algorithm will find an optimal cache index set
that results in the least number of cache misses.
We show that the set intersection problem is reducible to the
problem of optimal cache indexing. In the set intersection
problem, we are given a collection of sets SI, Sz, ... S, and an
integer m. The goal is to find a subset C of SI, S2, ... S, whose
intersection (i.e., the intersection of all sets in C) has cardinality
equal to m. Toward this goal, we first show how the problem of
optimal cache indexing can be stated in a set theoretic form.

We first define a set U containing all the cold references. Next, we
extract from the trace M sets X,, X I ... XM-l where M is the
address bus width of the processor. A set Xi captures memory
conflicts that would occur in a cache of depth two and the i"
address bit used as the cache index. We illustrate this with an
example. Consider the trace shown in Table 1.

2 0 1 1
3 0 0 0
4 0 0 1
5 0 1 1

Table 1: A sample application trace.

876

Here, the address bus width M is three and the trace has five
entries identified as one, two, three, four, and five. Note that the
trace has three unique references, namely those identified as one,
two, and three. References four and five are repetitions of
previously seen values. The unique set U and the conflict sets Xo,
XI, andX2 are given as follows.

The set U contains the unique references in the trace. Each set X,
contains members that are pairs. The first element of each pair
corresponds to the reference that results in a miss, given a cache
of depth two with A; used as the index bit. The second element of
each pair, which is a member of U, corresponds to a reference that
can cause a miss. The second element is a reference that may be
replaced on a miss caused by the first element of the pair. In our
example, in a cache of depth two, with A. used as the index bit,
reference four would be a miss because of reference two, thus
(4,2) is an entry into the set Xo. Likewise, reference five would be
a miss because of reference one, thus (5,l) is an entry into the set
Xo. For AZ, reference four would be a miss because of reference
three as well as reference two, thus we have (4,3) and (4,2) as a
member of the set X,, and so on.

The unique set U and the conflict sets A',, X I . . . X,.] fully capture
the information content of the trace necessary to compute cache
performance for any arbitrary configuration of the cache. The
number of cache misses for a cache of depth two and associativity
of one, using Ai as the index bit, is given by the cardinality of the
corresponding set X,. plus the cardinality of the unique set U as
shown in the first three rows of Table 2.

Index Bits Set Intersections CardinalityhYMisses
Xo x0 = ((421, (5,111 3 + 2 = 5
XI 4 = ((4,311 3 + 1 = 4
X2 x2 = ~ 4 ~ 3 1 , (421, (5 ~ 1 , (5,311 3 + 2 = 5

Xo and X I Xo nX, = 0 3 + 0 = 3
Xo and X, Xo ~ X Z = {(4,2), (5JN 3 + 2 = 5
XI andX2 XI n X2 = ((4,311 3 + 1 = 4

3 + 0 = 3 XO, XI and Xz
Table 2: Using set intersections to compute number of misses.

In computing the cardinality, we avoid double counting pairs that
have identical first element. For example, in X2, (4,3) and (4,l) are
counted once, as they both refer to the same missed reference,
namely the reference identified as four. In general, the cardinality
calculation can be generalized for caches of higher associativity as
shown in the following function.

Xo n XI n X2= 0

Cardinality(X, A) :=I U I +m
m = mo + ml + ...+ ?nk

where

where

e j > A
otherwise

where

e . .=O
I '

for (i , j) E X
ei := ej + 1

Here, bottom up, we compute for each unique entry in a set X, its
number of appearance as e;. For example, in X2, the reference
identified as four appears twice, thus e4 is two, and the reference
identified as five appears twice, thus e5 is also two. Then, we

count reference i as a miss, denoted by m,, if its count is greater
than the degree of the associativity of the cache. The actual
number of misses, denoted by m, is the sum of mo, m1 . . . mk.
To continue, let us consider a cache of depth four. Here, the
misses for each possible index mapping is given by taking the
cardinality of the pair wise intersection of the conflict sets as
shown in the middle three rows of Table 2. Likewise, in our
example, for a cache of depth eight, we take the triple intersection
of the conflict sets, as shown in the last row of Table 2.

Generally, once a trace has been captured as a collection of
conflict sets, the problem of finding an optimal cache indexing
solution can be found by attempting to find a subset of these
conflict sets, such that when intersected, has the lowest minimal
cardinality, as defined by the cardinality function. This is an
identical problem to the set intersection problem stated earlier.

2.3 Heuristic Algorithm
Since the problem of optimal cache indexing is NP-complete, we
give a heuristic algorithm that is efficient and performs well for a
large number of applications in our experiments. The first step of
the algorithm is simply reading a trace into memory. We denote
the size of the trace as N. The next step is to reduce the trace to
the unique references, denoted as N', where N' I N. We next
describe the remaining parts of the algorithm.

For each bit in our address space, we compute a corresponding
quality measure. This quality measure is a real number in the
range of zero to one. Having a quality of zero would indicate that
the bit, if used as an index into a cache of depth two, would be a
poor choice, as it would place all the references into a single
location in the cache. On the other hand, having a quality of one
would indicate that the bit, if used as an index into a cache of
depth two, would be a good choice, as it would equally split all
the references among the two cache locations. We compute the
quality Qi for address bit Ai by taking the ratio of zeros and ones
along the A:h column. This is shown in the following equation.

min(Zi , O j)
Q. = where

ma(Zi , Oi
Zi : the number of refereces having 0 at bit Ai
Oi : the number of refereces having 1 at bit Ai

As an example, consider the trace shown in Table 3.

A5 A4 A3 Ai AI Ao
0 1 1 0 1 1
0 0 1 1 0 0
0 0 0 1 1 0
0 1 0 0 1 1
1 0 1 0 1 1
0 0 0 1 0 0
0 1 1 1 0 0
0 0 0 0 1 1
0 0 1 0 1 1
1 n n 1 n n

Table 3: A sample striped application trace.
Here, Qo, Ql . . . Q5 are computed as shown in Table 4.

9 5 Q4 Q3 Qz Ql PO
Y4 317 1 1 213 1

Table 4: Quality measures.

877

E23 = 4,023 = 6

Figure 2: Correlation measure: (a) A. used as index, (b) A2 used as
index, (c) A. and A2 used as indices.

As an example, looking at Table 3 and for Q4, A4* column, there
are seven zeros and three one bits, thus we compute as follows.

z 4 =7 ,04 = 3
min(7,3) 3

Qo=max(7,3)=7
For each pair of bits in our address space, we compute a
corresponding correlation measure. This correlation measure is a
real number in the range of zero to one. A correlation measure of
zero indicates that a pair of address bits split the unique references
in exactly the same way. A correlation measure of one indicates
that a pair of address bits split the unique references in completely
different ways. To illustrate further, Figure 2(a) and Figure 2(b)
pictorially depict how A. and A2 split the trace shown in Table 3.
(Note that according to our quality measure, both A. and A2 are
ideal indices to use in a cache of depth two.) Now consider the
case where we have a cache of size four, thus needing a pair of
indices. If we use A. and A2, the trace would be split into the four
cache locations as shown in Figure 2(c). Note that even though
the cache has four slots, two slots receive the references, and two
slots remain empty. The reason for this is that A. and A2 are
correlated. From looking at the trace, we can see that the A2 is
simply the complement of Ao. In such a case, we would have a
correlation measure C, equal to zero. In general, we can compute
the correlation C,, for bits Ai andAj as follows.

min(Eij,Dv)

max(Eii,Dii)
e.. = where

Eij : the number of refereces having identical bits at Ai and Ai

Dii : the number of refereces having different bits at Ai and Ai

The correlation measures for our example are given in Table 5.

As A4 Ai A2 . Ai Ao
As 0 1 1 1 213 1
A4 1 0 213 213 1 213
A3 1 213 0 213 1 2/3
At 1 213 213 0 1/9 0
A , 213 1 1 119 0 119

Table 5: Correlation measures.
As an example, looking at Table 3, for C23, along columns A2 and
A3, there are six rows where the bits are different and four rows
where the bits are identical, thus we compute as follows.

A0 1 213 213 0 1/9 0

c23 =)=-=- min(46) 4 2
max(4,6) 6 3

During the last step of the algorithm, we use the quality measure
along with the correlation measure to compute the final index
mapping as shown in Algorithm 1.

Algorithm 1
Input: Qo, Qi . . . QM-i

Input: Coo, Qoi . . . c(~-i)~ (M-I)
Output: an ordering of Ao. A I . . . AM-l
loop

select Ab = m a { Qo, Ql . . . QM.l }
for each Qi E I Qo, Qi . . . QM-I 1

Qi := Qj X cbj
halt when all Ai's are selected

This algorithm repeatedly selects an address bit with the highest
corresponding quality measure and then updates the quality
measures using the correlations. For example, for the trace given
in Table 3 and quality/correlation measures computed in Table 4
and Table 5, the algorithm first select A. as the best index bit and
updates the quality measures Qi by multiplying with Coi to obtain
a new set of quality measures. Next, having the largest quality
measure, the algorithm selects A3, and update the quality measures
again, and so on. On termination, we obtain Ao, A3, As , A4, A I , A2
as the final cache index mapping. This ordering defines a
near-optimal solution to the problem of cache indexing. To build a
cache of depth two we choose Ao. To build a cache of depth four
we choose A. and A3, and so on.

In terms of running time complexity, our algorithm takes
O(Nxlog(N)) to execute. Note that reading the trace takes O(N), as
the length of the trace is N. Reducing the trace down to only the
unique references involves what amounts to sorting the trace and
thus takes O(Nxlog(N)). Computing the quality and correlation
measures takes O(N'), where hJ' I N is the number of unique
references, as a single pass over the unique references is needed to
compute these values. The final phase of the algorithm takes
O(M) where Mis the width of the address bus, as the loop iterates
exactly Mtimes to order Ao, A I . . . A w l . In most cases Mis a small
number, like 32, and thus is assumed to be a constant.

3. Experiments
For experiments, we have used the Powerstone embedded
benchmarks [4] as well as the integer SPEC CPU 2000 general
benchmarks [18]. The Powerstone benchmarks include a P E G
decoder calledjpeg, a modem protocol processor called v42, a
Unix compression utility called compress, a CRC checksum
algorithm called crc, an encryption algorithm called des, an
engine controller called engine, an FIR filter calledjr, a group
three fax decoder called g3fbx, a sorting algorithm called
ucbqsort, a rendering algorithm called blit, a POCSAG
communication protocol for paging calledpocsag, etc.

We have compiled and executed each benchmark application on a
MIPS R3000 simulator, instrumented to output memory reference
traces for both instruction and data accesses. We have run the
traces through our heuristic algorithm to obtain improved cache
index mappings. Our results are summarized in Table 6. The last
column of the table gives the improved cache index sets (the most
significant 10 bits, as used in our cache configurations are shown).

878

Benchmark #Refs #Unioue Imnroved Cache Index Benchmark Config. A Config. B Config. C
T P T P T P Name Refs Mappings

adpcm
Bent
Blit

compress
Crc
Des

engine
Fir

g 3 f a
Jpeg

pocsag
Qurt

ucbqsort
V42

Bzip2
craftu
Eon
Gap
Gcc
Gzip
Mcf

parser
perlbmk
Twolf
vortex

VPr

adpcm
Bent
Blit

compress
Crc
Des

engine
Fir

g 3 f a
b e g

pocsag
qurt

ucbqsort
v42

bzip2

eon
gap

gzzP

parser
perlbmk

vortex

crafty

mcf

t W O l f

~

PowerStone/Data
18431 381 4,6,8,9,5,7,12,10,11,13
456 162 6,4.5,9,7,8,14,15,10,3
4088 2027 4,5,14,6,7,8,9,10,11,12
58250 8906 6,9,8,5,4,7,12,10,14,11
2826 603 4,7,6,3,5,9,11,8,10,2
20 162 2241 5,4,7,8,6,9,10,14,11,15
21 1106 225 4,10,17,7,9,5,8,6,3,2
5608 146 7,4,5,8,6,2,9,10,11,22

229512 3781 7,2,4,3,6,22,12,8,5,9
1311693 39302 8,4,6,5,7,10,11,9,12,14
13467 515 4,7,5,6,2,10,8,3,9,11
503 84 4,10,5,6,7,8,9,11,15,2

61939 1144 6,5,8,9,10,4,7,11,16,19
649168 23942 6,9,4,7,5,8,10,11,12,13

40.16 91.4M 17,8,14,19,18,28,16,22,23,7
70.26 1.94M 8,9,10,15,16,20,11,19,21,14
38.86 0.559M 22,10,14,11,2,6,7,9,5,19
80.96 67.3M 20,19,21,12,11,17,6,8,25,15
25G 161M 18,24,6,13,25,8,20,3,7,15

24.86 89.8M 16,20,8,18,23,26,14,13,2,3
23.16 198M 16,27,7,28,12,17,14,4,21,5
1916 38.2M 18,10,17,16,6,7,4,8,25,13
18.66 77.2M 19,18,6,28,7,11,3,22,20,13
1126 5.73M 17,24,25,6,16,23,5,9,11,3
48.26 76.2M 7,25,23,11,16,3,26,12,28,22
37.16 51.7M 18,14,7,12,11,26,25,10,22,4

63255 61 1 2,3,8,5,7,4,6,9,12,10
1337 115 2,3,4,5,6,7,8,11,9,0

22244 149 2,3,4,5,10,7,8,9,11,12
137832 73 1 3,2,7,4,11,5,8,6,10,9
37084 176 2,3,4,6,11,7,9,10,12,8
121648 570 2,3,7,4,5,8,12,9,10,11
409936 244 2,3,4,5,7,10,8,6,11,12
15645 327 7,2,3,8,4,5,6,9,11,12

1127387 220 2,4,3,6,5,8,7,9,12,13
4594120 623 2,3,5,4,8,6,7, 13,14,10
47840 560 2,6,3,5,4,10,9,8,7,11
1044 179 2,3,5,4,8,6,10,9,7,11

219710 321 2,3,5,4,6,12,13,8,7,10
2441985 656 2,3,8,12,13,5,6,4,7,9

SPEC’OOData

PowerStone/Instruction

SPEC’OORnstruction
109G 0.00487M 7,8,9,10,13,14,15,16,12,6
192G 0.16M 12,13,14,15,18,19,20,21,5,6
80.66 0.206M 18,19,20,21,2,3,4,5,6,12
214G 0.123M 3,4,5,6,13,14,15,16,11,12
46.16 0.986M 18,19,20,21,14,15,16,17,12,13
8446 0.00486M 5,6,7,8,2,3,4,11,12,13
61.9G 0.0475M 9,10,11,12,8,13,14,15,16,7
5476 0.105M 9,10,11,12,16,17,18,19,5,6
41.1G 0.328M 2,3,4,5,17,18,19,20,6,7
3466 0.177M 16,17,18,19,2,3,4,5,6,9
119G 0.358M 17,18,19,20,4,5,6,7,8,9

vpr 84.36 0.156M 18,19,20,21,2,3,4,5,15,16
Table 6: Optimal cache indexing.

We have simulated the traces under three typical cache
organization schemes. Configuration A with 4Kb, direct mapped,
and 4-byte line, configuration B with 8Kb, 2-way, and 8-byte line;
and configuration C with 16Kb, 4-way, and 16-byte line.

For each of the three cache configurations, we have measured the
number of misses when traditional (T) cache indexing as well as
when the proposed (i.e., improved) (P) cache indexing is used.
The results are summarized in Table 7.

adpcm
bent
blit

compress
crc
des

engine
fir

s 3 f a
ipeg

pocsag
qurt

ucbqsort
v42

bzip2

eon
P P

gzzP
mcf

parser
perlbmk

t W O l f

vortex
VPY

adpcm
bent
blit

compress
crc
des

engine
fir

crafty

g3fa
/Peg

pocsag
qurt

ucbqsort
v42

bzip2
Craftv
Eon
Gap
Gcc
Gzip
mcf

Parser
Perlbmk

t W O l f
Vortex

5193
164

4034
12659
694

15155
7131
658

127828
267567

1238
115

10862
157469

3.15M
15.8M
2.97M
5.45M
1.69M
3.64M
7.81M
22.9M
1.71M
8.95M
7.25M
6.62M

23392
115
149

4435
176

23113
244
1566
220

26097
3730
179

30629
555022

8.58M
43.2M
6.18M
14.4M
3.12M
124M
20.9M
65.6M
3.78M
27.7M
17.9M

PowerStone/Data
4175 2181 1813
164 156 154

3022 4025 3078
7772 9603 6414
416 485 303

13360 12849 12239
4479 3482 2277
637 139 139

92503 65143 48855
191542 169490 129399

757 530 355
98 77 68

7955 3309 2463
150021 111108 107441

1.74M 1.39M 1.25M
10.9M 8.46M 6.68M
2.8M 1.27M 0.874M
4.53M 1.43M 0.985M
1.51M 1.15M 1.07M
3.46M 2.81M 2.45M
6.64M 7.31M 5.78M
14.4M 11.2M 10.7M
1.03M 0.571M 0.462M
6.71M 2.96M 2.07M
6.53M 4.52M 4.25M
4.77M 3.41M 2.63M
PowerStoneflnstruction
22204 2824 2691

115 58 58
122 75 66

4054 383 357
147 90 75

21938 5993 5889
226 125 114
1548 167 167
197 112 105

23072 314 286
3221 311 232
170 91 86

28352 166 148
536798 51230 50613

6.09M 3.78M 3.17M
37.5M 23.1M 18.5M
5.75M 2.63M 2.11M
10.7M 3.78M 3.59M
2.53M 2.13M 2.09M
102M 95.8M 88.lM
15.5M 19.6M 18.8M
46.6M 32.2M 28.3M
2.99M 1.26M 1.05M
23.OM 9.16M 7.51M
14.5M 11.2M 10.8M

SPEC’OO/Data

SPEC’OO/Instruction

62 1
147

4038
7861
228

10523
132
136

35158
79258
268
73

804
87592

1.07M
3.20M
0.288M
O.886M
1.04M
2.30M
7.18M
6.65M
0.340M
1.48M
3.47M
2.02M

159
31
40
199
49
146
65
87
58
159
148
50
87
171

2.92M
8.77M
0.597M
2.34M
1.92M
78.2M
19.2M
19.OM

0.751M
4.56M
8.56M

542
140

3106
567 1
154

10179
94
134

26940
61757

192
65
643

87592

0.989M
3.04M
0.282M
0.744M
0.898M
2.14M
6.32M
5.65M
0.309M
1.29M
3.02M
1.67M

148
30
37
153
34
144
61
87
52
140
131
47
78
166

2.83M
8.59M
0.550M
2.13M
1.77M
72.OM
19.OM
18.1M

0.676M
4.29M
7.96M

Vpr 15.1M 10.8M 7.75M 6.35M 4.58M 4.49M
Table 7: Cache miss comparison.

On the average, for the datdinstruction traces, the improved cache
indexing achieved 23%/14%, 19%/10%, and 14%/7.7% reduction
in cache misses, for cache configurations A , B, and C respectively,
as shown in Figure 3. In some cases the reduction in misses was
up to 45% for data traces and 31% for instruction traces. For
smaller caches, or larger application benchmarks, a larger
reduction was observed. The technique benefited data caches
more than address caches.

879

Data Caches
50 - 45

E 40
'0 35
'= 30
3 25

m '5
; 20

MConf. A
mConf. B

OConf. C

Instruction Caches
35 ,

Figure 3: Cache miss reduction using improved indexing.

4. Conclusion
We have proposed a zero cost technique for improving cache
performance in embedded systems as well as mobile and portable
general-purpose devices that execute a known application set. Our
technique involves selecting an optimal set of bits used for
indexing into the cache. We have provided an efficient algorithm
for computing an optimal indexing scheme. Our heuristic
algorithm produces good results, as demonstrated by experiments
on a large number of benchmarks.

5. Acknowledgement
This work was supported by the National Science Foundation.

6. References
[11 Technology Roadmap for Semiconductors. http://www.itrs.net.
[2] C. Kozyrakis, D. Patterson. A New Direction for Computer

Architecture Research, IEEE Computer, pp. 24-32, 1998.
[3] F. Vahid, T. Givargis. The Case for a Configure-and-Execute

Paradigm. Conference on HW/SW Codesign, 1999.
[4] A. Malik, B. Moyer, D. Cermak. A Lower Power Unified Cache

Architecture Providing Power and Performance Flexibility.
Symposium on Low Power Electronics and Design, 2000.

[5] P. Petrov, A. Orailoglu. Towards Effective Embedded
Processors in Codesigns: Customizable Partitioned Caches.
Workshop on HW/SW Codesign, 2001.

[6] K. Suzuki, T. Arai, N. Kouhei, I. Kuroda. V83ORlAV:
Embedded Multimedia Superscalar RISC Processor. IEEE
Micro, 1998.

[7] P. Petrov, A. Orailoglu. Towards Effective Embedded
Processors in Codesigns: Customizable Partitioned Caches.
Workshop on Hardware/Software Codesign, 2001.

[8] C. Su, A.M. Despain. Cache Design Trade-offs for Power and
Performance Optimization: A Case Study. Intemational
Symposium on Low Power Electronics and Design, 1995.

[9] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S.
Dwarkadas. Memory Hierarchy Reconfiguration for Energy and
Performance in GP Processor Architectures. Intemational
Symposium on Microarchitecture, 2000.

[101 D.A. Patterson, J.L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface, Second Edition.
Morgan Kaufmann, 1997.

[l l] P.R. Panda, H. Nakamura, N.D. Dutt, A. Nicolau. Improving
Cache Performance through Tiling and Data Alignment.
Workshop on Parallel Algorithms for Irregularly Structured
Problems, 1997.

[121 A. Vandecappelle, M. Miranda, E. Brockmeyer, F. Catthoor, D.
Verkest. Global Multimedia System Design Exploration using
Accurate Memory Organization Feedback. Design Automation
Conference, 1999.

[13] G. Rivera, C. Tseng. Compiler Optimizations for Eliminating
Cache Conflict Misses. Department of Computer Science,
Technical Report, UM, 1997.

[14] T.L. Johnson, M.C. Merten, W.W. Hwu. Run-Time Spatial
Locality Detection and Optimization. Intemational Symposium
on Microarchitecture, 1997.

[15] M. Waldvogel, et al. Scalable High Speed IP Routing Lookups.
ACM Special Interest Group on Data Communication, 1997.

[16] S. Nilsson, G. Karlsson. Fast address lookup for Intemet routers.
IEEE Broadband Communications, 1998.

[17] E. Gurari. An Introduction to the Theory of Computation. Ohio
State University, Computer Science Press, 1989.

[18] SPEC CPU 2000. http://www.spec.org.
[19] D. Burger, T.M. Austin, The Simplescalar Tool Set, Version

2.0. University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342, June 1997.

880

http://www.itrs.net
http://www.spec.org

