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Abstract 

This paper deals with two level on-chip cache m e m -  
ories. W e  show the impact of th,ree different relation- 
ships between the contents of th,ese levels o n  the sys- 
t e m  performance. In addition t o  the classical Inclu- 
s ion  contents management,  we propose two  alterna- 
tives, namely Exclusion and Demand,  developing for 
t h e m  the necessary coherence support and quantifying 
their relative per formmce  in a design space (sizes, la- 
tencies, . . .) in agreement with the constrain.ts imposed 
by integration. T w o  performance metrics are eonsid- 
ered: the secondlevel cache mi s s  ratio and the sy s t em 
CPI. The  experiments have been carried out  running  n 
set  of integer and floating p0in.t SPEC'92 benchmarks. 
W e  conclude showing the superiority of our  improved 
version of Exclusion throughout all the sizing and work- 
load spectrum studied. 

1. Introduction 

Main memory and processor cycle times keep on di- 
verging increasingly, mostly due to  the growing integra- 
tion scale and to the use of new organization techniques 
such as superpipelining. Experts foresee a further in- 
crease in this speed gap and the use of multiple levels 
of on-chip cache [Si. Current integration technology 
makes it possible to  devote large chip areas to cache 
memory, allowing then a two-level organization: the 
first level is split into data and instructions and works 
at processor rate; the second level is a slower unified 
one. This organizat,ion has the following advantages 
versus the classical single-level split cache: 
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i) Given a fixed total size, it usually has a better 
overall hit ratio, due to  dynamic space realloca- 
tion between data and instructions in the second 
level [14]. 

ii) Each level can be devoted to  different goals, and 
be specifically designed to  attain high performance 
for each target goal. For instance, the size and 
associativity of the first level can be limited, re- 
sulting in shorter access times and allowing to  ac- 
cess it using virtual addresses. This contributes to 
decrease CPU cycle time and/or memory access 
instructions latency. On the other hand, in order 
to  reach high hit ratios, the second level may have 
higher associativity, and even make use of prefetch 
hardware. 

iii) The second level can watch the system bus or reply 
to the coherence commands sent from an external 
level-three cache. This may allow a further reduc- 
tion in the complexity and cycle time of the first 
level. In addition, and depending on the imple- 
mentation, a snooping level-one cache could have a 
higher latency in responding coherence commands 
due to  its high utilization by the processor. 

In this paper we shall assume that the integration 
scale and/or the cycle time suggest the use of two lev- 
els of on-chip cache [ll]. It will also be assumed a 
RISC processor able to  work stand-alone or in a shared 
memory multiprocessor system. A recently marketed 
DEC chip, the Alpha 21164, has these characteristics, 
with a 96KB second-level and 8KB + 8KB first-level 
caches [5]. Due to  the area constraints imposed by the 
joint integration of both levels, their contents relation 
can lime a considerable influence on the system per- 
formance. Our goal is to  determine that influence in a 
widc and representative enough design space. 
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So far, three relations between the contents of two 
consecutive cache memory levels have been defined: 1) 
Level i (L i )  is a superset of level i-1 (Lipl). 2 )  The 
contents of Li and Li_l are disjoint most of the times. 
and 3 )  The only criterion that determines the contents 
of Li is the sequence of the Li-l demands; therefore, 
a block that is heavily reused by LiPl can be excluded 
from Li. 

The two former relations have been called Multi- 
level Inclusion Property (MLI) and Two-Level Exclu- 
sive Caching (TLEC), respectively. The later rela- 
tion has no established name; we will call it Demand 
hereafter. The MLI Property has been suggested by 
Baer and Wang to  ease the coherence maintenance 
in uni and multiprocessors in an efficient way [a, 31. 
Their performance evaluation was made using stochas- 
tic or analytic models, assuming that Inclusion man- 
agement introduces a penalty on the global miss ra- 
tio. Two-level Exclusive caching has been suggested 
by Jouppi and Wilton to achieve a better use of the 
on-chip area [11]. This work makes a miss ratio based 
comparison with Demand management, but does not 
take into account different write costs between levels 
or coherence support cost. A similar concept, Exclu- 
s ion  management, has been independently proposed 
but not evaluated in [20]. Demand management has 
been used in some quantitative studies with the goal of 
optimizing the parameters of two-level cache memory 
systems [15, 21, 13, 4, 6, 161. All of them consider an 
external second level, therefore with temporal or sizing 
parameters that  are far from our scope. On the other 
hand, coherence maintenance cost and support were no 
studied. 

The goal of this study is to  compare Inclusion, De- 
mand and Exclusion management in an general pur- 
pose -symbolic and numerical processing- unipro- 
cessor environment. System must maintain Foherence 
with a third-level external cache in order to  ensure 
DMA correctness and to allow building a multiproces- 
sor. For that purpose we will extend Demand and Ex- 
clusion definition with the mechanisms needed to  main- 
tain coherence. We will define a design space (sizes, 
latencies, . . . )  in agreement with the constraints im- 
posed by integration, simulating these three strategies 

The following section introduces the Reference Mod- 
ule selected for the simulation, recalling Inclusion man- 
agement and giving special attention to  our Demand 
and Inclusion basic definitions. Section 3 presents the 
coherence problem and the added support to  Demand 
and Exclusion for solving it as efficiently as in Inclu- 
sion. The workload is presented and the results on miss 
ratios are analysed in section 4. In section 5 we present 

in it. 

the detailed timing model for the cycle-by-cycle simu- 
lator, analysing the CPI results and pointing out their 
differences to  those of the miss ratio analysis. Finally, 
our conclusions are summarized in section 6. 

2. On-chip Inclusion, Exclusion and De- 
mand management basics 

In this section we present the basic protocols for 
managing the contents of on-chip caches by Inclusion, 
Exclusion or Demand. To compare the different man- 
agements we take a Reference Module into which the 
three strategies can be embedded (Figure 1).  Because 
components and interconnects are essentially the same 
for all strategies, the hardware costs and speeds remain 
unchanged, thus allowing the isolation of the contents 
management on performance. Throughout the work 
we assume a copy-back policy and a single block size 
inside the chip. 

~~ N2, S2,B 

W21= B Intemal Bus 
xhlock xblock 

L E1 El 

CHIP 
CPU ---- fetch. 

Figure 1. Reference Module used for compar- 
ing alternative Level-2 contents management. 

The first level is made up of equally sized on-chip 
instruction and data caches: LliC and LldC, of N1 

sets, 5’1 blocks per set (associativity) and B bytes per 
block. There is also an on-chip second level unified 
cache: L2uC, with sizing parameters N2, S2 and B. A 
third level unified cache, L3uC, includes all the blocks 
present on chip. 

Buffers are provided to speed-up interlevel transfers: 
zbuf2 and xbuf3 assemble incoming words to  levels 2 
and 3. allowing t o  write blocks at once; ubuf, tbuf and 
sbuf entries hold what is needed to  interact with the 
upper level. The first letter of each buffer indicates 
the type of block it contains: 2 blocks keep the word 
that is accessed by the processor; U, t and s blocks are 
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the replaced from levels 1, 2 and 3 respectively. The 
ubui tbuf and sbuf sizes are El ,  E2 and E3 entries 
respectively. 

Static priorities arbitrate simultaneous access to  
shared buses. Note that the transfer width between 
L2 and L1, W21, is always set up to the chip block size, 
niaking use of having both caches always on-chip (as 
an example of a large internal bus consider the Power 
P C  604, which has a bus size equal to  128 bits [17]). 

L1  caches are virtually addressed but they keep 
physical tags. This offers all the advantages of a phys- 
ical addressing without the cost of translation in the 
path between L l  and the processor, but puts a n  upper 
l imit  to L 1  cache sizes equal to  page-size times asso- 
ciativity [21]. L2 and L3 are physically addressed and 
keep physical tags. On the other hand, we will assunie 
a one-to-one mapping between virtual and physical ad- 
dresses because our trace system provides just the vir- 
tual ones. 

2.1. Inclusion management 

As mentioned in section 1, tjhe Inclusion manage- 
ment of L2 is the space inclusion suggested by Baer 
and Wang for copy-back caches [a]. L2 must always 
hold a --not necessarily updated- superset of L1. The 
protocol to  achieve it is as follows: 1) If a rniss occurs 
both in L1 and L2, the missed block x is copied into 
both cache levels. 2) If L1 misses but L2 hits, the 
block is copied from L2 to L1. 3 )  The replacement of 
an LldC dirty block requires a copy-back operation on 
L2 that always hits. And 4) Any replacement policy 
can be used for L1, but only the blocks not present in 
L1 can be replaced from L2. This last rule requires a 
present-in-Ll bit to  be added to every L2 block; this 
bit is set when delivering the block to  the lower level, 
and reset when replaced by that level. Therefore, L1 
has to  report on dirty and clean block replacements to  
L2. 

To fulfill space inclusion L l  and L2 must observe the 
following sizing constraint: 

S2 2 2 * SI * maz(l,Nl/N2). If there are write 
buffers between L1 and L2, Inclusion must be also ob- 
served on the blocks they keep, what forces to  add their 
sizes to  5’2. Under these circunstances minimum L2 
associativity must be 4, (e.g. El = 1, SI = 1 and 
NI = N2 ). 

2.2. Exclusion management 

Exclusion keeps L1 and L2 contents always disjoint, 
so that the useful information equals the sum of their 
sizes. To achieve this, a miss in L1 that hits in L2 is 

solved by swapping blocks between these two levels: the 
missed block z is moved from L2 into L1, while the re- 
placed block U is rnoved (being it either clean or dirty) 
to the position where x was in L2. Its dirty bit must 
be sent with block U,  so that dirty blocks can be copied 
back to L3 when replaced from L2. A miss in both lev- 
els loads the missed block z directly into L l ,  displacing 
the block 11 from L1 to  L2 (instruction or data, dirty or 
not). Therefore, the L2 contents are made up from L1 
u-victim blocks. The L2 incoming block can cause a 
second replacement from L2. R,eplacement algorithms 
for L l  and L2 have no constraints. 

Acclording to  Jouppi and Wilton (TLEC), strict ex- 
clusion is only achieved if N I  > N2, otherwise the sets 
where x and U are mapped onto L2 may be different, 
thus disabling swapping. In tha,t case they explicitly 
assume that a block can be present in both levels at 
the same time. In our Exclusion protocol, an L1 miss 
followed by an L2 hit always forces the invalidation of 
the block in L2 thus keeping strict exclusion under any 
configuration. As we will see later on, the invalidation 
of the read block allows simpler coherence support and 
a reduction of the time to receive the u-block. 

Moreover, a better hit ratio can be achieved since 
the hole created when invalidating can prevent another 
useful block from being replaced. As an example let us 
assume NI = N2, S1 = 1 and Sn = 2. Figure 2 shows 
the blocks present in a given set for all caches. If no 
invalidation is used, a miss for block x in LliC that 
hits in L2uC can leave the cache contents as shown in 
fig. 2a. A later access to data block c causes block 
a to be replaced from LldC, which in turn can cause 
the replacement of block b, as shown in fig. 2b. Thus, 
the effective capacity of the set for the two levels is 
reduced to  3 blocks: x, a and e. However, with strict 
Exclusion, block a is placed into the hole left by x in 
L211C, resulting in an effective capacity of 4 blocks. 

L Z u C l q  (Za )  (2b) L2uc 

L l i C  r.1 L l d C  T I  L l i C F ]  L l d C  

Figure 2. Non-strict exclusion. Blocks x, a, b 
and c are mapped onto the same L2 set. 

2.3. Demand management 

Our Demand contents management is based upon 
one of the organizations proposed by Baer and Wang 
for uniprocessors: Write-back and no MLI [2 ] .  The 
protocol suggested is identical to the Inclusion one (sec- 
tion 2.1) except for the last point: 4) Upon Demand, 
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every L2 block, either belonging to  L1 or not, is subject 
to  be replaced. Therefore neither warning from L l  to 
L2 is needed if a clean block is replaced from L1, nor 
presence bits are required in L2. 

This causes another change in point 3; when a dirty 
block is replaced from L1, a copy-back is made into 
the upper level, the same as in Inclusion. However, 
the write can now miss in L2, requiring an additional 
replacement in L2. In this case we propose to  send 
the block directly to  L3 instead of writing it in L2; 
we call this L2 write policy block write-around (such 
expanding to  block level the word write-around with 
copy-back policy described in [lo] and previously used 
in [13] in level 1 caches). 

By studying Demand we consider the simplest way 
to  manage L2 contents. It is an interesting compro- 
mise, since a priori it can perform better or worse than 
Inclusion or Exclusion: it can achieve smaller miss ra- 
tios than Inclusion and less interlevel traffic than Ex- 
clusion. 

3. Coherence support 

We assume that the System Bus has a snoopy proto- 
col [19] that  ensures 1/0 DMA correctness with no O.S. 
intervention. Also, if the Reference Module is used to 
build a shared memory multiprocessor, this protocol, 
1) guarantees correct and efficient handling of shared 
variables and, 2) allows process migration without O S .  
started flushes [MI. In this context, the Inclusion man- 
agement of all the three levels (LlcL2cL3) guaran- 
tees correctness and is efficient: coherence commands 
spread into the bus are caught and resolved in the fur- 
thest possible level from the processor. Therefore, word 
broadcasts (updating protocol) or block invalidations 
(invalidating protocol) do not disturb the closest lev- 
els t o  processor that  have replaced the item. Besides, if 
the protocol requires block transfers among processors, 
Inclusion allows delivery with the least possible latency 
from the closest to  System Bus level. 

In this section we show how to  adapt L2 Exclusion 
and Demand management t o  achieve the same efficient 
behaviour in broadcasts or block transfers. For the 
upper level (L3) the only possible policy is some kind 
of inclusion of all chip contents (L1 and L2). In our 
case (Space M U ) ,  a present-on-chzp bit is added to 
every L3uC block; it is managed as stated in section 
2.1. Therefore, L3 must receive a replacement warning 
each time a block is replaced from the chip. 

3.1. On-chip Exclusion and coherence 

Due to  the strict exclusion imposed by our protocol, 
an  L2 block replacement is equivalent t o  a replacement 
from the chip. Therefore, L3 must be only warned 
about each L2 replacement. On the other hand, a co- 
herence command sent from L3 can be either a hit or a 
miss in L2. If it hits, the command must be captured 
not disturbing L1. On the contrary, if it misses the 
command must be sent to  L l  where it will certainly 
hit. 

If exclusion were not strict, as proposed by Jouppi 
and Wilton in their protocol for NI < N2, the previous 
scheme would be wrong; it would be necessary to add 
a copy of Ll’s directory to  L2uC in order to  correctly 
send (from chip) replacement warnings and to  achieve 
the as-soon-as-possible command capture goal. 

3.2. On-chip Demand and coherence 

Using Demand and assuming a block write-around 
write policy, a block is replaced from the chip and con- 
sequently L3 must be warned in the following cases: 

i) A block that only exists in L1 is replaced. But 
if L l  ignores the contents of L2 it cannot decide 
whether L3 must be warned or not. 

ii) A block that only exists in L2 is replaced. But 
if L2 ignores the contents of L l  it cannot decide 
whether L3 must be warned or not. 

On the other hand, if L2 ignores the contents of L1 
it cannot properly capture the commands of L3. 

The most immediate solution is to  add to  L2 a repli- 
cated directory of the L1 caches. A much simpler solu- 
tion consists of adding a present- in-Ll  bit to  every L2 
block. Since there are blocks that are present in L l  but 
not in L2 this is a partial information, but it suffices: 

i) A block replacement from L1 can hit or miss in 
L2. If it hits the presence bit is modified and if 
the block was dirty it is brought into L2. If it 
misses a warning is sent to  L3 (if the block was 
dirty the warning is piggybacked on the block). 

ii) When a block is replaced from L2, L3 is warned 
only if the present-in-Ll bit is not set. The re- 
placed block may be dirty in L2 and present in 
L1; in this case a new command is required to 
send to L3 a block with the warning that it is still 
present in the chip. If that copy of the block in L1 
is not modified again, there will be a replacement 
warning only when it is replaced. On the contrary, 
if it has been written, the previous copy on L3 was 
useless. 
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iii) A coherence command sent from L3 to  L2 can be 
either a hit or a miss. If it is a hit, it will be 
forwarded to  L1 only if the presence bit, is set. If 
it is a miss, the command must be forwarded to 
L1, where it will hit. 

used workload. (i) means integer intensive workload; 
(f)  means floating-point intensive workload. 

Program 1 1  # Instr. I # Reads I # Writes I # Refs. 
commess (il 11 90.559 1 13.533 1 6.763 1 110.855 

3.3. Block transfer service between caches 

If a given protocol encourages cache-to-cache trans- 
fers, a mechanism to minimize latency transfer can be 
added. This can be achieved by including a modified 
bit in each L3uC block. This bit indicates whether its 
content is updated (bit not set) or the updated copy is 
in the chip (bit set). This bit is set when a f irs t  write 
command is received from the chip, and is reset when 
a dirty block is received. Obviously L1 does not need 
such a bit, since the dirty bit means the same'. 

L2 contents management determines the details on 
the existence or handling of the dirty and modified bits: 

0 

0 

4. 

In Inclusion and Demand, the same as in L3uC, a 
modified bit that is set and reset according to the 
previous rules must be added to L2uC. 

In Exclusion only a single copy of each block exists, 
and therefore a modified bit is not required. It is 
enough with the dirty bit management shown in 
section 2.2. 

Experimental results about L2 miss 
rat io 

The workload we have used throughout the simula- 
tions consists of a subset of C and Fortran programs 
belonging to  the SPEC'92 suite, compiled for SPARC 
V8 under SunOS 4.1 and linked with the static option 
to avoid writes in the instructions space. Selection has 
been made using the data published in [7] by search- 
ing for some of the most cache-pressuring programs. 
Trace generation is performed using Shadow [9], a tool 
that allows step by step execution of the user code of 
a process. For each program a maximum of 200 mil- 
lion instructions is executed; it is enough to  completely 
fill the largest of the second level caches simulated. 
Programs cc l  and compress  have been execut,ed un- 
til completion. The experiments carried out do not 
show the effects of either multiprogramming or system 
code. Table 1. summarizes some characteristic of the 

Modified is a status which is different from dirty for L2 and 
LB. A block can be dirty and modified (tho updated copy is 
present in one of the lower levels) or dirty and not modified (the 
block is incoherent with respect to  upper levels but coherent with 
respect to the lower ones) 

Table I .  Workload used for computing miss 
ratio and CPI. Numbers in thousands. 

All simulations keep constant: 1) A single on-chip 
block :size (B = I31 = &), 2) direct mapping in L1 
and, 3 )  write policy (copy-back, fetch-on-miss). L2uC 
and L3uC use Random replacement policy; at the end 
of this section we will show some LRU replacement 
results supporting this choice. 

In this section we compare the L2 global miss ra- 
tio ( g m 2 )  for the three strategies. gm2 is computed 
by dividing the number of misses in L2uC by the total 
number of instruction and data  references2. All mea- 
sures are obtained in a cold-start fashion, that is, not 
exclud.ing from the count the initial cache load tran- 
sient. 

L l  cache size varies from 2 K B  + 2KB to 1 6 K B  + 
16KB, with a 16B block size. For each L1 size, five L2 
four-way set-associative caches are simulated by vary- 
ing the number of sets from N1/2 to  SlV1 (& = 4 is the 
minimiim to  fulfill Inclusion with buffering). Therefore, 
L2uC size varies from 4KB to 512KB. Only four sizes 
are simulated for L2 Inclusion, since the configuration 
L2sixe = L l s i z e  violates the size constraints needed 
for Inclusion (see section 2.1). 

Figure 3 shows separately for integer and floating- 
point the average gm2 for each contents management. 
This average assumes every program equally weighted, 
no matter its actual number of executed instructions. 
Each plot consists of four data groups, correspond- 
ing to the L1 four possible sizes (2KB + 2 K B  - 
16KB + 16KB). In each group N2 ranges from N1/2 
to  8Nl (L2sixe varies from L l s i x e  to  16l l s ixe) .  In 

'In order to  obtain the number of misses for Exclusion and 
Demand with LRU replacement, extensions of the algorithm pro- 
posed by Mattson et al. [12] have been used. They make it pos- 
sible to simulate caches with several L2 sizes and associativities 
for a given Ll size in a single pass throughout the trace. In- 
clusion needs a different simulation for each sizing because the 
mechanism used by L2 to keep the blocks that are present in L1 
breaks the stack behaviour of this replacement algorithm 

"2s i ze  = B * N2 * Sz; L ls i ze  = 2 * ( B  * N I  *Si) 
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general we see that Exclusion achieves substantially 
smaller miss ratios than Demand and Inclusion for 
nearly every size and program. Demand generally 
achieves better results than Inclusion but with much 
less differences. It can be seen the large locality offered 
by the SPEC programs compared to  nowadays cache 
sizes; this agrees with Gee, Hill and Smith in [7]. For 
instance, afirst level with Lls ize  = 8 K B f 8 K B  serves 
93.2% of the floating-point accesses and 97.2% of the 
integer ones. 

%gm2 
6 Llsr~e=Zk+Zk LIstze4kdk LIszre=Sk+lk Llmze=16k+16k 

NI =lo24 

4 1 integer I 
2 

0 
NIR NI ?N2 4NI W1 N2 

"/.& 

NI =lo24 
8 

6 I floating-point I 
4 

2 

0 
N l R  NI %?Jl 4Nl WI N2 

Demand Inclusion - Exclusion 

Figure 3. L2 global miss ratios far all three 
contents management policies expressed as 
a percentage (%gm2) 

The closer L l  and L2 sizes, the bigger the differ- 
ences, since the effective on-chip cache size is rela- 
tively more dependent, on the contents management 
policy. For instlance, if we compare Exclusion and 
Inclusion for the integer workload with Lls ize  = 
4KB + 4KB and L2size = 16KB, gmZ(Tnc1usion) 
is 36% greater than gm2 (Exclusion) (effective on-chip 
size is 16KB for Inclusion and 24KB for Exclusion). 
Whereas with L2size = 128KB, gmZ(Inc1usion) is 
only 2% greater than gm2(Exclusion) (the effective 
sizes are now 128KB and 136KB). In the same way, 
gmZ(Demand) is 25.9% greater than gmZ(Exc1usion) 
for L2size = 16KB and 2.46% for L2size = 128KB. 
Floating-point code exhibits similar behaviour for the 
two considered L2 sizes: 50.9%-1.82% for Inclusion and 
30.6%-1.33% for Demand. 

Additional simulations have been carried out keep- 
ing L1 and L2 sizes unchanged but varying 1) block 
sizes B1 = B2 from 16B to  32B, 2) L2uC replacement 
policy from Random to  LRU and 3 )  L2 associativity 

Sa from 2 to  32, keeping Nl = N2 . Tables 2 and 3 
show a subset of the miss ratio results for this broad 
design space. The subset has been selected to  high- 
light the configurations where Exclusion performs best. 
For every Llsize the tables show (from left to right) 
Exclusion miss ratio(Ex), the difference between De- 
mand and Exclusion miss ratios as a percentage of the 
later(A(Dm)),  and the same figure between Inclusion 
and Exclusion(A(1n)). The row (base) are the baseline 
results showed in figure 3, rows ( B  = 32), (LRU)  and 
(Sa = 8) are the results for the additional simulations 
presented in this paragraph. 

Variants ( B  = 32) and (Sz = 8) achieve smaller 
miss ratios than the base simulation for nearly all pro- 
grams (except for compress, where an increase of the 
block size leads to  higher miss ratios). On the other 
hand, the performance comparison trend among con- 
tents managements remains as previously described. 
Regarding the replacement algorithm, LRU is slightly 
better for integer programs. However, Random is bet- 
ter for floating-point with sometimes quite remarkable 
differences. Comparisons between Exclusion, Inclusion 
and Demand remain the same when the replacement 
algorithm is changed; there is just one substantial dif- 
ference: while LRU Exclusion miss ratio keeps always 
strictly smaller than LRU Inclusion and Demand, this 
is not always true for Random. 

To sum up; Exclusion achieves smaller miss ratios 
due to  a better use of space over the tested design 
space. The less the chip area globally devoted to cache 
and the closer L1 and L2 sizes, the more the differ- 
ence; in other words, the size constraints imposed by 
the integration of L l  and L2 favour Exclusion. De- 
mand behaves between Exclusion and Inclusion closer 
to  the later. 

5 .  Experimental results about CPI 

In this section we compare the performance of Tn- 
clusion, Exclusion and Demand measured as cycles per 
instruction (CPT). It is not possible to analytically com- 
pute CPI from miss ratios, since the timing of an event 
depends on the previous state of whole the hierarchy 
(items inside buffers, concurrent activity of each level, 
etc.) Therefore, we have built a discrete event time- 
driven simulator which, coupled to  Shadow, obtains the 
CPI for our workload when executing in the Reference 
Module. 

The simulator includes a model of a SPARC V7 pro- 
cessor which issues one instruction per cycle, has a 5 
stages integer pipeline and two floating-point units: 
a fully-pipelined adder/multiplier (4 stages) and a 
pipelined divider/square-root unit (4 stages, with a sec- 
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int(base) 
int(B = 32) 
int(LRU) 
fp( base) 
fp(B = 32) 
fp(LRU) 

Table 2. g m 2  additional simulations with L 2 s i z e  = 2Llsize (8KB - 6 4 K B ) .  

Llsize=2KB+2KB Llsize=4KB+4KB Llsize=8KB+RKB Llsize=16KB+l6KB 
2,35 31,9% 42,97% 1,52 25,9% 35,99% 1,02 23,76% 33,62% 0,73 17,78% 19,44% 
1,96 30,13% 36,18% 1,28 25,26% 32,67% 0,90 20,52% 27,03% 0,65 17,16% 19,77% 
2,27 32,33% 49,15% 1,45 23,96% 41,84% 0,97 23,6% 37.67% 0,7 13,99% 20,87% 
6,13 23,5% 39,25% 3,45 30,65% 50,94% 2,14 25,72010 51,88% 0,80 50,51% 114,66% 
4,15 31,16% 48,61% 2,14 40,47% 62,76% 1,34 30,56% 45,80% 0,57 44,12% 93,68% 
6,81 18,44% 28,74% 3,68 25,597~ 43,02% 2,74 23,6% 26,26% 0,89 63,52% 121,85% 
Ex A(Dm) A(1n) Ez A ( D m )  A(1n) EX A ( D m )  A(1n) Ex A(Dm) A(1n) 

Table 3. g m 2  additional simulations with L 2 s i z e  = 4 L l s i z e  ( 1 6 K B  - 1 2 8 K B ) .  

ond stage latency of 4 / 7  cycles for divisions and 6 / 1 0  
for square roots, simple/double precision respectively) 

5.1. Components service times 

For each cache level i , we define a base or charac- 
teristic time, T L ~  processor cycles. It corresponds to 
the parallel access of the Si tag and data arrays to 
deliver the requested item. Thus, T L ~  is the Read-hit 
time for a leT/el i cache. We estimate the Write-hit 
time to  be 2 T ~ i  : the first T L ~  to find the desired item 
and the second T L ~  to write into the selected data ar- 
ray. L3uC and blain Memory cannot read or write a 
block in a single access, therefore their characteristic 
times must be multiplied by the required number of 
sub-operations. Besides, accesses to  these levels will 
be delayed the penalty time of the corresponding bus. 

On a miss in level i ,  TI,^ is also the time spent on 
writing the block on level i once served by level i + 1, in 
parallel to  its transfer to  i - 1. Finally, we define T f i ~ ~ i  
as the time to  modify any of the state bits attached to 
each level i block (in general, T M L ~  5 TL; ). 

Appendix A offers a more detailed insight of the 
times of each of the components of the model. 

5.2. Baseline simulation model 

To limit simulation time the baseline model sets all 
the parameters of the Reference Module, except for 
those belonging to  L2uC, to values which arc a good 
compromise among 1) nowadays machines sizes and 
timings, 2 )  limited size and on-chip integration; and 

3 )  the high locality of the traces we have observed in 
the previous section, which imposes Mc sizes so that 
its variation has some influence on our system perfor- 
mance. 

Baseline parameters are the following: L l s i z e  has 
becn set to 2 K B + 2 K B ,  direct mapping and B = 1 6 B .  
L 3 s i z e  is 5 1 2 K B  with S, = 16 and B 3  = 3 2 B .  The 
bus between L1 and L2 is equal to  the block size 
( W ~ I  == 16B). Between L2 and L3, and between L3 and 
Main Memory, busses are 8B wide ( W M ~  = W32 = 8 B )  
with a penalty of one and four cycles respectively 
(Tbus32 = 1 ,  TbusbfS = 4) .  Basic times for each 
level (IZ'L~ and Tlat) are 1 ,  2,  3 and 20 for levels 1 ,  
2 ,  3 and main memory4, while state modification times 
have b'een set to  1 for all levels ( T M L ~  = T M L ~  = 1). 
The sizes of the output Buffers are 1, 2 and 1 respec- 
tively for levels I, 2 and 3.  According with the section 
4 results, Random replacement policy has been chosen 
for all contents management. 

L2size is varied from 8 K B  to 6 4 K B ,  keeping S2 = 4 
y BZ =: 16. Each plot presents both the CPI for each 
simulated configuration and two lines representing 1 )  
the ideal CPI (assuming a memory system which al- 
ways responds in a single cycle) and 2 )  the CPI with- 
out L2uC (assuming that each L l  miss is served di- 
rectly from the external cache). As in previous sec- 
tion, measurements for each workload are combined in 
a non-weighted up way. 

The first obvious conclusions about the baseline 
modcl are: 1 )  System performance is limited by the 

"Times Tiat, Tis, Tbus32 and Tbus,vs agree with those of 
the server DEC 7000/10000 [1] 
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memory hierarchy (CPlideal < 1.25), and 2) adding 
up L2 does not degrade this performance5. 

As shown in figure 4, Exclusion achieves better re- 
sults than Inclusion and Demand for those L2 sizes 
closest to  L1 ( 8 K B  and 16KB); individually, maxi- 
mum difference is achieved 1) for integers in ccl, with 
L2size = 8KB, where Inclusion needs 0.25 CPI and 
Demand 0.19 CPI more than Exclusion (10.5% and 
7.9% worse, respectively) and 2) for floating-point in 
doduc with L2size = 8 K B  where Inclusion needs 
0.41 CPI and Demand 0.35 CPI more than Exclusion 
(14.2% and 12%). Unlike to what the miss ratio anal- 
ysis showed and in contrast to that  exposed in [Ill, 
the CPI  achieved by Exclusion is greater than in Inclu- 
sion and Demand for relatively large L2uC sizes. This 
is because, in spite of achieving smaller miss ratios, 
L2uC Exclusion wastes more time by receiving all the 
blocks replaced from L l ;  however, Inclusion and De- 
mand only need to bring into L2 the blocks which are 
dirty, while the rest of them needs just a replacement 
warning. In section 5.3.1 we evaluate an improvement 
in the L2 Exclusion block reception mechanism, which 
effectively decreases the swapping overhead. 

3,4 
1.8 3 

1.6 2.6 

2.2 1.4 
1,8 

14 
1.2 

1 1 

8K 16K 32K MK 8K 16K 32K MK 
3 2 s i m  

Exclunoa - Exclusiooi - - CPInoL2 -- cPlidEai I 

Figure 4. Baseline model CPI. SI = 1, S, = 4, 
B = 16B, Lls ize  = 2 K B  + 2KB 

We recall that the miss ratio analysis indicated 
always a little advantage of Demand over Inclusion. 
However, in section 2.3. we saw that Demand can 
cause some traffic increase between L2 and L3 when 
compared to Inclusion. Simulation results prove this 
compromise. Only when L2size is similar to Llsize,  
Demand achieves a smaller CPI than Inclusion due to 
its smaller miss ratio. For large L2size -with compa- 
rable miss ratios in Inclusion and Demand- Inclusion 

performs sligthly better than Demand for most of the 
programs; in any case, differences are quite small. 

5.3. Improvements in L2uC Exclusion 

Next, we introduce two improvements to  increase 
the Exclusion performance at a very low cost that, if 
combined, become a solid alternative to  on-chip con- 
tents management. 

5.3.1 Block reception mechanism 

To maintain strict exclusion, our protocol invalidates 
each block that is read and brought into L1. Therefore, 
invalid blocks may appear as a result of the exchanges 
between L1 and L2 that do not map into the same L2 
set. Then a block replacement from L1 does not require 
a new replacement from L2 to  L3 if there are such 
invalid blocks. It suffices t o  implement the replacement 
algorithm so it considers the valid bits in addition to 
its basic replacement policy. Thus, the whole operation 
can be performed in just T L ~  cycles, the writing time, 
instead of the full T L ~  +TL~ cycles needed to search and 
write a set without invalid blocks. A similar mechanism 
in Inclusion or Demand would cause wrong behaviours 
since in these policies a replaced block from L1 can hit 
on L2, so the search can not be avoided. 

5.3.2 Non-blocking scheme 

In Exclusion, an L l  miss followed by an L2 miss re- 
sults in a block read from L3 that is directly loaded 
into L1. So, L2uC remains free when the miss is de- 
tected and the request is sent to  the upper level. We 
propose to  modify the L2uC control to  accept other L1 
requests since then. A similar mechanism in Inclusion 
or Demand requires a more complex control and pos- 
sibly the ability to  read and write in parallel the data 
arrays, since the service t o  L l  can overlap the pending 
block reception. 

In figure 4 the CPI computed for this improved 
version named Exclusion+ is shown. The decrease 
achieved by Exclusion+ in comparison to  the basic 
model is clear for all the points of the simulation, with 
an average improvement of 6.2% in floating point and 
2.9% in integers. The CPI for Inclusion and Demand 
is greater than that of Exclusion+ for all the simula- 
tions and all the programs. The maximum difference 

5Except for compress, where Some configurations show a 
worse CpI than that without second level. Compress has a 
high instruction locality which is absorbed by L1, but in prac- 
tice no data  locality. Local miss ratios for L2uC Exclusion are 
78%, 72%, 65% and 54% for 8KB,  16KB, 32KB and 64KB 
respectively, hence many more of the L2uC accesses are delayed 
rather than helped 

is achieved I) for integers in ccl with L2size = 8 K B ,  
where Inclusion needs 0.41 CPI and Demand 0.35 CPI 
more than Exclusion+ (18.5% and 15.6% worse respec- 
tively) and 2 )  for floating-point in f p p  with L2sixe = 
8KB where Inclusion needs o.76 cpl and Demand 0.9 
CPI more than Exclusion+ (19.1% and 21.9%). 
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5.4. Baseline variations 

Some parameters of the baseline model have been 
individually changed: We have doubled 1) L3uC ser- 
vice time, 2) L2uC associativity, 3 )  block and bus sizes 
and 4) all cache sizes by increasing their number of 
sets. Table 4 shows some figures for these simulations. 
As in the baseline model, L2size is set to 2, 4, 8 and 
16 times L l s i z e .  For every selected point the tables 
show (from left to  right) Exclusion+ CPI (Ex+), the 
difference bet,ween Demand and Exclusion+ CPI as a 
percentage of the later(A(Dm)), and the same figure 
between Inclusion and Exclusion+ (A ( I n ) ) .  The row 
(base)  means the same as in figure 4; rows (TL3 = 6), 
(S2 = 8), ( B  = 32) and ( S i z e s  * 2 )  are the results 
of the baseline variations presented in this paragraph. 
We can add the following conclusions to  those of the 
previous subsections: 

i) 

ii) 

When increasing the L3uC service time, the differ- 
ences between Exclusion and the rest of manage- 
ments are also increased, because those which miss 
more often suffer from a greater penalty. So, due 
to the current trend of the increasing divergence 
between on-chip and off-chip times, Exclusion will 
become even more useful in the future. 

The benefits obtained using Exclusion+ are 
greater when moving towards smaller capacities. 
Presumably, a workload with less locality (increas- 
ing problem and code size) would have the same 
effect. Of course, if the performance of the system 
is far above the requirements of the workload, the 
contents management would not be an issue. 

6. Conclusions 

In this work we compare alternatives to  two level 
on-chip cache contents management,. Three alterna- 
tive schemes namely Inclusion, Exclusion and Demand 
have been specified in the context of a Reference Mod- 
ule to  compare their miss ratios and temporal per- 
formance. All previous quantitative studies about 
multilevel-cache memory assume an external second 
level, and/or ignore coherence support and/or do not 
compare different contents managements. IJp to this 
work, the only coherent multilevel on-chip solution has 
been Inclusion. 

Keeping Inclusion in an external third level, new 
protocols to manage lower levels in a coherent way 
have been developed. The protocol for Exclusion and 
its hardware requirements have turned up to  be even 
simpler than those for Inclusion. We have carried out a 

quantitative analysis to  each alternative in a uniproces- 
sor environment. From the simulations it is clear that ,  
in spite of achieving always a lower miss ratio, Exclu- 
sion can lead to worse CPI results than Inclusion and 
Demand due to  the high cost of the L1 replacements. 
We propose a solution that decreases this overhead by 
improving the block reception mechanism and adopt- 
ing a non-blocking scheme for L2 Exclusion. Apart 
from that, in the light of the obtained data, Demand 
seems to  be discarded by its similar to Inclusion be- 
haviour and its greater implementation difficulty when 
cohere:nce support must be added. Our improved Ex- 
clusion scheme achieves 7.9% better CPI than Inclusion 
for floaking-point and 4.12% for integers in the baseline 
simulation. 

The foreseeable increase of the timing differences 
between on-chip and off-chip caches makes Exclusion 
even more attractive to manage on-chip contents. A 
criticism about our work is the high locality of the 
traces we have used, which has forced us to  experi- 
ment, with small first level caches; although we believe 
that our conclusions can be extended to  larger sizes 
(lower localities), we are starting up experimentation 
using SPEC’95 t o  verify this presumption. 
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1,63 4,08% 3,68% 1,58 2,08% 1,85% 1,54 l,60% 1,49% 
1.56 2.58% 2.33% 1.51 1.33% 1.14% 1,47 0.92% 0.85% 

A. Component timing 

Next, to  help reproduce the simulation results, we give a de- 
tailed description of the service times of all the system compo- 
nents. 

LliC, LldC Read-hit time = T L ~ .  Write-hit time = 2 T ~ l .  
Block-loading time = T L ~ ,  is the time needed for loading a 
block into L1 after delivered by the upper level. 

L2uC Inclusion The same as LldC using T L ~  instead of T L ~ .  
L2uC Demand: the  same as Inclusion except for the pos- 
sibility of a copy-back miss from LldC; in that case the 
block is copied into tbuf at a cost T L ~ .  L2uC Exclu- 
sion: Read-hit time = T L ~ ,  Block-loading from L1 time 
= 2 T ~ 2 ,  the first T L ~  to read and replace, if necessary, a 
block t and the other T L ~  to load block U. State-change 
time (when a replacement warning is received): in Inclu- 
sion, T L ~  + T J J L ~ ,  T L ~  cycles to  find the block and T M L ~  
to  modify state. T L ~  2 T M L ~ ;  in Demand, the same if it 
hits but if it misses, the warning is forwarded to  tbuf at a 
cost T L ~ .  

L3uC Read-hit time = &(Tbus32 + T L ~  + Tbus32), the num- 
ber of cycles since an address is sent until xbuf2 has been 
loaded. An external L3 cache which can offer w32 bytes 
per access is assumed, being p32 = B2/W32. That  is, a bus 
cycle (Tbus32) to  send the address, a cache access time 
( T L ~ )  and another bus cycle to  send back the data  are 
spent for each piece of a block being read. Write-hit time 
= Tbus32 + T L ~ + P ~ ~ ( T ~ u s ~ ~ + T L ~ ) ,  where the first access 
(Tbus32 + T L ~ )  is needed to  check tags, and the following 
p32 accesses are for writing. Both timings follow the inter- 
face model between an Alpha 21064 and its external cache 
in the system DEC 7000/10000 [l]. State-modification time 
(replacement warning) = Tbus32 + T L ~  + T M L ~ ( T L ~  2 
T M L ~ ) .  Block-loading time = T L ~ .  

Main memory Read time = T b u s ~ 3  + Tlat + 0 ~ 3  * T b u s ~ 3 :  
number of cycles since the address is sent until zbuj?? is 
loaded; where we assume a bus cycle to  send the address, 
followed by a memory access time (Tiat) and p ~ 3  sub- 
sequent transfers at a bus rate. Writing time = p ~ 3  * 
T b u s ~ 3 + T l ~ ~ .  It corresponds to an interleaved Main Mem- 
ory or a Dynamic RAM operating in some optimized mode. 

Output buffers ( tbu f ,  ubuf and sbuf) Writing time = 0 cy- 
cles if the buffer is not full, because writing into the buffer 
overlaps the miss resolution. If the buffer is full, Writing 
time = 1 since the moment when an entry is freed. A hit 
on an output buffer stalls a level until the entry which was 
a hit is downloaded into the upper level. The block will be 
recovered later on from the upper level in a conventional 
way.y. 
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