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The influence of VLSI technology on computer architecture 

BY D. MAY 

INMOS Limited, 100 Azbec West, Almondsbury, Bristol BS12 4SQ, U.K. 

Very-large-scale integration (VLSI) offers new opportunities in computer architecture. 
The cost of a processor has been reduced to that of a few thousand bytes of memory, 
with the result that parallel computers can be constructed as easily and economically 
as their sequential predecessors. In particular, a parallel computer constructed by 
replication of a standard computing element is well suited to the mass-production 
economics of the technology. 

The emergence of the new parallel computers has stimulated the development of 
new programming languages and algorithms. One example is the OCCAM language 
which has been designed to enable applications to be expressed in a form suitable for 
execution on a variety of parallel architectures. Further developments in language 
and architecture will enable processing resources to be allocated and deallocated as 
freely as memory, giving rise to some hope that users of general-purpose parallel 
computers will be freed from the current need to design algorithms to suit specific 
architectures. 

1. THE TECHNOLOGY 

Current technology allows a high-performance computer to be implemented on a single chip. 
One example is the Inmos IMS T800 transputer (Homewood et al. I987), which incorporates 
two processors (central processor and floating-point processor), 4 Kbytes of RAM (random 
access read-write memory) and a communications system on a single chip of about I cm2. The 

floating-point performance of this device is over 1 megaflop (million floating point operations 
per second). 

For the T800 and its some of its major functional blocks, the dimensions in square millimetres 
are: 

T800, 93.0; central processor, 12.0; communications link, 2.5; floating point unit, 17.5; 
4 Kbytes memory, 12.0; arithmetic logic unit, 0.6; 70 Kbits microcode, 4.5. 

Semiconductor manufacturing processes evolve very rapidly, and within a year it will be 

possible to manufacture devices like the IMS T800 in less than half the area. In practice, 
however, the improvements in the manufacturing process are used to increase the capability 
of the device. 

Like all VLSI devices, a transputer is ultimately assembled from connections in metal and 

polysilicon, transistor and 'contacts' which connect metal to polysilicon. The IMS T800 is 
manufactured with a complementary metal oxide silicon (CMos) process similar to that used in 
the manufacture of 64 Kbit static RAMS. For the transputer manufacturing process, the 
dimensions of transistors and contacts in square micrometres are: transistor, 14; contact, 36. 
Metal tracks are 2.75 pm wide, polysilicon tracks 1,75 pm. However, they cannot be placed 
close together; buses are formed by placing metal (or polysilicon) tracks on a pitch of 6 pm. It 
can be seen from these figures that the majority of the silicon area is used for interconnect. 



Transistors are the smallest components, for example, 13700 transistors occupy the same area 
as 1 mm of a 32-bit-wide bus. The cost of interconnection off the chip is large, a 'pad' to which 
a wire is bonded in the final stages of manufacturing occupies 0.125 mm2 and so to transmit 
a 32-bit-wide bus off-chip requires 4 mm2 of pads. 

It can be seen from the above figures that interconnections consume a relatively large silicon 
area. Consequently, considerable effort is being expended to reduce the cost of interconnect in 
new manufacturing processes. This can be done with smaller geometries or by adding extra 
layers of interconnect (or both). There are now a number of processes with two metal 
interconnect levels, and development of three- and four-layer processes is in hand. New 
processes will offer substantially smaller geometries in both metal width and pitch. However, 
reducing the metal width increases its resistivity in proportion, and reducing the pitch increases 
the capacitance with the result that the interconnect becomes slower but the transistors become 
faster. The speed can, to some extent, be increased but only at the cost of more power 
consumption and larger signal drivers occupying more area. 

2. VLSI ARCHITECTURE 

VLSI technology has significant implications for computer architecture: 

(1) processing is cheap; extra processor power should be used to save interconnect and to 
save memory; 

(2) locality of operation is essential. 
For example, the fact that the processor occupies the same space as a 4 Kbyte memory suggests 
that, provided that performance is maintained, it is worth using a processor wherever it will 
save more than 4 Kbytes of memory (for example, by compressing data or by computing values 
when needed instead of storing them). Similarly, it is often worth encoding data and 
transmitting it serially rather than transmitting it in parallel. 

The need for locality arises because of the high cost in area and delay of moving data 
between chips. However, locality is also becoming important even within a single chip. For the 
manufacturing process described above, a transistor can switch in about the same time as a 
signal will travel along I mm of metal. It is therefore important that the various functional 
units of a processor (registers, arithmetic logic units and control logic) are physically close 
together so that data can be moved rapidly between them. Perhaps more important is the need 
to distribute clock signals to synchronize the various components of the processor. As 
mentioned above, the effect of reducing the dimensions of the manufacturing process is to 
further decrease the signal speed in relation to the switching speed. The inevitable conclusion 
is that an architecture based on a network of simple computers operating independently and 
communicating data as needed is ideally matched to the technology. However, such a radical 
change of architecture cannot be hidden from the programmer; new languages and algorithms 
are needed to exploit such machines. 

3. OCCAM 

The OCCAM programming language (Inmos I988) enables an application to be described as 
a collection of processes which operate concurrently and communicate through channels. In 
such a description, each OCCAM process describes the behaviour of one component of the 
implementation, and each channel describes a connection between components. 
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The design of OCCAM allows the components and their connections to be implemented in 
many different ways. This allows the choice of implementation technique to be chosen to suit 
available technology, to optimize performance, or to minimize cost. 

OCCAM has proved useful in many application areas. It can be efficiently implemented on 
almost any computer and is being used in applications ranging from single processor embedded 
control systems to concurrent supercomputers. OCCAM programs can also be directly compiled 
and implemented as specialized VLSI devices. 

The main design objective of OCCAM was to provide a language which could be ?directly 
implemented by a network of processing elements, and could directly express concurrent 

algorithms. In many applications OCCAM is used as an assembly language; there is a one-to-one 
relation between OCCAM processes and processing elements, and between OCCAM channels and 
links between processing elements. 

A further important objective in the design of OCCAM was to use the same concurrent 

programming techniques both for a single computer and for a network of computers. In 

practice, this meant that the choice of features in OCCAM was partly determined by the need for 
an efficient distributed implementation. Once this had been achieved, only simple modifications 
were needed to ensure an efficient implementation of concurrency on a single sequential 
computer. This approach to the design of OCCAM perhaps explains some of the differences 
between OCCAM and other 'concurrent' languages. 

3.1. Locality 
Almost every operation performed by a process involves access to a variable, and so it is 

desirable to provide each processing element with local memory in the same VLSI device. 
The speed of communication between electronic devices is optimized by the use of one 

directional signal wires, each connecting only two devices. This provides local communication 
between pairs of devices. 

OCCAM can express the locality of processing, in that each process has local variables; it can 

express locality of communication in that each channel connects only two processes. 

3.2. The OCCAM primitives 

OCCAM programs are built from three primitive processes: 

v = e assign expression e to variable v, 
c ! e output expression e to channel c, 
c ? v input variable v from channel c. 

The primitive processes are combined to form constructs: 

SEQ sequence, 
IF conditional, 
WHILE loop, 

PAR parallel, 
ALT alternative. 

A construct is itself a process, and may be used as a component of another construct; in other 

words, OCCAM is a hierarchical block-structured language. 
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Conventional sequential programs can be expressed with variables and assignments, 
combined in sequential and conditional and loop constructs. The order of expression 
evaluation is unimportant, as there are no side effects and operators always yield a value. 

Concurrent programs make use of channels, inputs and outputs, combined by parallel and 
alternative constructs. 

The definition and use of OCCAM procedures follows ALGOL-like scope rules, with channel, 
variable and value parameters. The body of an OCCAM procedure may be any process, 
sequential or parallel. ] 

A very simple example of an OCCAM program is the buffer process below. 

WHILE TRUE 
VAR ch: 

SEQ 
in ? ch 
out ! ch 

Indentation is used to indicate program structure. The buffer consists of an endless loop, first 
setting the variable ch to a value from the channel in, and then outputting the 
value of ch to the channel out. The variable ch is declared by VAR oh. 

3.3. The parallel construct 

The components of a parallel construct may not share access to variables, and communicate 
only through channels. Each channel provides one-way communication between two 
components; one component may only output to the channel and the other may only input 
from it. These rules are checked by the compiler. 

The parallel construct specifies that the component processes are 'executed together'. This 
means that the primitive components may be interleaved in any order. More formally, 

PAR SEQ 
SEQ = x:=e 

x: e PAR 

P P 

Q Q 

so that the initial assignments of two concurrent processes may be executed in sequence until 
both processes start with an input or output. If one process starts with an input on channel 
c, and the other an output on the same channel c, communication takes place: 

PAR SEQ 
SEQ = x:=e 

c !e PAR 
P P 

SEQ Q 
c ? x 
Q 
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The above rule states that communication can be thought of as a distributed assignment. Two 

examples of the parallel construct are shown below. 

CHAN c: VAR chl: 
PAR VAR ch2: 

WHILE TRUE SEQ 
VAR ch: in ? chl 

SEQ WHILE TRUE 
in ? ch SEQ 
c ch PAR 

WHILE TRUE in ? ch2 
VAR ch: out ! chl 

SEQ PAR 
c ? ch in ? chl 
out ! ch ot ! ch2 

The first consists of two concurrent versions of the previous example, joined by a channel to 
form a 'double buffer'. The second is perhaps a more conventional version. As 'black boxes', 
each with an input and an output channel, the behaviour of these two programs is identical; 
only their internals differ. 

3.4. Synchronized communication 

Synchronized, unbuffered, communication greatly simplifies programming, and can be 

efficiently implemented. In fact, it corresponds directly to the conventions of self-timed 

signalling (Mead & Conway I980). Unbuffered communication eliminates the need for 

message buffers and queues. Synchronized communication prevents accidental loss of data 
arising from programming errors. In an unsynchronized scheme, failure to acknowledge data 
often results in a program which is sensitive to scheduling and timing effects. 

Synchronized communication requires that one process must wait for the other. However, 
a process which requires to continue processing while communicating can easily be written: 

PAR 
c !x 
p 

3.5. The alternative construct 

In OCCAM programs, it is sometimes necessary for a process to input from any one of several 
other concurrent processes. Consequently, OCCAM includes an alternative construct similar to 
that of CSP (Hoare 1978). As in CSP, each component of the alternative starts with a guard; 
an input, possibly accompanied by a boolean expression. From an implementation point of 

view, the alternative has the advantage that it can be implemented either 'busily' by a channel 
test or by a 'non-busy' scheme. The alternative enjoys a number of useful semantic properties 
more fully discussed in Roscoe & Hoare (I986); in particular, the formal relation between 

parallel and alternative is shown below: 
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ALT 
c ? x 

PAR 
PAR P 

SEQ SEQ 
c?x d?y 
P = Q 

SEQ d ? y 
d ? y PAR 

Q Q 
SEQ 

c ? x 
P 

This equivalence states that if two concurrent processes are both ready to input (communicate) 
on different channels, then either input (communication) may be performed first. 

A simple example of the alternative is shown below; this is a 'multiplexor': 

WHILE TRUE 
ALT 

inl ? ch 
out ! ch 

in2 ? ch 
out ! ch 

The multiplexor inputs from either channel inl or channel in2. It then outputs the 
value it has just input. 

3.6. Channels and hierarchical decomposition 
An important feature of OCCAM is the ability to successively decompose a process into 

concurrent component processes. This is the main reason for the use of named communication 
channels in OCCAM. Once a named channel is established between two processes, neither process 
need have any knowledge of the internal details of the other. Indeed, the internal structure of 
each process can change during execution of the program. 

The parallel construct, together with named channels provides for decomposition of an 

application into a hierarchy of communicating processes, enabling OCCAM to be applied to 
large-scale applications. 

3.7. Future developments 

The initial version of OCCAM was a very simple language including only integer data types 
and one-dimensional arrays. In view of the need to provide a concurrent language suitable for 
a wide range of numerical applications, a derivative of OCCAM has been developed, known as 
OCCAM2. The OCCAM2 language provides the concurrency features of OCCAM together with the 
data types appropriate for numerical applications. 

Current implementations of OCCAM assume explicit control over the physical allocation of 

processes to processors and channels to interprocessor links. Allocation of physical resources is 
determined by the compiler. This allows an extremely efficient implementation of concurrency 
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and communication. However, it would be natural to remove these restrictions, especially if 
further hardware support could be used to make dynamic resource allocation fast. The result 
would be a language supporting concurrency and recursion, together with recursively defined 
data types. This would make OCCAM more suitable for concurrent symbolic application 
areas. 

4. THE TRANSPUTER CONCEPT 

VLSI technology allows a large number of identical devices to be manufactured cheaply. For 
this reason, it is attractive to implement an OCCAM program with a number of identical 

components, each programmed with the appropriate OCCAM process. A transputer (see, for 

example Homewood et al. I987) is such a component. 
A transputer is a single VLSI device with memory, processor and communications links for 

direct connection to other transputers. Concurrent systems can be constructed from a collection 
of transputers which operate concurrently and communicate through links. 

The transputer can therefore be used as a building block for concurrent processing systems, 
which OCCAM as the associated design formalism. 

4.1. Transputer architecture 

An important property of VLSI technology is that communication between devices is very 
much slower than communication on the same device. In a computer, almost every operation 
that the processor performs involves the use of memory. A transputer therefore includes both 

processor and memory in the same integrated-circuit device. 
In any system constructed from integrated circuit devices, much of the physical bulk arises 

from connections between devices. The size of the package for an integrated circuit is 
determined more by the number of connection pins than by the size of the device itself. In 
addition, connections between devices provided by paths on a circuit board consume a 
considerable amount of space. 

The speed of communication between electronic devices is optimized by the use of one- 
directional signal wires, each connecting two devices. If many devices are connected by a 
shared bus, electrical problems of driving the bus require that the speed is reduced. Also, 
additional control logic and wiring is required to control sharing of the bus. 

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial 
communication links for direct connection to other transputers. 

4.2. Transputer systems 
A transputer system consists of a number of interconnected transputers, each executing an 

OCCAM process and communicating with other transputers. As a process executed by a 

transputer may itself consist of a number of concurrent processes the transputer has to support 
the OCCAM programming model internally. Within a transputer, concurrent processing is 

implemented by sharing the processor time between the concurrent processes. 
The most effective implementation of simple programs by a programmable computer is 

provided by a sequential processor. Consequently, the transputer processor is fairly 
conventional, except that additional hardware and microcode support the OCCAM model of 
concurrent processing. 
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4.3. Sequential processing 
The design of the transputer processor exploits the availability of fast on-chip memory by 

having only a small number of registers; six registers are used in the execution of a sequential 
process. The small number of registers, together with the simplicity of the instruction set 
enables the processor to have relatively simple (and fast) data-paths and control logic. 

4.4. Support for concurrency 

The processor provides efficient support for the OCCAM model of concurrency and 
communication. It has a microcoded scheduler which enables any number of concurrent 

processes to be executed together, sharing the processor time. This removes the need for a 
software kernel. The processor does not need to support the dynamic allocation of storage as 
the OCCAM compiler is able to perform the allocation of space to concurrent processes. 

At any time, a concurrent process may be either 

active: being executed, 
on a list waiting to be executed; 

or inactive: ready to input, 
ready to output, 
waiting until a specified time. 

The scheduler operates in such a way that inactive processes do not consume any processor 
time. 

The active processes waiting to be executed are held on a list. This is a linked list of process 
workspaces, implemented with two registers, one of which points to the first process on the list, 
the other to the last. 

A process is executed until it is unable to proceed because it is waiting to input or output, 
or waiting for the timer. Whenever a process is unable to proceed, its instruction pointer is 
saved in its workspace and the next process is taken from the list. Actual process switch times 
are very small as little state needs to be saved; it is not necessary to save the evaluation stack 
on rescheduling. 

4.5. Communications 

Communication between processes is achieved by means of channels. OCCAM communication 
is point-to-point, synchronized and unbuffered. As a result, a channel needs no process queue, 
no message queue and no message buffer. 

A channel between two processes executing on the same transputer is implemented by a 

single word in memory; a channel between processes executing on different transputers is 

implemented by point-to-point links. The processor provides a number of operations to support 
message passing, the most important being 'input message' and 'output message'. 

A process performs an input or output by loading the evaluation stack with a pointer to a 

message, the address of a channel, and a count of the number of bytes to be transferred, and 
then executing an input message or an output message instruction. 

The input message and output message use the address of the channel to determine whether 
the channel is internal or external. This means that the same instruction sequence can be used 
for both internal and external channels, allowing a process to be written and compiled without 

knowledge of where its channels are connected. 
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As in the OCCAM model, communication takes place when both the inputting and outputting 
processes are ready. Consequently, the process which first becomes ready must wait until the 
second one is also ready. 

4.6. Internal channel communication 

At any time, an internal channel (a single word in memory) either holds the identity of a 

process, or holds the special value 'empty'. The channel is initialized to 'empty' before it is 
used. 

When a message is passed by the channel, the identity of the first process to become ready 
is stored in the channel, and the processor starts to execute the next process from the scheduling 
list. When the second process to use the channel becomes ready, the message is copied, the 

waiting process is added to the scheduling list, and the channel reset is its initial state. It does 
not matter whether the inputting or the outputting process becomes ready first. 

4.7. External channel communication 

When a message is passed via an external channel, the processor delegates to an autonomous 
link interface the job of transferring the message and deschedules the process. When the 

message has been transferred, the link interface causes the processor to reschedule the waiting 
process. This allows the processor to continue the execution of other processes while the 
external message transfer is taking place. 

4.8. Intertransputer links 

To provide synchronized communication, each message must be acknowledged. Con- 

sequently, a link requires at least one signal wire in each direction. 
A link between two transputers is implemented by connecting a link interface on one 

transputer to a link interface on the other transputer by two one-directional signal lines, along 
which data is transmitted serially. 

The two signal wires of the link can be used to provide two OCCAM channels, one in each 
direction. This requires a simple protocol. Each signal line carries data and control 
information. 

The link protocol provides the synchronized communication of OCCAM. The use of a protocol 
providing for the transmission of an arbitrary sequence of bytes allows transputers of different 

wordlength to be connected. 
Each message is transmitted as a sequence of single-byte communications, requiring only the 

presence of a single-byte buffer in the receiving transputer to ensure that no information is lost. 
Each byte is transmitted as a start bit, followed by a one bit, followed by the eight data bits, 
followed by a stop bit. After transmitting a data byte, the sender waits until an acknowledge- 
ment is received; this consists of a start bit followed by a zero bit. The acknowledgement 
signifies both that a process was able to receive the acknowledged byte, and that the receiving 
link is able to receive another byte. The sending link reschedules the sending process only after 
the acknowledgement for the final byte of the message has been received. 

Data bytes and acknowledges are multiplexed down each signal line. An acknowledgement 
is transmitted as soon as reception of a data byte starts (if there is room to buffer another one). 
Consequently, transmission may be continuous, with no delays between data bytes. 
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4.9. Conclusions 

The transputer demonstrates that the concurrent processing features of OCCAM can be 

efficiently implemented by a small, simple and fast processor. The time taken for a process to 
start and terminate is about 1.5 ps; a small enough overhead to allow processes consisting of 

only a few statements. An interprocess communication has a fixed overhead of about 1.5 gs, 
and also requires time to transfer the message. Messages are transferred at up to 40 megabytes 
per second on-chip, and up to 1.5 megabytes per second through a link. 

Experience with OCCAM and the transputer has shown that many applications naturally 
decompose into a large number of fairly simple processes. Once an application has been 
described in OCCAM, a variety of implementations are possible. In particular, the use of OCCAM 

together with the transputer enables the designer to exploit the performance and economics of 
VLSI technology. 

The transputer therefore has two important uses. Firstly it provides a new system 
'building block', which enables OCCAM to be used as a design formalism. In this role, OCCAM 
serves both as a system-description language and a programming language. Secondly, OCCAM 
and the transputer can be used for prototyping highly concurrent systems in which the 
individual processes are ultimately intended to be implemented by dedicated hardware. 

5. PARADIGMS FOR MASSIVE CONCURRENCY 

Many uses of concurrency are in embedded applications where the programmer requires 
explicit control over the physical resources of the machine. However, in general-purpose 
concurrent computing, the programmer is primarily concerned with introducing concurrency 
in the interests of increased performance. Relatively simple program structures are adequate 
for many applications. Indeed, where large numbers of processors are to be used, simple regular 
structures are essential. 

The major concern of the programmer is to express an application in a form in which 

(1) there are enough processes to keep all of the processors busy; 
(2) the amount of computation performed by a process each time it communicates is large 

enough to ensure that the communication cost is insignificant. 
To do this, it may be necessary to hold copies of programs and data in every processing node; 

VLSI technology makes this attractive because of the high relative cost of communication. 
Three important paradigms are: 

(1) pipelines, in which data flows through a series of nodes, each node making a 
transformation of the incoming data; 

(2) farms, in which a controller continually farms out tasks to a large number of identical 

processing nodes; as a node completes a task, it is given a new one; 
(3) arrays, in which a problem is decomposed into a regular array and each component of 

the array is mapped onto a corresponding processor. 
The emergence of these paradigms suggests that new and useful concurrent programming 

languages could be designed. One possibility is a scientific programming language 
incorporating constructs such as pipes, farms and arrays. Besides being relatively easy to use, 
such languages offer the possibility of automatic resource allocation and therefore the 

possibility of portable subroutine libraries. 
A general-purpose concurrent computer must support such paradigms efficiently. 
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6. THE CONCURRENT COMPUTER 

Several 'general-purpose' concurrent computers constructed as a network of sequential 
processors are now available or under development. At the present level of VLSI technology we 
can implement in the same area of silicon the following components of a computer: a 10 Mips 
(million instructions per second) processor; a 4 Kbytes of memory; a 10 megabyte per second 
communications system. 

Consequently, using the same silicon area, we can construct a single 10 Mips (million 
instructions per second) processor with 4 megabytes of memory (a conventional sequential 
computer) or a 10000 Mips computer with 2 megabytes of memory. Both machines would 

require about 1000 VLSI devices, and so are quite small computers. 
The problem is to choose the correct ratio of memory to processors and to construct a 

computer with many processing nodes each with a small amount of memory, interconnected 
in such a way that it can be applied to practical problems. For small numbers of processing 
nodes, reconfiguration switches can be used to avoid the need to chose a fixed configuration. 

For large networks, reconfiguration is not very practical. Further, there is an increasing 
interest in programs which dynamically allocate processing resources. This makes a fixed 

configuration with software (or hardware) providing message routing through the processing 
node attractive. It is therefore to be expected that future hardware developments will provide 
message routing systems; one example is the torus routing chip (Dally I986). 

A number of different network structures have been proposed for concurrent computers: 
pipeline; array (D, 2D, 3D,...); hypercube; toroidal surface; shuffle. 

These structures vary in three important respects: ability to extend; ability to implement on 
silicon (in two dimensions); cost of non-local communication. 

Pipelines and simple (two dimensional) arrays can be easily implemented or extended. 

Arrays (and hypercubes) become progressively more difficult to implement as the dimension 

increases, with much space taken by connections which need to cross over. However, 1000 or 
so processing elements can be connected in this way. 

One difficulty with the hypercube structure is that the number of links provided at each node 
must be at least the dimension of the hypercube. This means that a standard component (which 
has a fixed number of links) cannot be used to implement an arbitrarily extensible array. An 
alternative structure which avoids this problem is obtained by implementing each node of the 

hypercube with a ring of transputers; this structure is known as 'cube-connected cycles'. 
The cost of non-local communication, which arises when two nodes need to communicate via 

intermediate nodes, varies widely. A one-dimensional array is obviously the worst. It may 
appear that a hypercube provides the best solution, and to understand why this may not be 
so, it is necessary to examine how a hypercube configuration is implemented in practice. 

Suppose the hypercube is being implemented using a two-dimensional interconnect such as 
metal tracks on silicon. When two order-n hypercubes are connected to form an order-(n + 1) 
hypercube, 2' wires are needed to connect the corresponding nodes in the two order n cubes. 
These wires are not short; their length is the width of the order n cube, at least 22n x the width 
of a single node. Consequently, the total area taken by the connections is of order 22" x 2". As 
the order, n, of the hypercube grows: 

(1) the size of the hypercube interconnect grows faster than 22" x 2"; 
(2) the diameter, in terms of length of interconnect, grows faster than 2".- 

Of course, if the hypercube is implemented by using a three-dimensional interconnect the 
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results are slightly better, but the situation remains fundamentally unchanged; a large 
hypercube is a relatively expensive interconnect. This is an important conclusion as most of the 
interconnection networks used for concurrent computers are isomorphic to hypercubes. 

It appears that arrays of low (two or three) dimension can provide lower latency 
communications with much smaller interconnects, even for very large numbers of processing 
nodes (1000-100000). This is primarily because no long wires are needed to implement them 
with a two-dimensional interconnect (Dally 1986). 

7. FUTURE DEVELOPMENTS 

Existing transputers are designed to provide a very efficient implementation of concurrent 

processing and communication. Allocation of processors and memory is determined at compile- 
time to minimize runtime overheads. As a result, it is reasonable for a process to perform a 

simple operation, a few statements, between communications with other processes: static 
allocation allows fine grain parallelism to be used efficiently. 

For many applications, it would be preferable to provide more dynamic allocation of 

processing and memory resources. This would, for example, enable concurrency to be used 

together with recursion to express algorithms which dynamically allocate and deallocate 

processors in the same way that a sequential program dynamically allocates and deallocates 

memory. This would raise the level of programming to the point at which it would be necessary 
to specify only where 'real' concurrency is to be used. Inevitably, the increased cost of the 
concurrency implementation would dictate that a process should perform a larger amount of 

processing between communications; dynamic allocation requires coarse grain parallelism. 
Some of the overhead can be recovered by building more capabilities into the processing 

node. The most important of these is the provision of message through-routing. This will enable 
software structures to be mapped onto a fixed processor configuration such as a two- or three- 
dimensional array as described above. 

7.1. Technology developments 

The development of the next level of static RAM technology (256 Kbit) is well advanced, and 
by 1990 it is expected that 1 megabit static RAMS will be in production. By this time 4 megabit 
dynamic RAMS will be available. 

This means that a transputer could be equipped with 100 Kbytes of on-chip RAM and a 
processor at least twice as fast as the present one. Of course there is also the possibility of 
considerably more on-chip processing and communication capability than is currently being 
achieved. 

With scaling to smaller geometries comes an increase in speed. Present transputers 
achieve processor cycle times and memory cycle times of about 50 ns. The 1990 technology is 
expected to reduce this to about 20 ns. Notice that the switching time scales linearly, but the 
number of devices scales quadratically; another important reason for the increased use of 
concurrency. 

7.2. Memory 
The possibility of incorporating large memories opens up interesting architectural 

possibilities which are only just beginning to be explored. For example, an on-chip RAM can 
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provide very high data rates because it can be accessed in rows (for example, 256 bit 'words'). 
It is also expected that external (commodity) RAMS Will provide for access to blocks of memory 
rather than just words. The access to successive (or in-block) locations will be limited by the 
rate at which data can be sent off chip, not by the speed of the memory itself. 

The access time of an on-chip memory will continue to be about two to four times faster than 
the access time of an off-chip one. This means that sufficient on-chip memory should be 

provided for the frequently accessed process workspaces and stacks, and block transfer should 
be used to transfer data between on-chip and off-chip memory. 

7.3. Processing node architecture 

The possibility of wide (256 bit pages) access to the internal memory allows several pro- 
cessors to share the same (internal) memory. If each processor is equipped with a very small 
data and instruction cache, most accesses to the internal memory can take place in pages. This 
architecture would allow, for example, a communications processor to transfer application- 
specific data structures through communication links while the other processor(s) perform the 

computation associated with the node. 
The processor itself can be provided with additional microcoded operation at very little cost. 

In practice, the major problem is to identify generally useful operations. However, support for 

dynamic storage allocation to permit recursive, concurrent programs and their associated user 
defined data types is a logical step. 

7.4. Communications architecture 

One important use of the extra silicon area available within a processing node is the 

provision of hardware for global message routing. As a message arrives (or is generated locally), 
its destination address is decoded and, if necessary, the message is forwarded via the 

appropriate communications link. 
Two techniques can be used for message routing. In packet routing, a message is completely 

input before being output. This does not seem to be a very appropriate scheme; it introduces 
a significant delay through the node and also requires memory space within intermediate nodes 
to store the packets waiting to be output. A better scheme is 'wormhole' routing (Dally 1986) 
in which the address is input, the destination link is determined and the message forwarded as 
soon as the destination link is not busy. 

Another possibility is the provision of hardware support for global memory addressing, even 
in a distributed memory multiprocessor. Non-local addresses can be decoded in hardware, and 
read and write operations translated into messages to remote processing nodes. These are 
routed in the same way as normal messages. (It might seem that the provision of a global 
address space removes the need for process communication. However, process communication 
cannot be performed efficiently with only memory-access operations; it must be possible to 
cause a process to be scheduled when a message arrives.) 

The result of these developments is that the programmer will not need to adapt his programs 
to a particular system structure, nor will reconfiguration be needed. However, it will still be 

important to preserve locality in mapping algorithms onto the processor array. This is an 

important area for future language and compiler development. 

28-2 

389 



390 D. MAY 

7.5. Monitoring 
As the technology allows several processors to be combined onto the same chip, it is 

inevitable that some processors will have no direct connections to any pins; their behaviour will 
not be observable from outside the chip. Consequently, facilities for testing and monitoring a 

processing node will be built into it, and the most convenient way to do this is to include a 
communications link specifically for the purpose. 

The monitoring of a large multiprocessor is a computationally intensive task. Monitoring 
information generated at many nodes in the system must be processed and useful information 
extracted in real time. By using a standard communication link on each node for this purpose 
a multiprocessor monitoring array similar to but smaller than the processing array can be used. 
This monitoring array can be programmed in exacty the same way as the processing array. 

7.6. The input-output system 
Future computer input and output will require specialized concurrent processors. These will 

perform operations such as image analysis, graphics, animation, speech and public key 
encryption. 

These functions can be implemented as either fixed configurations of standard components 
such as transputers, or as specialized VLSI systems. 

The construction of tools for the design and programming of systems constructed from 
standard components and specialized silicon devices is the subject of current research. Recent 
work has shown that a communicating process language such as OCCAM is suitable as a source 
language for silicon compilation (May et al. I987). This approach allows a wide range of 
concurrent algorithms to be implemented directly in VLSI, and allows reliable migration of 
algorithms from software into specialized hardware as performance requirements increase. It 
also allows a wide range of program development and verification tools to be used for VLSI 
designs. 

These tools are essential to realize the potential of the technology: a complete concurrent 

computer including input and output on a single chip. 

8. EVOLUTION OF CONVENTIONAL ARCHITECTURES 

In view of the development of the technology, certain changes in conventional architecture 
seem inevitable. 

8.1. Sequential architectures 

Firstly, manufacturers of conventional microprocessors will have no difficulty in incor- 

porating large (for example, 64 Kbyte) cache memories on the same chip as the processor. 
There will be a strong incentive to do so in view of the difference in speed between internal and 
external memory access. 

It seems likely that virtual memory will continue to be used: there will continue to be a 

significant difference in speed between the static RAMS, dynamic RAMS, discs, etc. Consequently, 
it seems likely that conventional microprocessor systems will combine a processor, cache and 

memory manager on a single VLSI chip, with external main memory provided by high-speed 
static or dynamic RAMS and secondary memory provided by dynamic RAMS or discs. As time 
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progresses, the high-speed on-chip caches will become so large as to remove the need for 
anything except secondary memory external to the device. As the transfer of data between 

secondary and primary memory involves blocks rather than randomly accessed words, the 
external memory interfaces can be optimized to this purpose; they can become more serial. 
This reduces pin-count and cost on both memory devices and processors. 

Processor designs will continue to become more ambitious. Even the 'reduced instruction 
set' computers (RISC) now in design involve complex pipelining that uses large areas of silicon 
to produce small gains in performance improvement. Processors will normally include floating- 
point arithmetic and even pipelined vector floating point. As noted above, on-chip memory 
can provide data at the high speeds needed to support pipelined operations. 

Inevitably, as an entire sequential computer will be easily implementable on a single chip, 
sequential architectures will evolve into concurrent architectures. This is already happening, 
with machines consisting of a small number of processors (up to 20) sharing a common bus to 
which a global memory is connected. Contention for access to the global memory is alleviated 
in one of two ways: 

(1) by providing local cache memory on each processor and ensuring cache consistency (at 
considerable hardware cost); 

(2) by providing local memory and using the global memory only for (explicit) message 
passing (this appears to the user rather like a distributed memory multiprocessor). 

The presence of a global address space makes these machines appear easier to program than 
a truly distributed memory multiprocessor (such as a hypercube or transputer-based 
machine). However, in practice it is necessary to observe very similar principles, ensuring local 

operation wherever possible. 
Communication involves synchronization to tell the receiving processor that data has 

arrived or to tell the sending processor that data has been taken. This cannot be efficiently 
implemented by a shared memory alone; an additional interconnect between the processors is 
needed. It is also necessary to incorporate microcode and hardware support for process 
scheduling and communication; without it the overheads of concurrent processing are 
excessive. 

8.2. Array processing 

Many applications can make use of a very large number of simple procesing elements 

operating in parallel. One example is image processing (or low-level vision). These applications 
have been implemented by SIMD (single instruction multiple data) machines such as the DAP 

(Distributed Array Processor). 
The SIMD machine was conceived when a control unit was large and expensive in relation 

to an ALU (arithmetic logic unit) and a few registers, and when the speed of the physical 
interconnect between control unit and ALU did not limit performance. It consists of a large 
synchronous array of arithmetic logic units controlled by a single microprogram controller 
which synchronously broadcasts instructions through the array. 

In VLSI technology, a control unit and a program store is small; no more than the connection 

points needed to receive the wide instructions from the control unit. Furthermore, current sIMD 
machines are becoming limited in speed by the time taken to broadcast instructions through 
a large processor array. This problem is getting worse. 

It may be better, therefore, to use a MIMD (multiple instruction multiple data) machine based 
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on a very simple processing node. Such a machine could use the same architecture and 
interconnect as the more general-purpose MIMD processing array. This would allow fine-grain 
SIMD style processing to be combined with more general-purpose MIMD processing. 

8.3. Vector processing 

To have significant benefits a vector processor must be pipelined; this makes it much bigger 
than a scalar processor. It must have: 

(1) two operand access paths; 
(2) two normalizers for source operands; 
(3) additional floating point ALU for scalar product; 
(4) further normalizer for result; 

(5) more complex control logic. 
One vector processor will therefore take the same silicon area as several scalar ones. Several 
scalar processors sharing the same store are more flexible than a single vector processor, and 
so a collection of scalar processors is preferable to a vector processor if both have the same 

performance and use the same area. However, it is likely that there is a trade-off of flexibility 
against efficiency. This issue is not well undertood and requires further investigation. 

9. CONCLUSIONS. 

A general-purpose concurrent computer will contain aprocessing array with many (between 
10 and 1000000) similar processing elements. These will incorporate automatic message 
routing providing low-latency communication between all the processing elements. The 
elements will be connected in a fixed network. 

The general-purpose processing array will be surrounded by input and output systems also 

containing many processing elements. These will be more specialized, consisting of general- 
purpose devices connected in specialized configurations or, alternatively, of specialized 
devices. 

The concept of communicating processes can provide an architectural basis for both general- 
purpose and specialized parts of the computer. Languages based on communicating processes, 
such as OCCAM, serve as the system language for these concurrent computers. Experience gained 
from the application of these machines will form the basis for higher-level user languages. 
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Discussion 

S. F. REDDAWAY (3 Woodforde Close, Ashwell, Baldock, Hertfordshire). I would like to respond to 
Dr May's critical comments on SIMD architecture in three ways. 

(1) The best way tojudge a machine is by results. There are many impressive demonstrations 
that can be done on the SIMD machine. 

(2) The instruction time of that machine is 100 nsec, rather than the 500 or 1000 nsec 
mentioned by Dr May. 

(3) If MIMD hardware is used to do SIMD processing the overheads are greater than when 
SIMD hardware is used. These are in terms of hardware cost, software time (for example dealing 
with MIMD communication) and awkward programming if the language used does not support 
array operations. 

D. MAY. I agree that the best way to measure a machine is by results. However, I am primarily 
interested in the most cost-effective way to achieve the results in a given technology. The 

question to be resolved, therefore is: can the operations supported by a SIMD machine be 

implemented in less silicon area with a MIMD machine? (In making this comparison I would 

expect both machines to be programmed in a language with array operations.) 
The additional hardware cost referred to by Dr Reddaway is the cost of local control and 

synchronization logic: this cost is small and is decreasing relative to the cost of broadcasting 
high-speed global control and synchronization signals. 

The additional software time referred to by Dr Reddaway is the time to perform local 

synchronization: this time is decreasing relative to the time taken to perform global 
synchronization. / 

Consequently, I believe that the answer to the above question is (or will soon be) yes. 
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