
The Influence of VLSI Technology on Computer Architecture [and Discussion]
Author(s): D. May and S. F. Reddaway
Source: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, Vol. 326, No. 1591, Solving Scientific Problems on Multiprocessors (Sep. 26,
1988), pp. 377-393
Published by: The Royal Society
Stable URL: http://www.jstor.org/stable/38053
Accessed: 11/04/2010 06:24

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=rsl.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

http://www.jstor.org

http://www.jstor.org/stable/38053?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=rsl

Phi. Trans. R. Soc. Lend. A 326, 377-393 (1988) [377]
Printed in Great Britain

The influence of VLSI technology on computer architecture

BY D. MAY

INMOS Limited, 100 Azbec West, Almondsbury, Bristol BS12 4SQ, U.K.

Very-large-scale integration (VLSI) offers new opportunities in computer architecture.
The cost of a processor has been reduced to that of a few thousand bytes of memory,
with the result that parallel computers can be constructed as easily and economically
as their sequential predecessors. In particular, a parallel computer constructed by
replication of a standard computing element is well suited to the mass-production
economics of the technology.

The emergence of the new parallel computers has stimulated the development of
new programming languages and algorithms. One example is the OCCAM language
which has been designed to enable applications to be expressed in a form suitable for
execution on a variety of parallel architectures. Further developments in language
and architecture will enable processing resources to be allocated and deallocated as
freely as memory, giving rise to some hope that users of general-purpose parallel
computers will be freed from the current need to design algorithms to suit specific
architectures.

1. THE TECHNOLOGY

Current technology allows a high-performance computer to be implemented on a single chip.
One example is the Inmos IMS T800 transputer (Homewood et al. I987), which incorporates
two processors (central processor and floating-point processor), 4 Kbytes of RAM (random
access read-write memory) and a communications system on a single chip of about I cm2. The

floating-point performance of this device is over 1 megaflop (million floating point operations
per second).

For the T800 and its some of its major functional blocks, the dimensions in square millimetres
are:

T800, 93.0; central processor, 12.0; communications link, 2.5; floating point unit, 17.5;
4 Kbytes memory, 12.0; arithmetic logic unit, 0.6; 70 Kbits microcode, 4.5.

Semiconductor manufacturing processes evolve very rapidly, and within a year it will be

possible to manufacture devices like the IMS T800 in less than half the area. In practice,
however, the improvements in the manufacturing process are used to increase the capability
of the device.

Like all VLSI devices, a transputer is ultimately assembled from connections in metal and

polysilicon, transistor and 'contacts' which connect metal to polysilicon. The IMS T800 is
manufactured with a complementary metal oxide silicon (CMos) process similar to that used in
the manufacture of 64 Kbit static RAMS. For the transputer manufacturing process, the
dimensions of transistors and contacts in square micrometres are: transistor, 14; contact, 36.
Metal tracks are 2.75 pm wide, polysilicon tracks 1,75 pm. However, they cannot be placed
close together; buses are formed by placing metal (or polysilicon) tracks on a pitch of 6 pm. It
can be seen from these figures that the majority of the silicon area is used for interconnect.

Transistors are the smallest components, for example, 13700 transistors occupy the same area
as 1 mm of a 32-bit-wide bus. The cost of interconnection off the chip is large, a 'pad' to which
a wire is bonded in the final stages of manufacturing occupies 0.125 mm2 and so to transmit
a 32-bit-wide bus off-chip requires 4 mm2 of pads.

It can be seen from the above figures that interconnections consume a relatively large silicon
area. Consequently, considerable effort is being expended to reduce the cost of interconnect in
new manufacturing processes. This can be done with smaller geometries or by adding extra
layers of interconnect (or both). There are now a number of processes with two metal
interconnect levels, and development of three- and four-layer processes is in hand. New
processes will offer substantially smaller geometries in both metal width and pitch. However,
reducing the metal width increases its resistivity in proportion, and reducing the pitch increases
the capacitance with the result that the interconnect becomes slower but the transistors become
faster. The speed can, to some extent, be increased but only at the cost of more power
consumption and larger signal drivers occupying more area.

2. VLSI ARCHITECTURE

VLSI technology has significant implications for computer architecture:

(1) processing is cheap; extra processor power should be used to save interconnect and to
save memory;

(2) locality of operation is essential.
For example, the fact that the processor occupies the same space as a 4 Kbyte memory suggests
that, provided that performance is maintained, it is worth using a processor wherever it will
save more than 4 Kbytes of memory (for example, by compressing data or by computing values
when needed instead of storing them). Similarly, it is often worth encoding data and
transmitting it serially rather than transmitting it in parallel.

The need for locality arises because of the high cost in area and delay of moving data
between chips. However, locality is also becoming important even within a single chip. For the
manufacturing process described above, a transistor can switch in about the same time as a
signal will travel along I mm of metal. It is therefore important that the various functional
units of a processor (registers, arithmetic logic units and control logic) are physically close
together so that data can be moved rapidly between them. Perhaps more important is the need
to distribute clock signals to synchronize the various components of the processor. As
mentioned above, the effect of reducing the dimensions of the manufacturing process is to
further decrease the signal speed in relation to the switching speed. The inevitable conclusion
is that an architecture based on a network of simple computers operating independently and
communicating data as needed is ideally matched to the technology. However, such a radical
change of architecture cannot be hidden from the programmer; new languages and algorithms
are needed to exploit such machines.

3. OCCAM

The OCCAM programming language (Inmos I988) enables an application to be described as
a collection of processes which operate concurrently and communicate through channels. In
such a description, each OCCAM process describes the behaviour of one component of the
implementation, and each channel describes a connection between components.

D. MAY 378

VLSI TECHNOLOGY

The design of OCCAM allows the components and their connections to be implemented in
many different ways. This allows the choice of implementation technique to be chosen to suit
available technology, to optimize performance, or to minimize cost.

OCCAM has proved useful in many application areas. It can be efficiently implemented on
almost any computer and is being used in applications ranging from single processor embedded
control systems to concurrent supercomputers. OCCAM programs can also be directly compiled
and implemented as specialized VLSI devices.

The main design objective of OCCAM was to provide a language which could be ?directly
implemented by a network of processing elements, and could directly express concurrent

algorithms. In many applications OCCAM is used as an assembly language; there is a one-to-one
relation between OCCAM processes and processing elements, and between OCCAM channels and
links between processing elements.

A further important objective in the design of OCCAM was to use the same concurrent

programming techniques both for a single computer and for a network of computers. In

practice, this meant that the choice of features in OCCAM was partly determined by the need for
an efficient distributed implementation. Once this had been achieved, only simple modifications
were needed to ensure an efficient implementation of concurrency on a single sequential
computer. This approach to the design of OCCAM perhaps explains some of the differences
between OCCAM and other 'concurrent' languages.

3.1. Locality
Almost every operation performed by a process involves access to a variable, and so it is

desirable to provide each processing element with local memory in the same VLSI device.
The speed of communication between electronic devices is optimized by the use of one

directional signal wires, each connecting only two devices. This provides local communication
between pairs of devices.

OCCAM can express the locality of processing, in that each process has local variables; it can

express locality of communication in that each channel connects only two processes.

3.2. The OCCAM primitives

OCCAM programs are built from three primitive processes:

v = e assign expression e to variable v,
c ! e output expression e to channel c,
c ? v input variable v from channel c.

The primitive processes are combined to form constructs:

SEQ sequence,
IF conditional,
WHILE loop,

PAR parallel,
ALT alternative.

A construct is itself a process, and may be used as a component of another construct; in other

words, OCCAM is a hierarchical block-structured language.

379

380 D. MAY

Conventional sequential programs can be expressed with variables and assignments,
combined in sequential and conditional and loop constructs. The order of expression
evaluation is unimportant, as there are no side effects and operators always yield a value.

Concurrent programs make use of channels, inputs and outputs, combined by parallel and
alternative constructs.

The definition and use of OCCAM procedures follows ALGOL-like scope rules, with channel,
variable and value parameters. The body of an OCCAM procedure may be any process,
sequential or parallel.]

A very simple example of an OCCAM program is the buffer process below.

WHILE TRUE
VAR ch:

SEQ
in ? ch
out ! ch

Indentation is used to indicate program structure. The buffer consists of an endless loop, first
setting the variable ch to a value from the channel in, and then outputting the
value of ch to the channel out. The variable ch is declared by VAR oh.

3.3. The parallel construct

The components of a parallel construct may not share access to variables, and communicate
only through channels. Each channel provides one-way communication between two
components; one component may only output to the channel and the other may only input
from it. These rules are checked by the compiler.

The parallel construct specifies that the component processes are 'executed together'. This
means that the primitive components may be interleaved in any order. More formally,

PAR SEQ
SEQ = x:=e

x: e PAR

P P

Q Q

so that the initial assignments of two concurrent processes may be executed in sequence until
both processes start with an input or output. If one process starts with an input on channel
c, and the other an output on the same channel c, communication takes place:

PAR SEQ
SEQ = x:=e

c !e PAR
P P

SEQ Q
c ? x
Q

VLSI TECHNOLOGY

The above rule states that communication can be thought of as a distributed assignment. Two

examples of the parallel construct are shown below.

CHAN c: VAR chl:
PAR VAR ch2:

WHILE TRUE SEQ
VAR ch: in ? chl

SEQ WHILE TRUE
in ? ch SEQ
c ch PAR

WHILE TRUE in ? ch2
VAR ch: out ! chl

SEQ PAR
c ? ch in ? chl
out ! ch ot ! ch2

The first consists of two concurrent versions of the previous example, joined by a channel to
form a 'double buffer'. The second is perhaps a more conventional version. As 'black boxes',
each with an input and an output channel, the behaviour of these two programs is identical;
only their internals differ.

3.4. Synchronized communication

Synchronized, unbuffered, communication greatly simplifies programming, and can be

efficiently implemented. In fact, it corresponds directly to the conventions of self-timed

signalling (Mead & Conway I980). Unbuffered communication eliminates the need for

message buffers and queues. Synchronized communication prevents accidental loss of data
arising from programming errors. In an unsynchronized scheme, failure to acknowledge data
often results in a program which is sensitive to scheduling and timing effects.

Synchronized communication requires that one process must wait for the other. However,
a process which requires to continue processing while communicating can easily be written:

PAR
c !x
p

3.5. The alternative construct

In OCCAM programs, it is sometimes necessary for a process to input from any one of several
other concurrent processes. Consequently, OCCAM includes an alternative construct similar to
that of CSP (Hoare 1978). As in CSP, each component of the alternative starts with a guard;
an input, possibly accompanied by a boolean expression. From an implementation point of

view, the alternative has the advantage that it can be implemented either 'busily' by a channel
test or by a 'non-busy' scheme. The alternative enjoys a number of useful semantic properties
more fully discussed in Roscoe & Hoare (I986); in particular, the formal relation between

parallel and alternative is shown below:

381

D. MAY

ALT
c ? x

PAR
PAR P

SEQ SEQ
c?x d?y
P = Q

SEQ d ? y
d ? y PAR

Q Q
SEQ

c ? x
P

This equivalence states that if two concurrent processes are both ready to input (communicate)
on different channels, then either input (communication) may be performed first.

A simple example of the alternative is shown below; this is a 'multiplexor':

WHILE TRUE
ALT

inl ? ch
out ! ch

in2 ? ch
out ! ch

The multiplexor inputs from either channel inl or channel in2. It then outputs the
value it has just input.

3.6. Channels and hierarchical decomposition
An important feature of OCCAM is the ability to successively decompose a process into

concurrent component processes. This is the main reason for the use of named communication
channels in OCCAM. Once a named channel is established between two processes, neither process
need have any knowledge of the internal details of the other. Indeed, the internal structure of
each process can change during execution of the program.

The parallel construct, together with named channels provides for decomposition of an

application into a hierarchy of communicating processes, enabling OCCAM to be applied to
large-scale applications.

3.7. Future developments

The initial version of OCCAM was a very simple language including only integer data types
and one-dimensional arrays. In view of the need to provide a concurrent language suitable for
a wide range of numerical applications, a derivative of OCCAM has been developed, known as
OCCAM2. The OCCAM2 language provides the concurrency features of OCCAM together with the
data types appropriate for numerical applications.

Current implementations of OCCAM assume explicit control over the physical allocation of

processes to processors and channels to interprocessor links. Allocation of physical resources is
determined by the compiler. This allows an extremely efficient implementation of concurrency

382

VLSI TECHNOLOGY

and communication. However, it would be natural to remove these restrictions, especially if
further hardware support could be used to make dynamic resource allocation fast. The result
would be a language supporting concurrency and recursion, together with recursively defined
data types. This would make OCCAM more suitable for concurrent symbolic application
areas.

4. THE TRANSPUTER CONCEPT

VLSI technology allows a large number of identical devices to be manufactured cheaply. For
this reason, it is attractive to implement an OCCAM program with a number of identical

components, each programmed with the appropriate OCCAM process. A transputer (see, for

example Homewood et al. I987) is such a component.
A transputer is a single VLSI device with memory, processor and communications links for

direct connection to other transputers. Concurrent systems can be constructed from a collection
of transputers which operate concurrently and communicate through links.

The transputer can therefore be used as a building block for concurrent processing systems,
which OCCAM as the associated design formalism.

4.1. Transputer architecture

An important property of VLSI technology is that communication between devices is very
much slower than communication on the same device. In a computer, almost every operation
that the processor performs involves the use of memory. A transputer therefore includes both

processor and memory in the same integrated-circuit device.
In any system constructed from integrated circuit devices, much of the physical bulk arises

from connections between devices. The size of the package for an integrated circuit is
determined more by the number of connection pins than by the size of the device itself. In
addition, connections between devices provided by paths on a circuit board consume a
considerable amount of space.

The speed of communication between electronic devices is optimized by the use of one-
directional signal wires, each connecting two devices. If many devices are connected by a
shared bus, electrical problems of driving the bus require that the speed is reduced. Also,
additional control logic and wiring is required to control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial
communication links for direct connection to other transputers.

4.2. Transputer systems
A transputer system consists of a number of interconnected transputers, each executing an

OCCAM process and communicating with other transputers. As a process executed by a

transputer may itself consist of a number of concurrent processes the transputer has to support
the OCCAM programming model internally. Within a transputer, concurrent processing is

implemented by sharing the processor time between the concurrent processes.
The most effective implementation of simple programs by a programmable computer is

provided by a sequential processor. Consequently, the transputer processor is fairly
conventional, except that additional hardware and microcode support the OCCAM model of
concurrent processing.

383

3 D. MAY

4.3. Sequential processing
The design of the transputer processor exploits the availability of fast on-chip memory by

having only a small number of registers; six registers are used in the execution of a sequential
process. The small number of registers, together with the simplicity of the instruction set
enables the processor to have relatively simple (and fast) data-paths and control logic.

4.4. Support for concurrency

The processor provides efficient support for the OCCAM model of concurrency and
communication. It has a microcoded scheduler which enables any number of concurrent

processes to be executed together, sharing the processor time. This removes the need for a
software kernel. The processor does not need to support the dynamic allocation of storage as
the OCCAM compiler is able to perform the allocation of space to concurrent processes.

At any time, a concurrent process may be either

active: being executed,
on a list waiting to be executed;

or inactive: ready to input,
ready to output,
waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor
time.

The active processes waiting to be executed are held on a list. This is a linked list of process
workspaces, implemented with two registers, one of which points to the first process on the list,
the other to the last.

A process is executed until it is unable to proceed because it is waiting to input or output,
or waiting for the timer. Whenever a process is unable to proceed, its instruction pointer is
saved in its workspace and the next process is taken from the list. Actual process switch times
are very small as little state needs to be saved; it is not necessary to save the evaluation stack
on rescheduling.

4.5. Communications

Communication between processes is achieved by means of channels. OCCAM communication
is point-to-point, synchronized and unbuffered. As a result, a channel needs no process queue,
no message queue and no message buffer.

A channel between two processes executing on the same transputer is implemented by a

single word in memory; a channel between processes executing on different transputers is

implemented by point-to-point links. The processor provides a number of operations to support
message passing, the most important being 'input message' and 'output message'.

A process performs an input or output by loading the evaluation stack with a pointer to a

message, the address of a channel, and a count of the number of bytes to be transferred, and
then executing an input message or an output message instruction.

The input message and output message use the address of the channel to determine whether
the channel is internal or external. This means that the same instruction sequence can be used
for both internal and external channels, allowing a process to be written and compiled without

knowledge of where its channels are connected.

384

VLSI TECHNOLOGY

As in the OCCAM model, communication takes place when both the inputting and outputting
processes are ready. Consequently, the process which first becomes ready must wait until the
second one is also ready.

4.6. Internal channel communication

At any time, an internal channel (a single word in memory) either holds the identity of a

process, or holds the special value 'empty'. The channel is initialized to 'empty' before it is
used.

When a message is passed by the channel, the identity of the first process to become ready
is stored in the channel, and the processor starts to execute the next process from the scheduling
list. When the second process to use the channel becomes ready, the message is copied, the

waiting process is added to the scheduling list, and the channel reset is its initial state. It does
not matter whether the inputting or the outputting process becomes ready first.

4.7. External channel communication

When a message is passed via an external channel, the processor delegates to an autonomous
link interface the job of transferring the message and deschedules the process. When the

message has been transferred, the link interface causes the processor to reschedule the waiting
process. This allows the processor to continue the execution of other processes while the
external message transfer is taking place.

4.8. Intertransputer links

To provide synchronized communication, each message must be acknowledged. Con-

sequently, a link requires at least one signal wire in each direction.
A link between two transputers is implemented by connecting a link interface on one

transputer to a link interface on the other transputer by two one-directional signal lines, along
which data is transmitted serially.

The two signal wires of the link can be used to provide two OCCAM channels, one in each
direction. This requires a simple protocol. Each signal line carries data and control
information.

The link protocol provides the synchronized communication of OCCAM. The use of a protocol
providing for the transmission of an arbitrary sequence of bytes allows transputers of different

wordlength to be connected.
Each message is transmitted as a sequence of single-byte communications, requiring only the

presence of a single-byte buffer in the receiving transputer to ensure that no information is lost.
Each byte is transmitted as a start bit, followed by a one bit, followed by the eight data bits,
followed by a stop bit. After transmitting a data byte, the sender waits until an acknowledge-
ment is received; this consists of a start bit followed by a zero bit. The acknowledgement
signifies both that a process was able to receive the acknowledged byte, and that the receiving
link is able to receive another byte. The sending link reschedules the sending process only after
the acknowledgement for the final byte of the message has been received.

Data bytes and acknowledges are multiplexed down each signal line. An acknowledgement
is transmitted as soon as reception of a data byte starts (if there is room to buffer another one).
Consequently, transmission may be continuous, with no delays between data bytes.

385

4.9. Conclusions

The transputer demonstrates that the concurrent processing features of OCCAM can be

efficiently implemented by a small, simple and fast processor. The time taken for a process to
start and terminate is about 1.5 ps; a small enough overhead to allow processes consisting of

only a few statements. An interprocess communication has a fixed overhead of about 1.5 gs,
and also requires time to transfer the message. Messages are transferred at up to 40 megabytes
per second on-chip, and up to 1.5 megabytes per second through a link.

Experience with OCCAM and the transputer has shown that many applications naturally
decompose into a large number of fairly simple processes. Once an application has been
described in OCCAM, a variety of implementations are possible. In particular, the use of OCCAM

together with the transputer enables the designer to exploit the performance and economics of
VLSI technology.

The transputer therefore has two important uses. Firstly it provides a new system
'building block', which enables OCCAM to be used as a design formalism. In this role, OCCAM
serves both as a system-description language and a programming language. Secondly, OCCAM
and the transputer can be used for prototyping highly concurrent systems in which the
individual processes are ultimately intended to be implemented by dedicated hardware.

5. PARADIGMS FOR MASSIVE CONCURRENCY

Many uses of concurrency are in embedded applications where the programmer requires
explicit control over the physical resources of the machine. However, in general-purpose
concurrent computing, the programmer is primarily concerned with introducing concurrency
in the interests of increased performance. Relatively simple program structures are adequate
for many applications. Indeed, where large numbers of processors are to be used, simple regular
structures are essential.

The major concern of the programmer is to express an application in a form in which

(1) there are enough processes to keep all of the processors busy;
(2) the amount of computation performed by a process each time it communicates is large

enough to ensure that the communication cost is insignificant.
To do this, it may be necessary to hold copies of programs and data in every processing node;

VLSI technology makes this attractive because of the high relative cost of communication.
Three important paradigms are:

(1) pipelines, in which data flows through a series of nodes, each node making a
transformation of the incoming data;

(2) farms, in which a controller continually farms out tasks to a large number of identical

processing nodes; as a node completes a task, it is given a new one;
(3) arrays, in which a problem is decomposed into a regular array and each component of

the array is mapped onto a corresponding processor.
The emergence of these paradigms suggests that new and useful concurrent programming

languages could be designed. One possibility is a scientific programming language
incorporating constructs such as pipes, farms and arrays. Besides being relatively easy to use,
such languages offer the possibility of automatic resource allocation and therefore the

possibility of portable subroutine libraries.
A general-purpose concurrent computer must support such paradigms efficiently.

D. MAY 386

VLSI TECHNOLOGY

6. THE CONCURRENT COMPUTER

Several 'general-purpose' concurrent computers constructed as a network of sequential
processors are now available or under development. At the present level of VLSI technology we
can implement in the same area of silicon the following components of a computer: a 10 Mips
(million instructions per second) processor; a 4 Kbytes of memory; a 10 megabyte per second
communications system.

Consequently, using the same silicon area, we can construct a single 10 Mips (million
instructions per second) processor with 4 megabytes of memory (a conventional sequential
computer) or a 10000 Mips computer with 2 megabytes of memory. Both machines would

require about 1000 VLSI devices, and so are quite small computers.
The problem is to choose the correct ratio of memory to processors and to construct a

computer with many processing nodes each with a small amount of memory, interconnected
in such a way that it can be applied to practical problems. For small numbers of processing
nodes, reconfiguration switches can be used to avoid the need to chose a fixed configuration.

For large networks, reconfiguration is not very practical. Further, there is an increasing
interest in programs which dynamically allocate processing resources. This makes a fixed

configuration with software (or hardware) providing message routing through the processing
node attractive. It is therefore to be expected that future hardware developments will provide
message routing systems; one example is the torus routing chip (Dally I986).

A number of different network structures have been proposed for concurrent computers:
pipeline; array (D, 2D, 3D,...); hypercube; toroidal surface; shuffle.

These structures vary in three important respects: ability to extend; ability to implement on
silicon (in two dimensions); cost of non-local communication.

Pipelines and simple (two dimensional) arrays can be easily implemented or extended.

Arrays (and hypercubes) become progressively more difficult to implement as the dimension

increases, with much space taken by connections which need to cross over. However, 1000 or
so processing elements can be connected in this way.

One difficulty with the hypercube structure is that the number of links provided at each node
must be at least the dimension of the hypercube. This means that a standard component (which
has a fixed number of links) cannot be used to implement an arbitrarily extensible array. An
alternative structure which avoids this problem is obtained by implementing each node of the

hypercube with a ring of transputers; this structure is known as 'cube-connected cycles'.
The cost of non-local communication, which arises when two nodes need to communicate via

intermediate nodes, varies widely. A one-dimensional array is obviously the worst. It may
appear that a hypercube provides the best solution, and to understand why this may not be
so, it is necessary to examine how a hypercube configuration is implemented in practice.

Suppose the hypercube is being implemented using a two-dimensional interconnect such as
metal tracks on silicon. When two order-n hypercubes are connected to form an order-(n + 1)
hypercube, 2' wires are needed to connect the corresponding nodes in the two order n cubes.
These wires are not short; their length is the width of the order n cube, at least 22n x the width
of a single node. Consequently, the total area taken by the connections is of order 22" x 2". As
the order, n, of the hypercube grows:

(1) the size of the hypercube interconnect grows faster than 22" x 2";
(2) the diameter, in terms of length of interconnect, grows faster than 2".-

Of course, if the hypercube is implemented by using a three-dimensional interconnect the

387

Vol. 326. A 28

388 D. MAY

results are slightly better, but the situation remains fundamentally unchanged; a large
hypercube is a relatively expensive interconnect. This is an important conclusion as most of the
interconnection networks used for concurrent computers are isomorphic to hypercubes.

It appears that arrays of low (two or three) dimension can provide lower latency
communications with much smaller interconnects, even for very large numbers of processing
nodes (1000-100000). This is primarily because no long wires are needed to implement them
with a two-dimensional interconnect (Dally 1986).

7. FUTURE DEVELOPMENTS

Existing transputers are designed to provide a very efficient implementation of concurrent

processing and communication. Allocation of processors and memory is determined at compile-
time to minimize runtime overheads. As a result, it is reasonable for a process to perform a

simple operation, a few statements, between communications with other processes: static
allocation allows fine grain parallelism to be used efficiently.

For many applications, it would be preferable to provide more dynamic allocation of

processing and memory resources. This would, for example, enable concurrency to be used

together with recursion to express algorithms which dynamically allocate and deallocate

processors in the same way that a sequential program dynamically allocates and deallocates

memory. This would raise the level of programming to the point at which it would be necessary
to specify only where 'real' concurrency is to be used. Inevitably, the increased cost of the
concurrency implementation would dictate that a process should perform a larger amount of

processing between communications; dynamic allocation requires coarse grain parallelism.
Some of the overhead can be recovered by building more capabilities into the processing

node. The most important of these is the provision of message through-routing. This will enable
software structures to be mapped onto a fixed processor configuration such as a two- or three-
dimensional array as described above.

7.1. Technology developments

The development of the next level of static RAM technology (256 Kbit) is well advanced, and
by 1990 it is expected that 1 megabit static RAMS will be in production. By this time 4 megabit
dynamic RAMS will be available.

This means that a transputer could be equipped with 100 Kbytes of on-chip RAM and a
processor at least twice as fast as the present one. Of course there is also the possibility of
considerably more on-chip processing and communication capability than is currently being
achieved.

With scaling to smaller geometries comes an increase in speed. Present transputers
achieve processor cycle times and memory cycle times of about 50 ns. The 1990 technology is
expected to reduce this to about 20 ns. Notice that the switching time scales linearly, but the
number of devices scales quadratically; another important reason for the increased use of
concurrency.

7.2. Memory
The possibility of incorporating large memories opens up interesting architectural

possibilities which are only just beginning to be explored. For example, an on-chip RAM can

VLSI TECHNOLOGY

provide very high data rates because it can be accessed in rows (for example, 256 bit 'words').
It is also expected that external (commodity) RAMS Will provide for access to blocks of memory
rather than just words. The access to successive (or in-block) locations will be limited by the
rate at which data can be sent off chip, not by the speed of the memory itself.

The access time of an on-chip memory will continue to be about two to four times faster than
the access time of an off-chip one. This means that sufficient on-chip memory should be

provided for the frequently accessed process workspaces and stacks, and block transfer should
be used to transfer data between on-chip and off-chip memory.

7.3. Processing node architecture

The possibility of wide (256 bit pages) access to the internal memory allows several pro-
cessors to share the same (internal) memory. If each processor is equipped with a very small
data and instruction cache, most accesses to the internal memory can take place in pages. This
architecture would allow, for example, a communications processor to transfer application-
specific data structures through communication links while the other processor(s) perform the

computation associated with the node.
The processor itself can be provided with additional microcoded operation at very little cost.

In practice, the major problem is to identify generally useful operations. However, support for

dynamic storage allocation to permit recursive, concurrent programs and their associated user
defined data types is a logical step.

7.4. Communications architecture

One important use of the extra silicon area available within a processing node is the

provision of hardware for global message routing. As a message arrives (or is generated locally),
its destination address is decoded and, if necessary, the message is forwarded via the

appropriate communications link.
Two techniques can be used for message routing. In packet routing, a message is completely

input before being output. This does not seem to be a very appropriate scheme; it introduces
a significant delay through the node and also requires memory space within intermediate nodes
to store the packets waiting to be output. A better scheme is 'wormhole' routing (Dally 1986)
in which the address is input, the destination link is determined and the message forwarded as
soon as the destination link is not busy.

Another possibility is the provision of hardware support for global memory addressing, even
in a distributed memory multiprocessor. Non-local addresses can be decoded in hardware, and
read and write operations translated into messages to remote processing nodes. These are
routed in the same way as normal messages. (It might seem that the provision of a global
address space removes the need for process communication. However, process communication
cannot be performed efficiently with only memory-access operations; it must be possible to
cause a process to be scheduled when a message arrives.)

The result of these developments is that the programmer will not need to adapt his programs
to a particular system structure, nor will reconfiguration be needed. However, it will still be

important to preserve locality in mapping algorithms onto the processor array. This is an

important area for future language and compiler development.

28-2

389

390 D. MAY

7.5. Monitoring
As the technology allows several processors to be combined onto the same chip, it is

inevitable that some processors will have no direct connections to any pins; their behaviour will
not be observable from outside the chip. Consequently, facilities for testing and monitoring a

processing node will be built into it, and the most convenient way to do this is to include a
communications link specifically for the purpose.

The monitoring of a large multiprocessor is a computationally intensive task. Monitoring
information generated at many nodes in the system must be processed and useful information
extracted in real time. By using a standard communication link on each node for this purpose
a multiprocessor monitoring array similar to but smaller than the processing array can be used.
This monitoring array can be programmed in exacty the same way as the processing array.

7.6. The input-output system
Future computer input and output will require specialized concurrent processors. These will

perform operations such as image analysis, graphics, animation, speech and public key
encryption.

These functions can be implemented as either fixed configurations of standard components
such as transputers, or as specialized VLSI systems.

The construction of tools for the design and programming of systems constructed from
standard components and specialized silicon devices is the subject of current research. Recent
work has shown that a communicating process language such as OCCAM is suitable as a source
language for silicon compilation (May et al. I987). This approach allows a wide range of
concurrent algorithms to be implemented directly in VLSI, and allows reliable migration of
algorithms from software into specialized hardware as performance requirements increase. It
also allows a wide range of program development and verification tools to be used for VLSI
designs.

These tools are essential to realize the potential of the technology: a complete concurrent

computer including input and output on a single chip.

8. EVOLUTION OF CONVENTIONAL ARCHITECTURES

In view of the development of the technology, certain changes in conventional architecture
seem inevitable.

8.1. Sequential architectures

Firstly, manufacturers of conventional microprocessors will have no difficulty in incor-

porating large (for example, 64 Kbyte) cache memories on the same chip as the processor.
There will be a strong incentive to do so in view of the difference in speed between internal and
external memory access.

It seems likely that virtual memory will continue to be used: there will continue to be a

significant difference in speed between the static RAMS, dynamic RAMS, discs, etc. Consequently,
it seems likely that conventional microprocessor systems will combine a processor, cache and

memory manager on a single VLSI chip, with external main memory provided by high-speed
static or dynamic RAMS and secondary memory provided by dynamic RAMS or discs. As time

VLSI TECHNOLOGY

progresses, the high-speed on-chip caches will become so large as to remove the need for
anything except secondary memory external to the device. As the transfer of data between

secondary and primary memory involves blocks rather than randomly accessed words, the
external memory interfaces can be optimized to this purpose; they can become more serial.
This reduces pin-count and cost on both memory devices and processors.

Processor designs will continue to become more ambitious. Even the 'reduced instruction
set' computers (RISC) now in design involve complex pipelining that uses large areas of silicon
to produce small gains in performance improvement. Processors will normally include floating-
point arithmetic and even pipelined vector floating point. As noted above, on-chip memory
can provide data at the high speeds needed to support pipelined operations.

Inevitably, as an entire sequential computer will be easily implementable on a single chip,
sequential architectures will evolve into concurrent architectures. This is already happening,
with machines consisting of a small number of processors (up to 20) sharing a common bus to
which a global memory is connected. Contention for access to the global memory is alleviated
in one of two ways:

(1) by providing local cache memory on each processor and ensuring cache consistency (at
considerable hardware cost);

(2) by providing local memory and using the global memory only for (explicit) message
passing (this appears to the user rather like a distributed memory multiprocessor).

The presence of a global address space makes these machines appear easier to program than
a truly distributed memory multiprocessor (such as a hypercube or transputer-based
machine). However, in practice it is necessary to observe very similar principles, ensuring local

operation wherever possible.
Communication involves synchronization to tell the receiving processor that data has

arrived or to tell the sending processor that data has been taken. This cannot be efficiently
implemented by a shared memory alone; an additional interconnect between the processors is
needed. It is also necessary to incorporate microcode and hardware support for process
scheduling and communication; without it the overheads of concurrent processing are
excessive.

8.2. Array processing

Many applications can make use of a very large number of simple procesing elements

operating in parallel. One example is image processing (or low-level vision). These applications
have been implemented by SIMD (single instruction multiple data) machines such as the DAP

(Distributed Array Processor).
The SIMD machine was conceived when a control unit was large and expensive in relation

to an ALU (arithmetic logic unit) and a few registers, and when the speed of the physical
interconnect between control unit and ALU did not limit performance. It consists of a large
synchronous array of arithmetic logic units controlled by a single microprogram controller
which synchronously broadcasts instructions through the array.

In VLSI technology, a control unit and a program store is small; no more than the connection

points needed to receive the wide instructions from the control unit. Furthermore, current sIMD
machines are becoming limited in speed by the time taken to broadcast instructions through
a large processor array. This problem is getting worse.

It may be better, therefore, to use a MIMD (multiple instruction multiple data) machine based

391

392 D. MAY

on a very simple processing node. Such a machine could use the same architecture and
interconnect as the more general-purpose MIMD processing array. This would allow fine-grain
SIMD style processing to be combined with more general-purpose MIMD processing.

8.3. Vector processing

To have significant benefits a vector processor must be pipelined; this makes it much bigger
than a scalar processor. It must have:

(1) two operand access paths;
(2) two normalizers for source operands;
(3) additional floating point ALU for scalar product;
(4) further normalizer for result;

(5) more complex control logic.
One vector processor will therefore take the same silicon area as several scalar ones. Several
scalar processors sharing the same store are more flexible than a single vector processor, and
so a collection of scalar processors is preferable to a vector processor if both have the same

performance and use the same area. However, it is likely that there is a trade-off of flexibility
against efficiency. This issue is not well undertood and requires further investigation.

9. CONCLUSIONS.

A general-purpose concurrent computer will contain aprocessing array with many (between
10 and 1000000) similar processing elements. These will incorporate automatic message
routing providing low-latency communication between all the processing elements. The
elements will be connected in a fixed network.

The general-purpose processing array will be surrounded by input and output systems also

containing many processing elements. These will be more specialized, consisting of general-
purpose devices connected in specialized configurations or, alternatively, of specialized
devices.

The concept of communicating processes can provide an architectural basis for both general-
purpose and specialized parts of the computer. Languages based on communicating processes,
such as OCCAM, serve as the system language for these concurrent computers. Experience gained
from the application of these machines will form the basis for higher-level user languages.

REFERENCES

Dally, W. J. I986 A VLSI architecture for concurrent data structures. California Institute of Technology.
Hoare, C. A. R. 1978 Communicating sequential processes. Communs ACM 21 (8), 666.
Inmos Limited i988 Occam2 reference manual. New York: Prentice-Hall.
May, D., Shepherd, R. & Keane, C. 1987 Communicating process architecture, in future parallel computers (ed. P.

Trealeaven & M. Vannesch). New York: Springer-Verlag.
Homewood, M., May, D., Shepherd, D. & Shepherd, R. 1987 The IMS T800 transputer. IEEE Micro. 7(5),

10-26.
Mead, C. A. & Conway, L. A. 1980 Introduction to VLSI Systems. New York: Addison Wesley.
Roscoe, A. W. & Hoare, C. A. R. 1986 The laws of Occam Programming. Programming Research Group, Oxford

University.

VLSI TECHNOLOGY

Discussion

S. F. REDDAWAY (3 Woodforde Close, Ashwell, Baldock, Hertfordshire). I would like to respond to
Dr May's critical comments on SIMD architecture in three ways.

(1) The best way tojudge a machine is by results. There are many impressive demonstrations
that can be done on the SIMD machine.

(2) The instruction time of that machine is 100 nsec, rather than the 500 or 1000 nsec
mentioned by Dr May.

(3) If MIMD hardware is used to do SIMD processing the overheads are greater than when
SIMD hardware is used. These are in terms of hardware cost, software time (for example dealing
with MIMD communication) and awkward programming if the language used does not support
array operations.

D. MAY. I agree that the best way to measure a machine is by results. However, I am primarily
interested in the most cost-effective way to achieve the results in a given technology. The

question to be resolved, therefore is: can the operations supported by a SIMD machine be

implemented in less silicon area with a MIMD machine? (In making this comparison I would

expect both machines to be programmed in a language with array operations.)
The additional hardware cost referred to by Dr Reddaway is the cost of local control and

synchronization logic: this cost is small and is decreasing relative to the cost of broadcasting
high-speed global control and synchronization signals.

The additional software time referred to by Dr Reddaway is the time to perform local

synchronization: this time is decreasing relative to the time taken to perform global
synchronization. /

Consequently, I believe that the answer to the above question is (or will soon be) yes.

393

	Article Contents
	p.377
	p.378
	p.379
	p.380
	p.381
	p.382
	p.383
	p.384
	p.385
	p.386
	p.387
	p.388
	p.389
	p.390
	p.391
	p.392
	p.393

	Issue Table of Contents
	Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 326, No. 1591, Solving Scientific Problems on Multiprocessors (Sep. 26, 1988), pp. 355-500
	Front Matter [pp.355-355]
	Computational Models for Parallel Computers [pp.357-371]
	Optimally Universal Parallel Computers [pp.373-376]
	The Influence of VLSI Technology on Computer Architecture [and Discussion] [pp.377-393]
	Reconfigurable Transputer Networks: Practical Concurrent Computation [and Discussion] [pp.395-410]
	The Physical Structure of Concurrent Problems and Concurrent Computers [pp.411-444]
	Global Scientific and Engineering Simulations on Scalar, Vector and Parallel LCAP-Type Supercomputers [and Discussion] [pp.445-470]
	Very-High-Performance Multiple-Instruction Multiple-Data Applications [and Discussion] [pp.471-479]
	Scientific Computation on SIMD and MIMD Machines [pp.481-498]
	General Discussion [p.499]
	Back Matter

