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We introduce a permit-based adaptive control scheme for regulating traffic admission in high-speed connectionless data networks, such as 
the internet. Permits are awarded to potential customers arriving from outside and travel with them towards their destinations, where the 
permits are assigned to the local controllers. The controllers randomly distribute the permits among the entry gates at the nodes. Customers 
from outside are not allowed to enter the network unless there are permits available at the entrance node, thus the model is that of a 
closed queueing network if we model the dynamics of the permits. The goal is to find the permit distribution strategy that maximizes 
network performance subject to the restrictions of the network topology. A traffic balance approach is used to establish nonuniqueness of 
the optimal distribution probabilities for the decentralized operation. We exploit nonuniqueness introducing the concept of the automata 
actions, focusing on two strategies for the actions. For each strategy, a learning automaton is implemented at the controllers using the 
Kuhn-Tucker conditions for optimality. Our first learning algorithm converges weakly to a unique limit point, which is optimal, while 
the limit behaviour of our second learning algorithm may be suboptimal. We illustrate our results using computer simulations in order to 
compare the two strategies for the same network. 

1. INTRODUCTION 
Problems of congestion arise in communication and 
transportation networks when subjected to traffic overload 
unless adequate measures are put in place to control access 
to the network(s) in question. When congestion occurs, the 
effective throughput drops and delays become excessive. 
To mitigate such unwanted effects, flow controls have been 
employed and continue to be an active area of research as 
new and advanced networks are being deployed. In the case 
of low speed packet data communication networks, flow 
control has been exercised at a number of levels, refered to 
as hop level, entry-to-exit level, access level, and transport 
level. The different levels of flow control have different mo- 
tivations and techniques for implementation. For an early 
survey of flow controls in conventional data networks see 
Gerla and Kleinrock (1980). More recently, with the ad- 
vent of high-speed links such as in ATM networks and the 
high-speed internet, for example, the flow control problem 
is exacerbated due to the large delay bandwidth product, 
whereby significant amounts of traffic enters the network, 
before congestion can be detected at the source where a 
remedial action can be undertaken. This has resulted in the 
flow control problem being revisited by many telecommu- 
nication network researchers. 

In this paper we address the problem of access flow 
control for high-speed connectionless data networks, such 
as a high-speed internet, for example. While access flow 
controls have been implemented for virtual circuit-based 

data networks, the same cannot be said for connection- 
less networks such as the celebrated internet. An early 
proposal for control of connectionless networks due to 
Davies (1972) was never implemented, as it was found by 
simulation to be effective only in balanced traffic condi- 
tions. To avoid the shortcomings of the original approach, 
Mason and Gu ( 1 985a) suggested an adaptive version of the 
isarithmic scheme where learning automata are employed to 
actively control the permit distribution, thereby making the 
scheme adaptive to changing traffic conditions, and avoid- 
ing the problems of permit starvation and permit excess 
associated with the original scheme under unbalanced traffic 
conditions. Various extensions of this adaptive isarithmic 
flow control architecture have been reported for high speed 
data and ATM networks in Cotton and Mason (1994), Pel- 
letier et al. (1993), Liao and Mason (1993), Vazquez-Abad 
and Mason (1996), and Letourneau and Mason (1996). 

The work presented here has applications in a high-speed 
internet, where for example IP frames are independently 
routed over an underlying transport network such as SDH 
(Synchronous Digital Hierarchy). We consider a decentral- 
ized adaptive isarithmic control scheme for optimizing the 
performance in a high-speed packet switching network. We 
shall now briefly explain these terms. 

In a packet-switched data communications network, the 
data arrives at the network layer at the designated entry 
ports. Each "packet" consisist of a random number of bits 
(generally assumed to have a geometric distribution) and its 
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header contains information about its origin and intended 
destination. Normally, packets that enter the network will 
be processed at the entry port of each visited node, where 
its origin and destination are determined from the header, 
as well as the next node to visit in its path towards desti- 
nation. At each switch (node), the packet is placed in the 
outport queue leading to the next scheduled node. There are 
as many such queues as links from the given node. Rout- 
ing is usually fixed and determined uniquely by the destina- 
tion, as we shall assume here, although we have also applied 
our learning algorithms to admit dynamic routing (Pelletier 
et al. 1993). If the server at the outgoing link is free, the 
packet enters service (transmission), which takes an amount 
of time proportional to its length. Immediately afterwards, 
the packet is sent through a fiber-optic cable to cover the 
(assumed) long distance until it reaches the entry port of 
the next node in its trip. The term "high speed" refers to 
this modeling of the links, where we have explicitly added 
the propagation delay through the cables, assuming that rel- 
atively long distances must be covered from one node to 
another. When a packet arrives at the entry port of its own 
destination, no further routing is required and the packet is 
released from the network layer towards the user layers. 

Flow control refers to a strategy to control the incom- 
ing rate of arrivals into the network. If no flow control is 
present, then heavy traffic could, of course, cause bottle- 
necks and long end-to-end delays (total travel times). The 
word "isarithmic" has the Greek roots "iUov" (equal) and 
"cpi0y&6;" (number). As its name indicates, this strategy 
for flow control is based on the idea of always having a 
limited number of packets in the network. A fixed number 
W, called the "window size", is specified and W "permits" 
are distributed to the different nodes in the network. Pack- 
ets can only enter the network if there are permits avail- 
able at the entrance node. Once the packets are released to 
their destination, the corresponding permits are routed to- 
ward the source nodes randomly, according to a distribution 
probability vector. The control parameters for this strategy 
are thus the window size and the distribution probabilities. 
A potential application is the LAN interconnection, where 
the controllers are located at the gateway nodes and regulate 
the rate at which traffic enters the backbone network. The 
scheme optimizes the product of powers and achieves an ap- 
propriate compromise between throughput and delay, while 
being fair to users and Pareto efficient. The basic architec- 
ture was first proposed by Mason and Gu (1985) in the con- 
text of low-speed packet networks, where propagation delay 
did not play a significant role. In Muzumdar et al. (1991) a 
performance model was developed, the question of optimal 
window size was studied by Coderre (1989), and the effect 
of propagation delay was considered in Cotton and Mason 
(1994), where a centralized control architecture was used. 
The present work considers a decentralized single chain ar- 
chitecture of the distribution probabilities for a high-speed 
network, where the propagation delays are explicitly con- 
sidered. Any decentralized scheme that dynamically adjusts 
the control variables would have to concurrently update the 

window size and the distribution probabilities in a hierarchi- 
cal structure. For such a scheme to converge to the global 
optimal flow strategy, it is necessary to study first the con- 
vergence of the distribution probabilities for fixed window 
size, which is the subject of this work. 

Section 2 presents the mathematical formulation of the 
problem. We introduce the notation and a particular model 
is presented along with its solution. This tractable model is 
used later for validation of computer simulations, but our 
main results are robust and apply to more complex mod- 
els. Under isarithmic flow control (Davies 1972), the pro- 
cess is a closed network (Reiser 1979) and the optimization 
goal is the maximization of the steady-state average prod- 
uct of powers, for the fixed control process. We show that 
the problem is equivalent to the optimization problem for 
a centralized control strategy. The analytical results of this 
particular model are used in ?6 to assess the performance of 
our algorithms in the simulations performed. 

In ?3 we explore the relationship between the optimal 
throughputs and the corresponding decentralized control. 
This section is general and our results are independent of the 
model presented in ?2. We show that even if there is a unique 
set of optimal throughputs, there is nonuniqueness of the de- 
centralized optimal distribution probabilities. We then pro- 
pose several schemes introducing the concept of the actions 
at each controller, focusing on two different action strategies: 
the "(N - 1)-action scheme" and the "2-action scheme". 
These results are new and represent the first contribution of 
the paper. Because they are stated in a general framework, 
they can be applied to similar permit-routing problems out- 
side the telecommunications model studied here. 

In ?4 we describe the updating algorithms for the distri- 
bution probabilities as learning algorithms. Our scheme is 
decentralized: a controller at each node reads relevant infor- 
mation from the permits that it receives and sends it to other 
controllers. It then calls its automaton to update the distribu- 
tion probabilities and decides to which source node the per- 
mits are to be routed. We use the Kuhn-Tucker conditions 
for optimality in order to update the controls at the differ- 
ent automata. The proof of convergence of the algorithms 
is based on the weak convergence method of Kushner and 
Vaizquez-Abad (1996) and is included in the Appendix. This 
establishes asymptotic optimality of the (N - 1)-action strat- 
egy and allows us to identify the conditions for the 2-action 
strategy to be asymptotically optimal, which are not always 
satisfied. Before Vazquez-Abad and Mason (1996), no the- 
oretical proof of convergence was available for these types 
of algorithms, and we apply this technique to identify the be- 
haviour of the not-always optimal 2-action scheme. This is 
an important contribution of our paper, yielding the basis for 
the construction of the learning algorithms in practical cases. 

The updating scheme is quite general and can be im- 
plemented in other types of models. The feedback func- 
tions used for the updating require estimation of certain 
derivatives, which are in general unknown. In our sim- 
ulations, reported in ?5, we implemented an approxima- 
tion of these derivatives following Cotton and Mason 
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(1994), based on the tractable model of ?2 operating at 
the (known) optimal window size. We verified that the 
algorithms converge to the predicted limits. We believe 
it is interesting to note that in the convergence proofs the 
propagation delays are explicitly incorporated, and our 
simulation results indeed show that these do not alter the 
asymptotic behaviour of the algorithms, contrary to what 
many practicioners believe (in particular dealing with Satel- 
lite communications). 

2. PROBLEM FORMULATION 

In this section we introduce notation and present a 
tractable model where we can explicitly write the stationary 
distribution of the process. We then proceed to establish that 
given a decentralized model, there exists a unique equiva- 
lent central controller model, in the sense that the stationary 
distribution of the process is identical. The solution of the 
corresponding central optimization problem was given in 
Cotton and Mason (1994) and determines uniquely the 
optimal window size and throughputs of the decentralized 
model. However, as we shall see in ?3, even if the optimal 
throughputs are unique, the distribution probabilities are not. 

The Closed Network Model and Notation 

Throughout the paper we shall be using the notation intro- 
duced here, which has been condensed for easy reference in 
Appendix C. 

There are N nodes in the network, connected by trunks, 
which are directed links. Whenever there is a link between 
nodes i and j, there are two trunks with same capacity C1,j 
and distance Dij. Routing within the network is random: the 
probability that a node i routes a packet with destination d 
to node j is given r and EjrZ 1, for i : d. At each node 
o we model a source queue. The W permits are initially al- 
located among the N source queues. If an arrival from out- 
side occurs at node o when the source queue is empty, the 
incoming arrival is lost. Otherwise, the packet is awarded 
a permit and the packet-permit combination enters the net- 
work. Arrivals at node o of packets with destination d fol- 
low a Poisson process with rate Ao,d. The total size of the 
packet, permit and information header is exponentially dis- 
tributed with mean x for all origin destination pairs. Upon 
an arrival at a node i, the identity of the destination d is read 
from the header. If the packet has arrived at its destination, 
the permit is sent to the controller at node d. Otherwise, a 
node j is chosen with probability rd and the packet-permit 
combination is sent to the trunk (i,]a). After service com- 
pletion at a trunk (ij), the permit-packet must travel the 
distance Dij before arriving at node j. We thus model each 
trunk by two tandem queues, one in which the service time 
is exponentially distributed with rate CQi 1x and one (repre- 
senting the propagation) in which the delay is deterministic 
and equal to Pi,j = Di,j/c, where c is the speed of light. 
The function of the controller at each node d is to assign a 
source queue to which the permit is sent. We assume that 

Figure 1. Representation of the Isarithmic Flow Control. 
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permits travel along a higher level network from any con- 
troller d to a source queue j, and a delay pd is involved in 
this transmission. During the time that a permit is travelling 
through the controller loops towards its source queue, it is 
not available for packets. Let <d denote the probability that 
controller d distributes a permit to source queue i. Figure 1 
shows schematically the dynamics of such a system. 

Consider the process under fixed values of If and 
W. The network is described as a closed network with 
respect to the permits. Following the notation in Cotton and 
Mason (1994), we call 

F s: the set of source queues of permits, 
F0: the set of processor queues, 
Fp: the set of trunk delay queues with propagation 

delay pj,', 
Fc: the set of queues for the delays at the 

controllers with propagation delay P, 

where we have introduced the latter "queues" to model the 
fixed time trip of permits from any destination to the source 
nodes j c F, (see Figure 1). Permits at the source queues 
i F Fs obviously have a service every time that an arrival 
form outside demands access to the network, provided this 
queue is not empty; thus its service rate is jup = A, =ZdAid 

for i E F8. Processor queues have service rate ~,l / Cj, l/ 
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for (j, 1) Fa. To model the propagation delay, we intro- 
duce deterministic service queues (j, 1) E Fp with an infi- 
nite number of servers, which will accurately describe the 
passage through fiber-optics, and similarly, for each source 
queue j e FC, we introduce an infinite server, deterministic 
service time queue to represent the travel time pj from any 
destination node towards node j. 

Call si, ic'Fs, cj E Fc, and fj, the relative number of 
visits of a permit to source queue i, to controller queue j, and 
to the trunk (j, 1) respectively. Then the utilization factors 
for each queue are given by: 

s Si ps =-i, i C Fs 
Pi 

i I= , (j, (l) CFa, 

PJ'I =tfjIpj,i, (j, 1) cFp, 

pjc= jpjc, j EFc 

The Product Form Solution 
In a closed network (a network having a fixed number of 
customers travelling through) the service distributions and 
the topology determine completely the arrival processes at 
any given node, and it is customary to use the notation /M/l 
to represent nodes such as the source nodes, with one ex- 
ponential server. The BCMP (Basket, Chandy, Muntz, and 
Palacios) theorem (see Gelenbe and Pujolle 1981 and Ge- 
lenbe and Mitrani 1980) states the conditions for a closed 
network to possess a "product form" solution. The latter 
refers to the distribution that would result from having in- 
dependent queues instead of a network. For our model, the 
nodes are either ./M/l or ./D/oo and one can apply the 
BCMP theorem to obtain the steady-state probability of the 
system as: 

P(X)= G(W) fl(pis)X fi (pa )Xj 

iEF (j,l)CF. 

PX I ( 
xI)I (1) 

(j,1 )GFp j J! G FC 
V 

where xi, i C F. is the number of permits in the source queue 
i and analogously for the other queues. We must have for 
the closed network that 

E Xi + E x+,Z,+ E Xj'+E Xj w. 
iEF, (i. /) CF. (i, I) )GFp jEFc 

REMARK Product form approximations can be extended 
to more realistic models. As we show later, the adaptive 
scheme proposed in ?5 does not depend on this representa- 
tion of the invariant measure, and our formulas are justified 
for more general models. 

The relative number of visits to the source queue i in 
steady state is s, = 1EjGFcprJ. Let f denote the fraction of 
permits that carry a packet with origin i and destination d. 

Because there is only one source queue per node, then we 
have s' = sif ". For packets with origin i and destination 
d, use the following notation: 

Ra4d: stationary average throughput, 
Tid: stationary average delay, 
yld: average number of visits to node j for an (i, d) 

packet, and 
t, 1: average delay at queue (ij) C F, 

The throughputs and delays can be readily obtained using 
the methods in Gelenbe and Mitrani ( 1981), as was done in 
Cotton and Mason (1994): 

dG(W- 1) Aid =SSi G(W) (2) 

Tid - ldd+ ~3tj,'ly(1rf (3) E tjil ~r),l + E tj I rd, 
( j, /) )G (j Jo G )Fp 

The Optimization Problem 

It is shown in Mazumdar et al. (1991) that the product of 
powers is a performance criterion that satisfies Nash's ax- 
ioms of fairness and is Pareto optimal for a simple network 
model. They conjecture that the result is true for other cases 
as well. Following Cotton and Mason (1994), the optimiza- 
tion problem is stated as: 

maxP(7, W)= max fl 
i*d 

Zi ,W Zi dW(id):Ad>O id 

subject to 

S AIedY11jrl for all (j, 1) E Fa, 
(id) Aid >O 

and ZN1l~i7 - 1 for all d = 1,...,N, W>O; i o for all 
,ld = 1,...IN. 

We now present the arguments that establish the decen- 
tralized optimization problem above in terms of a central 
controller problem, which in turn simplifies the calculation 
of the solution. As mentioned before, the importance of this 
calculation is to assess the behavior of the algorithms in ?5. 
For more general models it is practically impossible to eval- 
uate an analytical solution, and that is the main motivation 
for the construction of good adaptive schemes that require 
only measured data in order to search for the optimal op- 
erating point. Let Ecj = 1 in the definition of the relative 
number of visits. We aggregate probability (1) in the con- 
troller queues by adding up over xj, j E F, Call xc = EjEF xj 
the total number of permits travelling in such queues. An 
extension of Newton's binomial for any number R of terms 
is given by: 

( Pr) = E xRfJ (Pr) r~~l ~Xl+ -=x r-I1 r 
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and therefore, direct application of this formula for the ag- 
gregate controller queue gives: 

)YJ (PT~ 

nF 
J 

where the sum is over all xl,...,xN such that Exj= x and 

pC = >j3FcP- =ZjcFCj p1c. In the aggregate system, the sta- 
tionary probability (1) is equivalent to: 

P(X) = 
I 

I(pis) Xi TV (pja'Jx 
iEF, (J, l)CFa 

(j, 1) EFp Xi, J! x! 4 

where now x~ is the number of permits travelling in any 
of the controller queues, so that ZiEjXi + Z(jl)EFaXj, + 

Yq(jI) Fxj, I +.X W. Equation (4) corresponds to an 
equivalent centralized operation if we interpret si as the 
probability of sending a permit to source queue i and pc 

as the corresponding delay from the controller. Therefore 
the centralized and the decentralized operation of the net- 
work are equivalent in distribution, in the steady state. The 
normalizing function G(W) can be evaluated using the 
same computations as in the central control case, which 
obviously cuts down considerably the computational effort, 
especially for large networks. 

REMARK It is clear that in particular, if pjc = pc is a constant 
for all controller queues, then because Ycj= 1, we would 
have pc= pc. This choice involves delaying some of the 
permits that are assigned to source queues in order for all 
the controller queues to have the same delay. We used this 
simple implementation for our simulations. 

Once the expression of P(x) has been rendered to form 
(4) we can use the results from Cotton and Mason (1994) 
to reformulate the problem as the maximization of the 
product of powers with respect to an aggregate throughput 

EN 

max P(=i) max U l Ai,d 1 
) i' ~ i (id): Ad>O 

Ai Ti,d (51) 

subject to 

S Ri Y r), for all (j, I) C F, (5.2) 
(id): Aid > 

and 0?iX Ai, where Ai=ENZ Aid. This formula- 
tion views the aggregate throughputs as the flow con- 
trol variables. Given the optimal values Hi, the optimal 

throughputs are = AiA. It is shown in Cotton and 
Mason (1994) that, given Ait, there is a unique correspond- 
ing value of W*. If the window size W 7& W* is fixed 
and the optimization is carried only over the distribution 
probabilities, the transformation of the problem is still valid 

with (2) and the corresponding Ai<d determine uniquely 
the distribution probabilities that maximize the product of 
powers, given that window size. In this work we focus on 
the decentralization of the control of the distribution prob- 
abilities. The following section explores the relationship 
between the optimal throughputs 2*,d of the problem and 
the corresponding optimal decentralized controls (TI)*. 

3. NONUNIQUENESS OF THE OPTIMAL CONTROL 

This section explores a design problem that is general for 
other network models and does not require a product form 
solution. We focus here on a general network under isarith- 
mic flow control where we want to maximize the product 
of powers by choosing the optimal throughputs, when the 
window size is fixed. These throughputs are to be achieved 
by appropriately assigning the values of the distribution 
probabilities 76. Based on a mean flow approach, an equi- 
librium argument for the stationary quantities shows that 
at each node i the output permit rate must equal the input 
permit rate, or: 

N 

2 , Rd )LO L 7jC for i 1,...,N, (6) 
d:Ai,d>O c=1 o:AO,, >0 

where EN 76 = 1 for c-1, ... , N. The left-hand side of (6) 
corresponds to the output rate at node i, and the right-hand 
side is the input from the controllers to the source queue 
i. If the network operates at any fixed value of {<7r}, then 
the corresponding stationary throughputs X6i,d of (2) fulfill 
(6). We are interested, however, in the optimal values of 
the parameters. Suppose that the ii,d of (6) are the opti- 
mal throughputs. Because there are 2N equations in N2 un- 
knowns, then it is clear that the optimal control values for 
76 are not unique. Nonuniqueness of the decentralized dis- 
tribution probabilities can be exploited through the concept 
of the controller actions, that is, we are free to restrict the 
number of actions at a particular controller. This reduces 
the number of unknown variables in the equilibrium equa- 
tions. However, the choice of those actions has to be made 
in such a way that the solution exists: restricting the actions 
may cause an input to a particular source node to decrease 
below the optimal output level, in which case (6) would not 
be satisfied for A*d and thus the particular action scheme 
would not be able to realize the optimal throughputs. 

In this section we address the questions of existence 
and uniqueness of the optimal solution in the decentralized 
operation, that is, we study Equation (6) when Xied are the 
optimal throughputs of problem (5) and the distribution 
probabilities 7rc are regarded as the unknowns, although 
we omit the superscripts in ;i*d. The framework that we 
use here is extremely simple and provides an approach to 
answer these questions that is undoubtedly simpler than 
the analysis of the steady-state distribution for each of the 
possible action models. 

Define C1 = EL14,osi and Xi - ZN~ 'i~d. For each c, 
let Ac( ) be the indicator function of the actions taken by 
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controller c, that is, AC(i) = 1 if at is not identically zero, and 
AC(i) = 0 otherwise. Then the equilibrium equations require: 

N 

E CAji)c==j for i=l,...,N, (7) 
c=I 

N 

E Ac(ji)7rIt forc=1,...,N, (8) 

which in matrix form can be written as Ex = b, with 
xC(i) =Aj(i)c76. The form of the equilibrium matrix E in 
general is given by: 

E _ El El . .. El 
VPI P2 .I.. PN 

where El is the N x N identity matrix, P, is the N x N 
matrix with rows of zeroes except for the nth row, which is 
the vector (1,.., 1) and b' =(Ai, . ., AN, C1, .. ., CN). Notice 
that adding the rows of the upper part of E yields the same 
result as adding the rows of its lower part. The N x N 
action matrix A has the effect of cancelling some components 
of the variable x. We shall focus on two important cases 
for the action matrix: the (N - 1)-action scheme, where 
we establish, for each controller c, arc- 0 while all other 
components can be positive, and the 2-action scheme, where 
only two components of 7rc (with i 7& c) are allowed to take 
positive values (see Figure 2). 

The results of this section are independent of the learning 
algorithms used to update the distribution probabilities nc(t), 
described later. However, in order to understand why we 
focus on these particular action schemes we anticipate some 
characteristics of the updating methods. An automaton at 
controller c will respond to arrivals of permits that carry 
(i, c) packets to update the probability 7c6 of distributing 
the permit back to the origin i. Since there are no packets 
with same origin and destination, there are (N - 1) possible 
values of i. It has been shown in Mason (1973) that the 
rate of learning depends on the number of actions at each 
automaton. Therefore the 2-action scheme may yield faster 
convergence under the appropriate conditions. 

Under the n-action scheme strategy, for 2 A n < N, even 
if the solution 7c exists, it is not unique. Indeed, the linear 
system has 2N equations in N x n variables. Nonuniqueness 
follows whenever n > 2. For n = 2 the matrix EA has only 2N 
columns which are not identically zeroes, and the remaining 
columns are exactly those of the original equilibrium matrix 
E. The determinant of the resulting 2N x 2N matrix vanishes, 
which yields nonuniqueness. 

The linear system Ex = b always possesses a solution in 
the (N - 1)-action case, as follows by direct substitution of 

i C (9) 

However, not all action matrices give rise to well-posed 
problems. As a trivial example, consider a three-node net- 
work with two actions, where all controllers send permits 

Figure 2. Representation of (a) the (N - 1) and (b) the 
2-action schemes. 

Fig la: (N-1)-action i L 
0. 

15 Source queues M., 

0 Nodes 

Controllers 

I 
Fig 1b: Two-action XCI 

only to nodes 1 and 2. Then AJ(O) =0 for all c and it fol- 
lows from (6) that the first equation requires 0 -0. Recall 
that according to our notation, 20 is not the steady-state to- 
tal throughput out of origin 0, which would be zero under 
this action scheme, but the optimal throughput of problem 
(5) that we wish to achieve. We have developed in the Ap- 
pendix the basic method for modeling the problem of the 
n-action scheme in general via a formulation akin to trans- 
portation models. This method has been further studied in 
Perron (1993). 

4. THE ADAPTIVE CONTROL ALGORITHMS 
We now construct the adaptive control algorithms for 
the permit distribution probabilities ni for fixed, arbitrary 
window size. From the optimization problem (5), the 
throughputs X7 that maximize the product of powers satisfy 
, P(A1*)=O, which follows from the Kuhn-Tucker con- 
ditions for optimality, as in Cotton and Mason (1994). A 
simple calculation yields: 

a 1 1 ET0 
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so that the condition for optimality is an equilibrium condi- 
tion of the form: 

Hi(j*)=Hj&(*) for all ij= I,...,N (10) 

where the H function is given by: 

Hi (A') = Td (N -1) aP) 
(o, d): o >Tod Ai P(i) 

We assume that the network is operating under heavy 
traffic conditions, that is, Ai > for all i. The case where 
Ai < for all i represents light traffic and does not require 
any flow control. The mixed case, where some nodes are 
lightly loaded and others are heavily loaded, was treated in 
Cotton and Mason (1994) using a central controller. The 
decentralization presented here can be extended to cover the 
mixed traffic cases to yield a more robust algorithm, but we 
omit the details for lack of space. 

The estimation of derivatives using measured data gath- 
ered from the system is a difficult problem in the present 
context, but many methods have been proposed (see 
Vaizquez-Abad 1992 and references therein) which could be 
applied to estimate the H function for more general network 
models using only pathwise information. Such methods 
are amenable to the distribution of the computation of the 
global quantities via local sensitivities. The general condi- 
tion required for the estimation (see the Appendix) is that 
the stationary average of the feedback function for fixed 
control values be unbaised for the sensitivity functions H. In 
order to simplify the present analysis and focus on the con- 
struction of the algorithms themselves, we have chosen an 
approximation for the model of 02 that requires only the es- 
timation of the steady-state average delays Tod and through- 
puts <od. We introduce an information vector Xi(t) at each 
node i at time t of the simulation, which is defined as a 
vector with components { To d(t), TBI d(t); o, d - 1,... ,N}. 
Its values are calculated as follows: at the time t of arrival 
of an (o, d) packet to its destination node d the controller 
d evaluates the time elapsed since the start of the packet at 
o and updates Todd(t) as a moving average. Analogously, it 
computes the time elapsed since the previous (o, d) packet 
arrived at d and updates the time between packets TBo d(t) 

also by a moving average. At this time the controller sends 
the updated entries Tld and TB d for that origin o to o, d o, d 
the other controllers at nodes i 7& o. We assume that the 
transmission of information is performed in a higher level 
network and that it arrives at each controller i 7& d after a 
possibly random delay. 

Upon arrival of the information Tod and TB d at time o, d o, d m 
t, controller i updates Tod(t) and TB d (t) by setting them 
equal to the values just received. Since the entries of the in- 
formation vector Xc(t) are constructed as moving averages, 
this vector converges a.s. to a limit, provided that the delay of 
the information is uniformly integrable. In particular, for the 
fixed parameter process with W and rC fixed at constant val- 
ues, the moving averages converge to the stationary averages 

and thus all the vectors Xc(t) possess the same limit: 

X(Z) = lim XC(t)- Toed, 1 ; o, d N ( 11) 

REMARK Naturally, this implementation requires an int- 
ense exchange in data between nodes in the network. An 
alternative approach is given by the following scheme. 
Every destination node d computes its moving averages 
To'd(t), TBO d(t) as packets arrive. From time to time, and 
not necessarily at every epoch of arrival of a packet to its 
destination, the nodes communicate to their neighbors the 
latest estimates. A loopless cascade or information "tree" 
can be defined so that a node is in charge of sending peri- 
odically its latest update on various To d, including i = d, to 
its neighboring nodes, so that eventually all nodes have up- 
dated their local information vector in this fashion. Such a 
scheme can be constructed so that Equation ( 1) still holds, 
but it would obviously minimize the amount of exchange 
of information required. Since our results depend on the 
limiting behaviour, we focus without loss of generality on 
the scheme mentioned above, which simplifies the notation. 

The nodes can calculate the H functions with the most 
recent available information and use these to update their 
parameters, as shown below. We shall see in 06 that the 
delays in information broadcasting are negligible and do not 
affect the performance of the algorithms. 

The (N - 1)-Action Automata 

When an automaton d is called from the controller at time 
t, after receiving a permit with origin o, the corresponding 
reward function b d(t) is evaluated as: 

bdet) =1I 
_ arctanHO(Xd(t)) 

and the probabilities are updated according to an LR-I learn- 
ing automaton: 

7Ei (t) = 7rid(t- ) + 8(6,0 _7rid(t- ))b d(t), i=1... N, 

(12) 

where ? is a gain parameter, and 6io is the Krdnecker delta. 

REMARK The idea behind the LR-I learning automata 
model is to adjust the parameter according to a reward func- 
tion that reflects the feedback from the actions of the con- 
troller. If 76 increases, then Hi increases. Since controller 
d updates all its components 7r d according to the measured 
feedbacks, it is not hard to visualize that (12) tries to reach 
an equilibrium between the Ho functions. For more details 
on this type of scheme the reader is referred to Narendra 
and Thatachar (1989), Srikantakumar and Narendra (1982), 
Vazquez-Abad and Mason (1996), and references therein. 

Let {I<d, n > O} denote the sequence of updating epochs 
for md(t) as it follows recursion (12). Let 

Fid(Tnd) =E{bi? (and) permit carries an (i, d) packet, fm(lT)}, 
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and pd the probability that a permit carries an (i, d) packet. 
Then, from (12): 

El 7r (Tdl) I 7i (T d)} 

N 

= 
Z~~~~~d ( 

pn _ F 7 
d ) d d 

( 
Td 

)Poh 
d (fd)a 

(13) 

The basic proof of convergence of our algorithms is in 
Appendix A. It is shown there that the limiting control pro- 
cesses related to the distribution probabilities approach a 
limiting ODE. The stable points of the limiting ODE coin- 
cide with the fixed points of the conditional expectations in 
(13); that is, the values of 76 such that the expression in 
square brackets vanishes. The limit point of (13) is unique 
(Vazquez-Abad and Mason 1996) and corresponds to the 
optimal control values (9): (4)*= / Therefore, all 
initial conditions drive the control variables to this limit. 

The 2-Action Automata 
Each controller c will only send permits to the source 
nodes i with AC(i)= 1. However, it may still receive 
packet-permit combinations from another origin, say o, 
with A(o) = 0. The usual implementation requires the 
learning automaton to respond to feedback from the sys- 
tem as a result of its action, updating the corresponding 
probabilities. Here we can no longer implement this update 
procedure because the reception of a packet-permnit com- 
bination with origin o cannot be assigned directly as the 
impact of the two actions, which exclude source o. There- 
fore, a different feedback function has to be calculated that 
accurately reflects the effect of the systems's performance 
in terms of the actions defined at each controller. We de- 
scribe such a scheme as follows. When a permit arrives at 
controller d with an (o, d) packet, the controller updates 
Xd(t) and sends the information as described before. If 
Ad(O)= 0, then the permit is routed to the source queues 
according to the current values of 7ir. If Ad(O) = I then the 
H function is evaluated and the parameters are updated by: 

7s (t ) = 7rd(t 
- 
) -67r? (t ) [b1(t) _-E S (t )Ad(o )7r(t 

for i : Ad(i)= 1, (14) 

where hid(t) is defined as before. In the case of a 2-Action 
scheme, fix the controller d and call o(1) and o(2) the 
two source nodes to which d sends permits, so that 4rdl + 

-d I. Then the updating Equation (14) becomes: 
o(2)- 

7to(I)(t)-70( I)(t )+6T0(1)(t )(I -h0(I)(t)) 

[arctanhf 2)(Xd(t))-arctanHo(l)(Xd(t))1 

xc/2 

which has the form of a "shortest path" algorithm if 
we view the H function as the cost associated with the 

Figure 3. Different equivalent classes. 
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permit path from the controller toward the source nodes. 
The idea behind this type of algorithm is the following: if 
7td increases then the stationary average throughtput X0(1) 
increases as well as HO(1)(X)* If this increased value is 
larger than H0(2)(X) then Ed will decrease in the next up- 
date, as will H0(l)(X) The result is that the algorithm will 
seek for an equilibrium of the H function values at o( 1) and 
o(2). This pairwise decentralized effort will globally seek 
the optimal equilibrium, provided that the 2-Action scheme 
is one that admits the optimal solution, as mentioned in ?3. 

Using the same notation for the conditional expectations, 
we have: 

{Ei (nl ) i (n ) 

=t ad ( d +87 8dT (d - + 

Fi(Tn )- Ad(o)F (T )7ro(Tn)1 

In the limiting stationary operation (see Appendix A) 
Fid (T) -* Fi for all d and now the fixed point will satisfy: 

N 

Fi L-Ad(o)Fomd for Ad(i)=1, (15) 
0=1 

which implies that each controller d will set its distribu- 
tion such that the value of Fi for Ad(i) 1 is constant for 
all origins o with Ad(o) = 1. The chosen action scheme 
defines equivalence classes of nodes as follows: node i is 
in class K; if A(i)= 1, if i,jE Kc and i EKd then jIEKd. 
Then the limit point satisfies F= k, for all i E K,. In 
Figure 3 we give an example of a 2-action scheme with two 
different equivalence classes. The darker circles in the left 
represent the controllers with their two actions. The lighter 
circles in the right represent the source nodes where the 
permits are sent by the controllers. 

In the arrangement depicted in Figure 3 there are two 
equivalence classes, K1 and K2, defined by the sources which 
share the same set of controllers sending them permits. If 
the actions at the controllers equalize the H function for 
the two sources corresponding to its actions, then the joint 
action of controllers 1,2, and 3 (respectively 4, 5, and 6) is 
to equalize H1 , H2, and H3 (respectively H4, H5, and H6 ) 
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Figure 4. Network model for simulations. 
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If we choose a 2-action scheme with only one equiva- 
lence class and if there is a solution to the equilibrium prob- 
lem with the optimal probabilities, then the automata will 
converge to an optimal solution, because this limit satisfies 
the Kuhn-Tucker conditions. We know, however, that the 
solution is not unique, therefore the limit point will depend 
on the initial values. We present numerical examples from 
simulations. 

5. COMPUTER SIMULATIONS 

We chose a four-node network under the model of 02. In 
order to assess the behaviour of our learning algorithm 
and compare it to the actual optimum, we used an exam- 
ple from Cotton and Mason (1994), where a numerical 
procedure was used to find the optimal window size W* 
and the optimal centralized distribution probabilities s7. 
Since our main focus in this work is the decentralization 
of the controllers that distribute the permits, we ran all 
the simulations at the optimal window size and studied the 
behavior of the learning automata of 05 with =0.001, 
comparing it with the true optimum. Figure 4 shows the 
four-node network with links that define the two-way 
trunks. The distance Dij of all the trunks is 25 Kms, and 
the corresponding capacities Cij = Cj,i in Mb per second 
are shown. For each of the six trunks the service rate of 
the corresponding exponential server queue is CQ1/jl, where 
a-= 1024 x 8 is the mean packet size for 8 bit "words". 
Analogously, the constant propagation delay queues asso- 
ciated with each trunk have a delay Pij = Dij/c, where c is 
the speed of light. 

The routing choices are deterministic: packets arriving at 
node 0 with destinations 1 and 2 are sent to these nodes re- 
spectively, and packets with destination 3 are sent to node 2. 
Similarly, packets arriving at node 2 with destinations 3 or 
0 are routed directly toward their destinations, and packets 
with destination 1 are routed to node 0. Finally, all packets 
arriving at node 1 (node 3) are routed towards node 0 (node 
2, respectively), regardless of their destinations. The con- 
stant propagation delay at the controller loops pc = 1, 000 
Kms./c is considered to be a delay over a much slower 
link. 

The offered traffic matrix Ai d of incoming packets at ori- 
gin i and destination d is: 

( 0.0 15,000 15,000 30,000 ' 

A 15,000 0.0 15,000 15,000 
20,000 10,000 0.0 30,000 . 
10,000 10,000 20,000 0.0 / 

The optimal values can be consulted in Vazquez-Abad 
and Mason (1992). In order to study the behavior of the 
algorithms, we evaluated the relative error of the decentral- 
ized scheme using the equilibrium equations 

si(t)~ L { dV 4d }I 
c=l Eo,d=l i~ 

and calculating the relative errors: 

es(t)= () i* X 100. (16) 

The (N )-Action Automata 

We show the results of two experiments using algorithm 
(12) in Figures 5 and 6. In the first experiment the informa- 
tion is propagated instantaneously, so that the information 
vector Xd(t) of 05 is the same for all destinations d. The 
second experiment shows the results when the information 
delay is simulated as an exponential with mean one order 
of magnitude larger than the average throughputs. We show 
the plots of the percent error of the normalized throughputs 
(16), and of the logarithm of the product of powers. We 
verified that the algorithms do approach the limit value pre- 
dicted by (9), under various initial conditions and different 
propagation delays. Although the inherent random fluctua- 
tions are present, as seen in the plots, the actual values of 
the parameters fluctuate very close to the optimal surface. 
This fact can be seen from the plots of the percent errors. 
The introduction of delays in information exchange does not 
affect the limiting behavior of the automata and the effects 
in the product of powers are negligible for the scale shown 
in the plots. Since the information delay is larger than the 
delays of packets within the networks, the results suggest 
that the algorithms will also work when the implementation 
of information exchange is performed by piggy-backing the 
information to packets in the form of headers. 

The 2-Action Automata 

We implemented the 2-action scheme for the four node 
network using Ao(I)=Ao(2)= 1, A1(2)=A1(3)= 1, 
A2(0)=A2(3) = 1, and A3(0)= A3( 1) = 1. We performed 
several experiments with different initial conditions, which 
gave different limiting controls, but showed similar conver- 
gence rate to the optimal surface, measured by ( 16). Figures 
7 and 8 show the plots of the percent error and the product 
of powers for two such experiments, under instantaneous 
information. Similar plots were obtained for other initial 
conditions. The 2-action simulations were 1.75 times faster 
than the (N -1 )-action ones. In the (N -1 )-action scheme, 
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Figure 5. (N - 1)-action scheme, Experiment 1. 
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the updates are performed more frequently (every time a 
packet arrives to destination), whereas in the 2-action cases 
the updates take place only when packets arrive from the 
source nodes to which the controller sends permits. There- 
fore the computational effort required for the (N - 1)-action 
scheme is larger than the corresponding one for the 2-action 
scheme. Also, it is known Mason (1973) that under the 
same variance conditions, the learning rate of the 2-action 
scheme is faster than that of the (N - 1)-action scheme. 

Counterexample 
We designed an example using the same topology and 2- 
action scheme as before, where now the input offered traffic 
is very unbalanced, given by: 

0.0 50,000 15,000 10,000' 

A- 20,000 0.0 1,000 1,000 
20,000 20,000 0.0 5,000 J 
20,000 10,000 5,000 0.0 

In Vaizquez-Abad and Mason (1996), we show in de- 
tail that this 2-action scheme cannot achieve optimality 
for this system, using the tabloid method presented in 
Appendix B. We performed two simulations for this net- 

Figure 6. (N - 1)-action scheme, Experiment 2. 
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work, both under instantaneous information broadcasting, 
one for the (N - 1)-action scheme and the other for the 
2-action scheme. We show the plots of the product of pow- 
ers for each simulation in Figures 9 and 10. As expected, 
the (N - 1)-action scheme converges in expectation to the 
optimal limit point predicted by (9). The 2-action scheme 
shows a faster convergence to a value which is lower that 
the optimal, as expected. 

6. CONCLUDING REMARKS AND FUTURE 
RESEARCH 

We have developed a decentralized strategy for isarithmic 
flow control for fast packet-switched networks. Our study 
focuses on the adaptive routing of permits from controllers 
to source queues. Nonuniqueness of the optimal controls led 
us to define different action schemes for sending permits. In 
the (N - 1)-action scheme each of the N controllers sends 
permits to the other (N - 1) source queues. In the 2-action 
scheme each of the N controllers sends permits to only two 
other source queues. The number of operations required by 
this scheme is less than that for the (N - 1)-action scheme, 
which updates more frequently. Therefore, in terms of real- 
time operation, the 2-action scheme presents important say- 
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Figure 7. 2-action scheme, Experiment 1. 
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wings, especially. when the number of nodes is large. Since 
the learning rate also depends on the number of nodes and 
the number of actions, the faster convergence of the 2-action 
scheme will also be more evident in larger networks. The 
results given in this work suggest that the 2-action scheme 
works very well when it achieves the optimum, but it de- 
grades performance when the input traffic "shrinks" the fea- 
sible solution set to an empty set, in which case its perfor- 
mance is suboptimal. Recent efforts have included the study 
of the design of n-action schemes that are less sensitive to 
changes in the input traffic. Further extensions could include 
the study of robustness with respect to changes in the topol- 
ogy of the network. 

In most realistic models, including multiclass customers, 
several window sizes, bursty arrivals, and finite buffer sta- 
tions, it is practically impossible to evaluate a closed form 
solution. One of the authors (Felisa Vazquez-Abad) is cur- 
rently studying methods of distributed derivative estimation 
for complex systems. These methods do not require a prod- 
uct form solution, and may reduce considerably the amount 
of information exchange needed for the control updates. 

On fteatos(on asn a tde h ocr 
ren opimzaio offon otn prmtr snh 

Figure 8. 2-action scheme, Experiment 2. 
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centralized version of the algorithms. A natural extension 
of the present work is to prepare a fully decentralized con- 
current on-line optimization version that includes all the 
control parameters. 

APPENDIX A. THE PROOF OF ASYMPTOTIC 
OPTIMALITY 

We present the proof of convergence of algorithms (12) 
and (14), using the framework and results of the weak 
convergence method in Kushner and Vazquez-Abad 
(1996) and Vazquez-Abad et al. (1998). 

Let T, be the epoch of the nth global update, regardless 
of the controller, and T' the epoch of the nth local update at 
c. Denote by 0 the vector of all the distribution probabilities 
4c. Then both algorithms can be expressed as a stochastic 
approximation: 

n+0- On' + ?Yn, 

if we identify n with the nth global update epoch. Clearly, the 
vector Yn` depends on the feedback function b(zr). The pro- 
cess can be imbedded in a Markov Decision Process (MDP) 
(n 64),) identifying the state 48 with the vector of queue 
lengths, residual service times (if not Markovian) and local 
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Figure 9. Counterexample. (N - 1)-action scheme. 
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information at time tn,. Following the notation in Kushner 
and Vazquez-Abad ( 1996), G( 4,O) = E{ Yn | n onO= } 
The cr-algebra related to the MDP up to the nth update will 
be denoted by Y E. By the Markovian property, G(0, A)n)= 
E{ Y,~ . }, which is a random variable depending on the 
distribution of (4?, on). From the closed network model, it 
follows that the fixed control process 4(O) is Markovian 
with transition probability P(dx,x) onP{4n?1(O) C dxld(O) 
=x}, which is weakly continuous in 0 for our model. A 

closed network with stationary service distributions (in- 
dependent of 0) is stable for every possible value of 0. 
Let pi0(dx) be the invariant measure of the fixed control 
process, and 

4-4~~~~~~~~~n- 

g(0) = ] uo(dx)G(x, 0) =lim -E ZE{GQ4n(0),0)}. 

Notice that this latter expectation is w.r.t. the fixed 
control process. The random variables Y,? are uniformly 
integrable, since they are uniformly bounded by construc- 
tion of the feedback functions. Furthermore, the sequence 
{(4? 0E),n >O. ?> O} is tight, that is, for every o > O there 
exist a compact set K0 such that sup00 P{(48, 0n) K0} 
<oc. This follows because on are probability vectors, and 
4t are uniformly tight: queue sizes are all bounded by the 

Figure 10. Counterexample. 2-action scheme. 
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window size, the residual services are independent of ?, O' 
and the information vector containing the moving averages 
is also bounded a.s. by a random variable of maximal de- 
lay along feasible paths, which is independent Of oh and n. 
Tightness is the stochastic analog of compactness. Define 
the control interpolation process: 

79(t) = OE for t G [n?, (n + I )?). (A. 1I) 

From this definition and the stochastic approximation 
form, for t = En we have: 

,dE(t + 7) - 6(t) _:ye 

? ~~~no 

and the conditional expected behaviour of ?4 is related to: 

E (9( 
+8 19(t 

En ) G(dg(t ), ;4n ). 

From Va'zquez-Abad et al. (1998, Proposition 1 ) it 
follows that every subsequence of d'(-) as ? -- 0 has 
a further weakly convergent subsequence and all weak 
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any such limit satisfies the ODE: 

dt9(t) - g[9(t)] 
dt 

If the ODE has a unique solution for each initial condition, 
the limit does not depend on the subsequence and therefore 
t9E(.) converges to t(-). It is common to assume that g(-) is 
locally Lipschitz continuous, thus continuous and uniformly 
bounded on compact sets, which would ensure uniqueness 
of the solution for each initial condition. If, furthermore, 
this ODE has asymptotically stable points 0* c Y, then the 
limit points lim,+, t(t) of its solutions (which may or 
may not depend on the initial condition) belong to Y and 
satisfy g(0*) = 0. In particular, for the schemes presented 
in the present work, it follows from ( 1) that, for the fixed 
control process: 

F (0) lim -! E{E{FFc(E ) YJJ"C(0)} } 
n-oc nfl 

n=O 

1 arctan Hi[X(0)] (A.2) 
(nI/2) 

for all c, where ,nC(0) is the a-algebra generated by {,n(0)} 

up to time rc. Let t9j(t) denote the limit process of the 
component corresponding to the control variable 7ic. Then it 
follows that the limit process corresponding to the scheme 
in (12) satisfies: 

dI(r) =FM [(t)] F (t)]F [d(t)] 
dt 

N 

-,dC(t) E X c0j(t)]F0[,d(t)] ,(A.3) 
0= j 

where MJ(0) is the stationary fraction of updates per- 
formed at controller c for the fixed control process (see 
Vazquez-Abad et al. 1998) proof of Theorem 3 for the 
details on the time scaling argument in decentralized 
schemes). Analogously, for the scheme in (14), the limits 
processes satisfy: 

dt __ [t9(t)]t,9(t) [Fi[L9(t)] - ZA(o)Fo[L(t)] 

(A.4) 

Both ODE's are well defined, they have a unique solution 
for each initial condition, and this limit does not depend on 
the frequency or delays in information broadcasting, as long 
as (11) holds. The weak convergence approach followed 
here allows us to interpret the learning schemes as stochastic 
analogs of numerical approximations of an ODE, whose 
r.h.s. is constructed using the Kuhn-Tucker conditions for 
optimality. The asymptotic behaviour of the algorithms is 
determined by studying the limit points limt,, P(t). From 
(A.3) and (A.4), these are the fixed points of the equations 
for the conditional expected behaviour, as mentioned in ?4. 

As a final remark, this proof only requires the construction 
of appropriate estimators of the sensitivity that satisfy (A.2). 
We have provided one such method that requires basic in- 
formation on moving averages, but in order to minimize in- 
formation exchange, the schemes could be implemented re- 
lying on a less frequent transmission of the moving averages 
between nodes, yielding the same asymptotic behaviour. 

APPENDIX B. TABLOID METHOD FOR THE 
n-ACTION SCHEME 

One way to study the 2-action scheme was introduced in 
Vatzquez-Abad and Mason (1992) to study the assignment 
problem in terms of the tabloid solution, as follows. From 
the equilibrium matrix, we can consider the basic variables 
xC(i) = A(i)Ccirc that appear in the matrix equations in- 
stead of the distribution probabilities themselves. The data 
of the problem in terms of the optimal throughputs can be 
written in the form of a tabloid, where the rows add up to 
the numbers in the right-hand column, the columns add up 
to the numbers in the last row, and the sum of the right- 
hand column equals the sum of the last row. In a similar 
way, we can also write down the solution in terms of the 
variables xc(i), where the sums of the rows set equal to the 
corresponding number in the last column represents Equa- 
tion (8) and the sum of the columns set equal to the value 
in the last row yields Equation (7). 

Data 
0 A10 /20 -30 ... ,NO CO 

/0I 0 /-421 X31 ... )N I Cl 

A02 A412 0 )32 ... A;N2 C2 

)-03 A13 /23 0 ... AN3 C3 

AON AIN t2N I3N ... 0 CN 

_ 0 Al A2 _ 3 ... ALN 

Solution 
0 X0(l) xo(2) xo(3) ... xo(N) Co 

xi (0) 0 xi (2) xi (3) ... Xl(N) C1 
X2(0) X2(1 ) 0 X2(3) ... X2(N) C2 
X3(0) X3(1 ) X3(2) 0 ... X3(N) C3 

XN (O) XN(I) XN(2) XN(3) ... 0 CN 
_ _ _ _ _ '41 ,4 ),3 . A N _ _ _ 

In the solution tabloid, some of the entries xc(i) may be 
zero entries, depending on the actions at that controller. If we 
want to find a solution for a given action matrix, we "cross" 
out the corresponding places in the tabloid and proceed to 
find a solution. It is clear from this form why the (N - 

1) action scheme always possesses a solution of the form 
xC(i) = 4ic, although this solution is not unique, as shown 
in ?3. 

We give now the tabloid solution of two different 
2-action schemes in a four-node example, showing the 
symbol x at the zero entries where AC(i) =0. 

In terms of the dimensionality of the problem, the two- 
action case defines a linear problem in 2N variables with 
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2N equations, one of them being linearly dependent on the 
other 2N - 1. If the problem does not decouple into several 
independent problems (such as two tabloids put together 
with zero entries in the diagonal blocks), then the solution is 
defined as a one-dimensional subspace. This condition will 
later be defined in terms of equivalence classes of source 
nodes (see ?4). It is clear that in a four-node network any 
2-action scheme will define a tabloid that cannot be decom- 
posed into independent smaller tabloids, since the controllers 
never send permits to their own source queues. 

Example 1 
0 2i + )o - C3-a Co+C3-,0o-, +a x Co 
X 0 CI+C2- 3-a 3-C2+a Ci 
a x 0 C2-a C2 

'oo-a C3-20o + a I x 0 C3 

In order to find the one-dimensional solution set for these 
examples we arbitrarily choose one element of the solu- 
tion matrix as a and work through the tabloid filling the 
entries that are determined by the requirement of the sums 
of rows and columns, and using E>Zi = >,C,. The gen- 
eral way of finding a solution in higher-dimensional prob- 
lems with 2-action schemes that do not decouple is identi- 
cal to this procedure and we omit the details of the general 
algorithm. 

In Example 2, the entry x1 (0) = 20 is uniquely determined 
by the choice of the action matrix and does not depend on the 
value of a. In order for this solution to be feasible in terms 
of the distribution probabilities, all entries of the solution 
matrix must be nonnegative. 

Example 2 
0 x i, + ,2 -C3-a CO + C3-,1- 2 + a Co 
/to 0 x O C1 
x a 0 C2-a C2 
x '1-a C3+ a- -0 C3 
AO A1 .. ii 

Because all the expressions are linear in a, the nonnega- 
tivity condition can be rewritten in terms of an interval of 
feasibility of the form ao - a < a,, where the limits depend 
on the data jid. This set may be empty, in which case the 
chosen action matrix will not yield the optimal solution for 
the original problem, therefore a 2-action scheme does not 
always possess a solution. Given a problem, we may ask if it 
is possible to find a 2-action scheme with a tabloid solution 
of nonnegative entries. Unfortunately the answer is no, as 
shown in the tabloid for a counterexample, where we show 
the data of the problem. 

Counterexample 
0 50 20 10 80 

60 0 1 1 62 
30 1 0 1 32 
10 1 1 0 12 

100 52 22 12 

In this problem there is no way that we can keep only 
two nonzero entries of the first row and fill out the rest of 
the table with nonnegative entries. Although this represents 
an extremely unbalanced traffic where most of the through- 
put comes in and out of node zero, it shows that in gen- 
eral we cannot always find a 2-action scheme which will 
satisfy the equilibrium equations for the optimal through- 
puts. 

The main problem in assigning the 2-action automata 
scheme is that the tabloids for the data and the solutions 
cannot be written in terms of the data of the original prob- 
lem and depend on the unknown optimal throughputs. 
Therefore we cannot use this algorithm in order to deter- 
mine if the problem admits a 2-action scheme to achieve 
its optimum performance. This framework has further 
been investigated in Perron (1993) to establish the range 
of feasibility of the n-action design, for n<N - 1. This 
approach introduces a fictitious objective function to im- 
plement the simplex method, which finds the corner points 
of the feasible set, thus finding the solution points of the 
tabloids. 

APPENDIX C. NOTATION 

N: number of nodes in the network 
W: number of permits in the network 

Ci.: capacity of link (i,j) 
Di.: distance between node i and node j 
rl : probability of routing a packet with destination d 

from i to j 
Piu: = Dij/c propagation delay at trunks 
pjd: propagation delay from controller d to source 

node j 
nd: control variable: probability of 

sending a permit from d to source node i 
si: relative number of visits to permit source queuei 
c1: relative number of visits to controller queue j 
h:1 relative number of visits to trunk queue (j, 1) 

Aid: external arrival rate at node i of 
packets with destination d 

of: average packet size 
Aid: stationary average throughput of packets 

with origin-destination (i, d) 
Ad: aggregate throughput =E i 

Cd: aggregate throughput = Eijid 
Tid: stationary average end-to-end delay of packets 

with origin-destination (i, d ) 
AC(i): action matrix-1,i,>01 
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