Parallel Algorithms for Sparse Linear Systems

Author(s): Michael T. Heath, Esmond Ng, Barry W. Peyton
Source: SIAM Review, Vol. 33, No. 3 (Sep., 1991), pp. 420-460
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2031442

Accessed: 11/04/2010 06:23

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/pagelinfo/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=siam.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in atrusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
accessto SAM Review.

http://www.jstor.org

http://www.jstor.org/stable/2031442?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=siam

SIAM REVIEW (© 1991 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 420-460, September 1991 004

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS*
MICHAEL T. HEATH'{, ESMOND NG!, AND BARRY W. PEYTON'

Abstract. This paper surveys recent progress in the development of parallel algorithms for
solving sparse linear systems on computer architectures having multiple processors. Attention is
focused on direct methods for solving sparse symmetric positive definite systems, specifically by
Cholesky factorization. Recent progress on parallel algorithms is surveyed for all phases of the
solution process, including ordering, symbolic factorization, numeric factorization, and triangular
solution.

Key words. parallel algorithms, sparse linear systems, Cholesky factorization

AMS(MOS) subject classifications. 65F, 65W

1. Introduction. Dense matrix computations are of such central importance in
scientific computing that they are usually among the first algorithms implemented
in any new computing environment. The need for high performance on common
operations such as matrix multiplication and solving systems of linear equations has
had a strong influence on the design of many architectures, compilers, etc., and such
computations have become standard benchmarks for evaluating the performance of
new computer systems. A survey of parallel algorithms for dense matrix computations
is given in [34]. Sparse matrix computations are equally as important and pervasive,
but both their performance and their influence on computer system design have tended
to lag behind those of their dense matrix counterparts. In a sense this relative lack
of attention and success is not surprising: sparse matrix computations involve more
complex algorithms, sophisticated data structures, and irregular memory reference
patterns, making efficient implementations on novel architectures substantially more
difficult to achieve than for dense matrix computations. It could plausibly be argued,
however, that the greater complexity and irregularity of sparse matrix computations
make them much more realistic representatives of typical scientific computations, and
therefore even more useful as design targets and benchmark criteria than the dense
matrix computations that have usually played this role.

Despite the difficulty and relative neglect of sparse matrix computations on ad-
vanced computer architectures, there have been some notable successes in attaining
very high performance (e.g., [14]), and the needs of sparse matrix computations have
had some effect on computer design (e.g., the inclusion of scatter/gather instruc-
tions on some vector supercomputers). Nevertheless, it is ironic that sparse matrix
computations contain more inherent parallelism than the corresponding dense ma-
trix computations (in a sense to be discussed below), yet typically show significantly
lower efficiency on today’s parallel architectures. In this paper we will examine the
reasons for this state of affairs, reviewing the major issues and progress to date in
sparse matrix computations on parallel computer architectures. In addition to sur-
veying the literature in this area, we will try to sketch the conceptual framework in
which this work has taken place. To keep the scope of the article within reasonable

* Received by the editors September 12, 1990; accepted for publication October 10, 1990.

t Mathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge,
Tennessee 37831-8083. This research was supported by the Applied Mathematical Sciences Re-
search Program, Office of Energy Research, U.S. Department of Energy under contract DE-ACO05-
840R21400 with Martin Marietta Energy Systems, Incorporated.

¥ Present address, Computer Science Department, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801.

420

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 421

bounds, we will focus our attention on the solution of sparse symmetric positive defi-
nite linear systems by Cholesky factorization. There has, of course, also been progress
on parallel algorithms for other matrix problems (e.g., nonsymmetric linear systems,
least squares, eigenvalues), other factorizations (e.g., LU and QR), and other basic
approaches (e.g., iterative methods), but a comprehensive treatment of all of these
topics would easily require an entire book. Our discussion of sparse Cholesky fac-
torization illustrates some of the major issues that also arise in other parallel sparse
matrix factorizations as well, but there are many additional issues associated with
parallel iterative algorithms or parallel sparse eigenvalue algorithms that we do not
specifically address.

An outline of the paper is as follows. First, we will sketch briefly some necessary
background material on serial algorithms for solving sparse symmetric positive definite
linear systems. For a much more complete treatment, the reader should consult [25]
or [47]. We then survey the progress to date in developing parallel implementations
for each of the major phases of the solution process. We will see that the same graph
theoretic tools originally developed for analyzing sequential sparse matrix algorithms
also play a critical role in understanding parallel algorithms as well. We conclude
with some observations on future research directions.

2. Background. Consider a system of linear equations

where A is an n X n symmetric positive definite matrix, b is a known vector, and z is
the unknown solution vector to be computed. One way to solve the linear system is
first to compute the Cholesky factorization

A=LL"T,

where the Cholesky factor L is a lower triangular matrix with positive diagonal ele-
ments. Then the solution vector z can be computed by successive forward and back
substitutions to solve the triangular systems

Ly=b, LTz=y.

If A is a sparse matrix, meaning that most of its entries are zero, then during the
course of the factorization some entries that are initially zero in the lower triangle of
A may become nonzero entries in L. These entries of L are known as fill or fill-in.
Usually, however, many zero entries in the lower triangle of A remain zero in L. For
efficient use of computer memory and processing time, it is desirable for the amount
of fill to be small, and to store and operate on only the nonzero entries of A and L.
It is well known that row or column interchanges are not required to maintain
numerical stability in the factorization process when A is positive definite. Further-
more, when roundoff errors are ignored, a given linear system yields the same solution
regardless of the particular order in which the equations and unknowns are numbered.
This freedom in choosing the ordering can be exploited to enhance the preservation of
sparsity in the Cholesky factorization process. More precisely, let P be any permuta-
tion matrix. Since PAPT is also a symmetric positive definite matrix, we can choose
P based solely on sparsity considerations. That is, we can often choose P so that
the Cholesky factor L of PAPT has less fill than L. The permuted system is equally
useful for solving the original linear system, with the triangular solution phase simply

422 M.T. HEATH, E. NG, AND B.W. PEYTON

becoming
Ly=Pb, LT2z=y, z=PTz

Unfortunately, finding a permutation P that minimizes fill is a very difficult combina-
torial problem (an NP-complete problem) [107]. Thus, a great deal of research effort
has been devoted to developing good heuristics for limiting fill in sparse Cholesky
factorization, including the nested dissection algorithm [39], [45] and the minimum
degree algorithm [48], [70], [98]. Limiting fill is also the primary motivation for a
number of methods based on reducing the bandwidth or profile of A. These band-
oriented methods have been less successful, however, than the more general sparse
ordering techniques, and as we shall see, they are at an even greater disadvantage in
a parallel context.

Since pivoting is not required in the factorization process, once the ordering is
known, the precise locations of all fill entries in L can be predicted in advance*, so that
a data structure can be set up to accommodate L before any numeric computation
begins. This data structure need not be modified during subsequent computations,
which is a distinct advantage in terms of efficiency. The process by which the nonzero
structure of L is determined in advance is called “symbolic factorization.” Thus, the
direct solution of Az = b consists of the following sequence of four distinct steps:

1. Ordering. Find a good ordering P for A; that is, determine a permutation
matrix P so that the Cholesky factor L of PAPT suffers little fill.

2. Symbolic factorization. Determine the structure of L and set up a data struc-
ture in which to store A and compute the nonzero entries of L.

3. Numeric factorization. Insert the nonzeros of A into the data structure and
compute the Cholesky factor L of PAPT.

4. Triangular solution. Solve Ly = Pb and LTz = y, and then set z = PT2.

Note that the first two steps are entirely symbolic, involving no floating-point
computation. Several software packages [17], [27], [29] for serial computers use this
basic approach to solve sparse symmetric positive definite linear systems. We now
briefly discuss algorithms and methods for performing each of these steps on sequential
machines.

2.1. Ordering. As might be expected from the combinatorial nature of the or-
dering problem for sparse factorization, graph theory has proved to be an extremely
helpful tool in modeling the symbolic or structural aspects of sparse elimination al-
gorithms. The use of a graph theoretic model dates to the early work of Parter [91]
and Rose [97], and has now come to permeate the subject. The graph of an n x n
symmetric matrix A, denoted by G(A), is a labeled undirected graph having n vertices
(or nodes), with an edge between two vertices ¢ and j if the corresponding entry a;;
is nonzero in the matrix. The structural effect of Gaussian elimination on the matrix
is then easily described in terms of the corresponding graph. The fill introduced into
the matrix as a result of eliminating a variable adds fill edges to the corresponding
graph precisely so that the neighbors of the eliminated vertex become a clique. This
fact suggests that fill can be limited, or at least postponed, by eliminating first those
vertices having fewest neighbors (i.e., vertices of lowest degree). The elimination or
factorization process can thus be modeled by a sequence of graphs, each having one

* We assume that exact cancellation never occurs, and thus fill refers to the structural nonzeros
of L, i.e., every location of the factor that is occupied by a nonzero entry at some point in the
factorization.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 423

less vertex than the previous graph but possibly gaining edges, until only one vertex
remains. We will also have occasion to refer to the filled graph, F(A), which is the
graph of A with all fill edges added (i.e., there is an edge between two vertices i and
j of F(A), with ¢ > j, if £;; # 0 in the Cholesky factor matrix L).

The foregoing discussion provides the basis for the minimum degree algorithm,
which is the most successful and widely applicable heuristic developed to date for lim-
iting fill in sparse Cholesky factorization. At each step of the elimination process, this
simple heuristic selects as the next node to be eliminated a node of minimum degree in
the current elimination graph. Despite its simplicity, the minimum degree algorithm
produces reasonably good orderings over a remarkably broad range of problem classes.
Another strength is its efficiency: as a result of a number of refinements over several
years, current implementations are extremely efficient on most problems. George and
Liu [48] review a series of enhancements to implementations of the minimum degree
algorithm and demonstrate the consequent reductions in ordering time.

As might be expected from the “greedy” nature of the algorithm, however, several
weaknesses of the minimum degree ordering heuristic are well documented in the
literature. Experiments in both [24] and [48] illustrate the sensitivity of the quality
of minimum degree orderings to the way ties are broken when there is more than one
node of minimum degree from which to choose. Attempts to make the selection more
intelligent or less myopic, however, have proven to be computationally expensive.
No tie-breaking scheme proposed to date is both effective and efficient, though some
interesting results using deficiency (the number of fill edges created by the elimination
step) to break ties are reported in [15]. Berman and Schnitger [13] show that for a
model problem there exists a minimum degree tie-breaking scheme for which the time
and space complexity of the factorization is worse than that of known asymptotically
optimal orderings. To summarize, minimum degree is, on balance, an effective and
efficient ordering heuristic, but its success is not well understood, and no robust
and efficient way is known for dealing with the wide variability in the quality of the
orderings it produces.

Another effective algorithm for limiting fill in Cholesky factorization is nested
dissection, which is based on a divide-and-conquer paradigm. Let S be a set of
nodes (called a separator) whose removal, along with all edges incident on nodes in
S, divides the graph into at least two remaining pieces. If the matrix is reordered
so that the variables in each piece are numbered contiguously and the variables in
the separator are numbered last, then the matrix will have a bordered block diagonal
nonzero pattern. More importantly, elimination of a node within one of the pieces
cannot introduce fill into any of the other pieces; fill is restricted to the diagonal
blocks and the border [47], [99]. This idea can be applied recursively, breaking the
pieces into smaller and smaller pieces with successive sets of separators, giving a
nested sequence of dissections of the graph. The effectiveness of nested dissection
in limiting fill is highly dependent on the size of the separators used to split the
graph. For highly regular, planar problems (e.g., two-dimensional finite difference or
finite element grids), suitably small separators can usually be found [68], [69]. For
problems in dimensions higher than two, or for highly irregular problems with less
localized connectivity, nested dissection is much less effective. Nevertheless, nested
dissection is important not only for its practical usefulness on suitable problems, but
also for its asymptotically optimal fill properties for certain medel problems, which
serves as a kind of theoretical benchmark for the quality of orderings [39], [60].

424 M.T. HEATH, E. NG, AND B.W. PEYTON

2.2. Symbolic factorization. A naive approach to symbolic factorization is
simply to carry out Cholesky factorization on the structure of A symbolically. How-
ever, such an algorithm would then have the same time complexity as the numeric
factorization itself (i.e., it would require the same number of symbolic operations as
the number of floating-point operations required by the numeric factorization). With
a little care, the complexity of symbolic factorization can be reduced to O(n(L)),
where n(L) denotes the number of nonzeros in L, as follows.

For a given sparse matrix M, define

Struct(M;.) := {k < i | mu # 0},

Struct(M,;) := {k > j | mg; # 0}.

In other words, Struct(M;,) is the sparsity structure of row 7 of the strict lower triangle
of M, and Struct(M,;) is the sparsity structure of column j of the strict lower triangle
of M. For a given lower triangular Cholesky factor matrix L, define the function p as
follows:

~ ._ J min{i € Struct(L.;)}, if Struct(L.;) # 0,
p(j) '_{ 7 ’ otherwise.

Thus, when there is at least one off-diagonal nonzero in column 5 of L, p(5) is the row
index of the first off-diagonal nonzero in that column. It is easy to show that

Struct(La.;) € Struct(Ly p¢;)) U {p(5)}-

Moreover, it can be shown that the structure of column j of L can be characterized
as follows [47]:

Struct(L.;) := Struct(A.;) U | | {Struct(L.:) | p(i) = 5} | — {4i}-

i<j

That is, the structure of column j of L is given by the structure of the lower triangular
portion of column j of A, together with the structure of each column of L whose first
off-diagonal nonzero is in row j. This characterization leads directly to an algorithm
for performing the symbolic factorization, shown in Fig. 1, in which the sets R; are
used to record the columns of L whose structures will affect that of column j of L.
This simple symbolic factorization algorithm is already very efficient, with time
and space complexity O(n(L)), but it is subject to further refinement. For example,
if R; contains only one column, say %, and Struct(A,;) C Struct(L.;), then clearly
Struct(Ly;) = Struct(L.;) — {j}. This shortcut can be used to speed up the symbolic
factorization algorithm and to reduce the storage requirements using a technique
known as “subscript compression” [104]. In fact, these conditions are often satisfied
when j is relatively large, as the columns tend to become more dense toward the end of
the factorization. An efficient implementation of the symbolic factorization algorithm
is presented in [47]. With its low complexity and an efficient implementation, the
symbolic factorization step usually requires less computation than any of the other
three steps in solving a symmetric positive definite system by Cholesky factorization.
Once the structure of L is known, a compact data structure is set up to accom-
modate all of its nonzero entries. Since only the nonzero entries of the matrix are

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 425

for j:=1tondo
Rj = 0
for j:=1tondo
S := Struct(A,;)
for i € R; do
S := SUStruct(L.;) — {5}
Struct(Ly;) := S
if Struct(L.;) # 0 then
p(j) := min {¢ € Struct(L,;)}
Ry(j) = Rp(y) U {3}

FiG. 1. Symbolic factorization algorithm.

stored, additional indexing information must be stored to indicate the locations of the
nonzeros. Although this integer overhead potentially rivals the space requirements for
the nonzeros themselves, in practice the subscript compression technique mentioned
above greatly reduces this overhead storage [46].

2.3. Numeric factorization. In its simplest form, Gaussian elimination on a
dense matrix A can be described as a triple nested loop around the single statement

Qij = Qi — (aikakj)/akk~

The loop indices , 7, and k can be nested in any order, each with a different pattern of
memory access. This freedom can be exploited to take better advantage of particular
architectural features of a given machine (cache, virtual memory, vectorization, etc.)
[21]. Specializing to Cholesky factorization, where symmetry is exploited so that only
the lower triangle of the matrix is accessed, we see that there are three basic types of
algorithms, depending on which of the three indices is placed in the outer loop:

1. Row-Cholesky. Taking i in the outer loop, successive rows of L are computed
one by one, with the inner loops solving a triangular system for each new row
in terms of the previously computed rows.

2. Column-Cholesky. Taking j in the outer loop, successive columns of L are
computed one by one, with the inner loops computing a matrix-vector product
that gives the effect of previously computed columns on the column currently
being computed.

3. Submatriz-Cholesky. Taking k in the outer loop, successive columns of L are
computed one by one, with the inner loops applying the current column as a
rank-1 update to the remaining partially-reduced submatrix.

These three families of algorithms have markedly different memory reference pat-
terns in terms of which parts of the matrix are accessed and modified at each stage
of the factorization (see Fig. 2), and each has its advantages and disadvantages in
a given context. For sparse Cholesky factorization, row-Cholesky is seldom used be-
cause of the difficulty in designing a compact row-oriented data structure for storing
the nonzeros of L that can also be accessed efficiently in the numerical factorization
phase [71]. Efficient implementation of sparse row-Cholesky is even more difficult on
vector and parallel architectures since it is difficult to vectorize or parallelize sparse
triangular solutions (see discussions in §§2.4 and 3.5). We will therefore concentrate
our attention on the two column-oriented methods, column-Cholesky and submatrix-
Cholesky.

426 M. T. HEATH, E. NG, AND B.W. PEYTON

7 row-Cholesky column-Cholesky submatrix-Cholesky

used for modification

I . odified

FIG. 2. Three forms of Cholesky factorization.

In column-oriented Cholesky factorization algorithms, there are two fundamental

types of subtasks:

1. cmod(j, k) : modification of column j by column k, k < j,

2. cdiv(j) : division of column j by a scalar.
These sparse matrix operations correspond to saxpy and sscal in the terminology
of the BLAS [64] for dense linear algebra, but we use different notation to emphasize
that we are dealing with their sparse counterparts. In terms of these basic operations,
high-level descriptions of the column-Cholesky and submatrix-Cholesky algorithms
are given in Figs. 3 and 4.

for j =1tondo
for k € Struct(L;«) do
cmod(j, k)
cdiv(j)

FI1G. 3. Sparse column-Cholesky factorization algorithm.

for k=1 ton do
cdiv(k)
for j € Struct(L.x) do
cmod(j, k)

FiG. 4. Sparse submatriz-Cholesky factorization algorithm.

In column-Cholesky, column j of A remains unchanged until the index of the outer
loop takes on that particular value. At that point the algorithm updates column j with
a nonzero multiple of each column k < j of L for which ¢;; # 0. After all column
modifications have been applied to column j, the diagonal entry ¢;; is computed
and used to scale the completely updated column to obtain the remaining nonzero
entries of L,;. Column-Cholesky is sometimes said to be a “left-looking” algorithm,
since at each stage it accesses needed columns to the left of the current column in
the matrix. It can also be viewed as a “demand-driven” algorithm, since the inner

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 427

products that affect a given column are not accumulated until actually needed to
modify and complete that column. It is also sometimes referred to as a “fan-in”
algorithm, since the basic operation is to combine the effects of multiple previous
columns on a single subsequent column. The column-Cholesky algorithm is the most
commonly used method in commercially available sparse matrix packages [17], [27],
[29].

In submatrix-Cholesky, as soon as column k is completed, its effects on all sub-
sequent columns are computed immediately. Thus, submatrix-Cholesky is sometimes
said to be a “right-looking” algorithm, since at each stage columns to the right of
the current column are modified. It can also be viewed as a “data-driven” algorithm,
since each new column is used as soon as it is completed to make all modifications to
all the subsequent columns it affects. It is also sometimes referred to as a “fan-out”
algorithm, since the basic operation is for a single column to affect multiple subse-
quent columns. We will see that these characterizations of the column-Cholesky and
submatrix-Cholesky algorithms have important implications for parallel implementa-
tions.

Having stated the “pure” column- and submatrix-Cholesky algorithms, we note
that many variations and hybrid implementations of these schemes are possible, which
essentially amount to different ways of amalgamating partial results. For example,
frontal methods [61], and their generalizations to multifrontal methods [28], are essen-
tially variations on submatrix-Cholesky. But while the cmod(j, k) updating operations
are computed in the order shown in Fig. 4, they are not applied directly to the column
j being updated. Instead they are accumulated and passed on through a succession
of update matrices until finally they are incorporated into the target column. The
reason for this approach is that in the frontal method most of the matrix is kept out
of core on auxiliary storage, with only a relatively small “frontal” matrix representing
currently “active” columns kept in main memory. Similarly, the out-of-core version of
the multifrontal method can be implemented so that only a few small “frontal” ma-
trices are kept in main memory. To minimize I/O traffic, access to inactive portions
of the matrix, both columns already completed and columns yet unreduced, must be
kept to a minimum. For further details on multifrontal methods, see [28] or [78].

One of the main motivations for frontal and multifrontal methods is that the
frontal matrices can be treated as dense, and therefore we can take advantage of
vectorization more readily on hardware that supports it [3], [5], [11], [19]. Moreover,
the localization of memory references in these methods is advantageous in exploiting
cache [100] or on machines with virtual memory and paging [76].

Before leaving the general topic of sparse factorization, we introduce two addi-
tional concepts that are useful in analyzing and efficiently implementing sparse fac-
torization algorithms. A supernode is a set of contiguous columns in the Cholesky
factor L that share essentially the same sparsity structure. More specifically, the set
of contiguous columns j,j + 1,---,j + ¢ constitutes a supernode if Struct(L,) =
Struct(Ly x4+1) U{k + 1} for j < k < j+t — 1. A set of supernodes for an example
matrix is shown in Fig. 5. Columns in the same supernode can be treated as a unit
for both computation and storage. Supernodes have long played an important role in
enhancing the efficiency of both the minimum degree ordering [50] and the symbolic
factorization [104]. More recently, supernodes have been used to organize sparse fac-
torization algorithms around matrix-vector or matrix-matrix operations that reduce
memory traffic by making more efficient use of vector registers [5], [11] or cache [3],
[100]. The cited reports document the substantial gains in performance obtained by

428 M. T. HEATH, E. NG, AND B.W. PEYTON

-

N [elo B [PNVUIN T
XX
XXX [

XXX X &

XXXX ©&

X

X Ok

o

©0
XX

°e

X

°
0
XX
XXX

XX XX

X

® & X XX
XXX @ XX
o0 OeXX K
o0 0 X
o XX
XX o

N
N
X
XXX _X_©

XX 13
exXH 4
X

XXX
XXXX =
X

w
w
X
X
X

w
©
XX XX
X
® & XXX

o e X
X|®(® @ X
X|ele® @ X| X
00
LN]
[X N]
LN]

S
o
X

[X

00 XXXX

XXX @ XX
o0 e XX ©
e e X

X|o ® @ ® 0 oX
X|®o ® @ o @ oX|
X
(]

X oo eXX
e0eeXX OW

X
o|X
oxX 1
oo X X

[] o0 0|X0 000 XX

X 0 O0X0 0000 XX
X[X|® ® 0|0 ® @ X 00000000 XX
49 X|X|® ® ojl0 @@ X eooeecee0oe e XX

LN) ® 0 X
(XN]

'
o
XXX
XXX
o XXX

o000 X
e 0 eol0 o X

S
3
XXX
XXX
XXX e

1 2 3 4
1234567890123456789012345678901234567890123456789

FIG. 5. Supernodes for T x 7 nine-point grid problem ordered by nested dissection. (X and
refer to nonzeros in A and fill in L, respectively. Numbers over diagonal entries label supernodes.)

using these techniques.

The elimination tree T(A) [71], [103] associated with the Cholesky factor L of a
given matrix A has {1,2,---,n} as its node set, and has an edge between two vertices
i and j, with ¢ > j, if i = p(j), where p is the function defined in § 2.2. In this case,
node i is said to be the parent of node j, and node j is a child of node i. Liu [79]
discusses the many uses of elimination trees in sparse matrix computations. Among
these is their use in managing the frontal and update matrices in the multifrontal
method. Another key role is in the analysis of data dependencies that must be ob-
served when factoring the matrix, which has obvious implications for implementing
the factorization in parallel. Figure 6 shows the elimination tree for the matrix shown
in Fig. 5.

Let T'[j] denote the subtree of T'(A) rooted at node j. It is shown in [71] and
[103] that the set of columns/nodes that modify column/node j (namely, the set
Struct(L;.)) is a subset of T'[j] denoted by T’.[j]. Moreover, T.[j] is also a subtree of
T(A) rooted at node j. For this reason, T [j] is called the row subtree of j. It follows
that column j can be completed only after every column in T;.[j] has been computed.
It also follows that the columns that receive updates from column j are ancestors of
j in T'(A). In other words, the node set Struct(L.;) is a subset of the ancestors of j

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 429

31

(666060600)

11 12 16 17 19 20 23 24 26 27

Fi1G. 6. Elimination tree for the matriz shown in Fig. 5. Ovals enclose supernodes that contain
more than one node. Nodes not enclosed by an oval are singleton supernodes. Boldface numbers
label supernodes.

in the tree.

2.4. Triangular solution. There is relatively little to be said about the trian-
gular solution step. The structure of the forward and back substitution algorithms
is more or less dictated by the sparse data structure used to store the triangular
Cholesky factor L and by the structure of the elimination tree T'(A). Because tri-
angular solution requires many fewer floating-point operations than the factorization
step that precedes it, the triangular solution step usually requires only a small fraction
of the total time to solve a sparse linear system on conventional sequential computers.
These proportions can change, however, with more advanced computer architectures,
since it is often more difficult to take full advantage of vector or parallel processors in
performing triangular solutions. We will discuss these issues in greater detail in §3.5.

3. Parallel algorithms. In this section we summarize the progress to date in
adapting direct methods for the solution of sparse symmetric positive definite lin-

430 M. T. HEATH, E. NG, AND B.W. PEYTON

ear systems to perform well on the various parallel architectures that have become
available in recent years. The most widely available and commercially successful
parallel architectures thus far fall into three rough categories: shared-memory MIMD
(multiple-instruction, multiple-data stream) architectures typically having 30 or fewer
processors, distributed-memory MIMD architectures typically having on the order of
32 to 1024 processors, and SIMD (single-instruction, multiple-data stream) archi-
tectures typically having tens of thousands of processors. Some machines have an
additional level of parallelism in the form of vector units within each individual pro-
cessor. Parallel architectures display an enormous variation in the number and power
of processors, organization of memory, control mechanisms, and synchronization and
communication overhead, so it is not surprising that they demand a comparable range
of algorithmic techniques to achieve good efficiency in the various settings. Never-
theless, we will try to concentrate on general principles that are widely applicable,
while focusing occasionally on implementation issues that may arise in a more specific
context.

In exploiting parallelism to solve any problem, the computational work must be
broken into a number of subtasks that can be assigned to separate processors. The
most appropriate number and size of these tasks (e.g., a small number of large tasks
or a large number of small tasks) depend on the target parallel architecture and the
levels at which parallelism naturally occurs in the problem. The term often used to
denote the size of computational tasks in a parallel implementation is granularity.
In sparse factorization, as in most problems, a number of levels of computational
granularity can potentially be exploited. Liu [72] uses the elimination tree to analyze
the following levels of parallelism in Cholesky factorization:

1. fine-grain parallelism, in which each task is a single floating-point operation
or flop, i.e., multiply-add pair,

2. medium-grain parallelism, in which each task is a single cmod or c¢div column
operation,

3. large-grain parallelism, in which each task is the completion of all columns in
a subtree of the elimination tree.

Here, large-grain parallelism refers to the independent work done in computing
columns in disjoint subtrees. Consider two disjoint subtrees T'[j] and T'[i], where
neither root node is a descendent of the other. All work required to compute the
columns of T'[§] is completely independent of all work required to compute the columns
of T[i]. For example, in Fig. 6 the columns of T[9] (columns 1-9) are completely
independent of the columns of T[18] (columns 10-18). This type of parallelism is
available only in sparse factorization; it is not available in the dense case. But of
course we are not limited to exploiting only parallelism of this nature. There is
much more parallelism to be found at the medium-grain level of the individual cmod
operations. Let j; and j2 be two column indices whose subtrees T'[j;1] and T'[jz] are not
disjoint. Suppose that k; and k2 are indices of columns that must be used to modify
columns j; and jo, respectively. Clearly, the updates cmod(j1,k;) and cmod(jz, k2)
can be performed in parallel. This is the primary source of parallelism in the dense
case, and it is an extremely important source of parallelism in the sparse case as well.

While we will have a great deal to say about algorithms that employ the first
two sources of parallelism, we will have little to say about finer grain parallelism.
Fine-grain parallelism can be exploited in two distinctly different ways:

1. vectorization of the column operations cmod and cdiv on vector supercom-
puters,

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 431

2. parallelizing the rank-1 update that constitutes a major step of submatrix-
Cholesky on an SIMD machine.
Exploiting vectorization requires some changes and refinement of the basic sequential
algorithms (3], [5], [11], [19], but it does not require changes as extensive and basic
as those required to exploit higher levels of parallelism. Developing parallel sparse
submatrix-Cholesky algorithms for SIMD machines presents a more difficult challenge,
and research on this topic is still in its infancy [54].

To date, implementation on parallel architectures has caused no fundamental
change in the overall high-level approach to solving sparse symmetric positive defi-
nite linear systems. On parallel machines the same sequence of four distinct steps
is performed: ordering, symbolic factorization, numeric factorization, and triangular
solution. However, both shared-memory and distributed-memory MIMD machines
require an additional step to be performed: the tasks into which the problem is
decomposed must be mapped onto the processors. Obviously, one of the goals in
mapping the problem onto the processors is to ensure that the work load is balanced
across all processors. Moreover, it is desirable to schedule the problem so that the
amount of synchronization and/or communication is low. On shared-memory ma-
chines the scheduling problem is relatively easy to deal with: a shared queue of tasks
can be used to achieve dynamic load balancing. Dynamic load balancing tends to be
inefficient on current distributed-memory machines, however, so a static assignment
of tasks to processors must be determined in advance.

We now proceed to discuss the progress made in developing parallel algorithms
for each of these five steps.

3.1. Ordering. There are two distinct issues associated with the ordering prob-
lem in a parallel environment:
1. Determining an ordering appropriate for performing the subsequent factor-
ization efficiently on the parallel architecture in question.
2. Computing the ordering itself in parallel.

3.1.1. Orderings for parallel factorization. On sequential or vector ma-
chines, while there are sometimes other secondary considerations, the primary goal of
reordering the matrix is simply to lower the work and space required for the factor-
ization step. Experience and intuition suggest that the two almost inevitably rise and
fall together, so that the goal can be further simplified to lowering fill only. Simply
lowering fill, however, may not provide an ordering appropriate for parallel factoriza-
tion.

Orderings for a tridiagonal system serve to illustrate the point. Let us call the
ordering that preserves the tridiagonal structure the natural ordering. Under the
natural ordering, the matrix incurs no fill during factorization. In fact, both the fill
and work are minimized. Nevertheless, the natural ordering is the poorest possible
ordering for parallel factorization. First, note that the natural ordering results in an
elimination tree that is a chain (see Fig. 7). Indeed, there is no large-grain (subtree-
level parallelism) to exploit. Moreover, each column j, 2 < j < n, requires a single
column modification cmod(j,j — 1) before it can be completed with the cdiv(j) oper-
ation, then and only then becoming available for the subsequent column modification
cmod(j + 1,5). Thus, there is no medium-grain (column-modification level) paral-
lelism to exploit. There is also no fine-grain parallelism to exploit. Thus, there is
no parallelism at all to exploit in the floating-point computation; the floating-point
work is strictly sequential. But it is well known that even-odd reduction schemes for
these systems, though they introduce more work, also greatly increase the parallelism.

432 M.T. HEATH, E. NG, AND B.W. PEYTON

@
- - ©®
1 X
2 | xx ®
Natural order 3 X X
4 X X O,
5 X X
6 X X ©,
7 X X
: : ©
®
1 X
2 X (7)
3 X
Nested dissection 4 X (3) (6)
5 | x x X
6 X X X ONONONO
7 XX o ex

FI1G. 7. Factor matrices and corresponding elimination trees for tridiagonal matriz using natural
ordering and nested dissection reordering (even-odd reduction). X and e refer to original nonzeros
and fill nonzeros, respectively.

These solution schemes are equivalent to reordering the system with a nested dissec-
tion ordering (again, see Fig. 7). Using the nested dissection ordering, the height of
the elimination tree is approximately log, n, which is much shorter than the height
n — 1 obtained using the natural ordering. While the total floating-point work (ig-
noring square roots) increases by a factor between two and three, parallel completion
time using the nested dissection ordering is ideally O(logn) compared with O(n) using
the standard ordering.

This example is an extreme illustration of how inappropriate the goal of fill-
reduction can be in the parallel setting. However, there have been no systematic
attempts to develop metrics for measuring the quality of parallel orderings. Thus far,
most work on the parallel ordering problem has used elimination tree height as the
criterion for comparing orderings, with short trees assumed to be superior to taller
trees [62], [65], [77], [80], but with little more than intuition as a basis for this choice.
For massively parallel SIMD machines, it has been suggested that small elimination
tree height may indeed be a suitable goal [54], [65]. This contention is based on the
assumption of a submatrix-Cholesky parallel factorization algorithm that requires
roughly uniform time for the elimination of each column. It remains to be shown that
this assumption is in fact realized for sparse problems on available SIMD machines.
The assumption is more doubtful on other parallel architectures. Moreover, it is worth
noting that the problem of ordering a matrix to minimize its elimination tree height,
like the problem of minimizing fill, is a very difficult combinatorial problem [93]. In
[77], Liu suggests some more realistic measures of parallel completion time, but there
is not yet an agreed upon objective function for the parallel ordering problem.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 433

3.1.2. Computing the ordering in parallel. A separate problem is the need
to compute the ordering in parallel on the same machine on which the other steps
of the solution process are to be performed. The highly sophisticated ordering algo-
rithms discussed earlier, namely, minimum degree and nested dissection, are extremely
efficient and normally constitute only a small fraction of the total execution time in
solving a sparse system on sequential computers. Despite the limited potential for
any gain in execution time, however, there is still motivation for adapting these al-
gorithms, or developing new ones, to run on parallel architectures, especially in the
case of distributed-memory machines. In particular, a distributed implementation of
the ordering step is necessary to take advantage of the large amount of local memory
available on such machines in solving very large problems. Otherwise, the ordering
step will remain a bottleneck limiting the size of problems that can be solved on
distributed-memory parallel architectures. We now consider some of the difficulties
in performing the ordering step efficiently in parallel.

The basic minimum degree algorithm has an inherently sequential outer loop,
with a single node eliminated at each stage. Multiple elimination of independent
nodes of minimum or near-minimum degree [70], [92] could potentially be exploited
to permit parallel execution. Moreover, the search for nodes of minimum degree and
the necessary graph transformations and degree updates could conceivably be spread
across multiple processors. However, there are several problems with this approach.
First, it is not clear that minimum degree orderings would be particularly appropriate
for parallel factorization. For example, applying the basic minimum degree algorithm
to the tridiagonal system discussed above produces an elimination tree that is a chain,
and thus the resulting elimination tree height would be at least [n/2]. Duff et al.
[26] contains several suggestions for dealing with this problem, the most promising of
which increases the size of the independent sets by allowing all nodes whose degrees
are within a constant factor a of the current minimum degree, where 1.1 < a < 1.5,
to be candidates for inclusion in the next independent set. A different approach
for computing independent sets for parallel elimination is described in [66]. Second,
the highly successful enhancements incorporated into current implementations of the
method [48] have resulted in an intricate and extremely efficient algorithm: there
is very little work to be partitioned among the processors, and that work is of a
highly irregular and somewhat sequential nature. Nevertheless, an algorithm based
on this approach has been developed for use on a massively parallel SIMD machine
[54]. It is possible that such an approach could also be reasonably effective on some
shared-memory MIMD machines, but we know of no such implementations. It is
doubtful, however, that this approach would have acceptable efficiency on distributed-
memory MIMD machines, and we are not aware of any attempt to produce such an
implementation. It is ironic that much of the research on parallel algorithms for sparse
factorization has been performed on the latter class of machines, yet it is on this class
of machines that the ordering problem seems most difficult to address.

The standard nested dissection ordering heuristic [45] would appear to offer much
greater opportunity for an effective parallel implementation. The divide-and-conquer
paradigm introduces a natural source of parallelism, both in computing the ordering
and in subsequently using it for the factorization step, due to the independence of the
successive pieces into which the graph is split. Unfortunately, there are also difficulties
with this approach. First, the nested dissection heuristic (based on the generation
of level structures) is effective in reducing fill for a much more restricted class of
problems than minimum degree. Second, the divide-and-conquer approach provides

434 M. T. HEATH, E. NG, AND B.W. PEYTON

only a logarithmic potential speedup, with relatively little parallelism in the first few
levels of the dissection. Third, for a distributed-memory implementation there is
something of a bootstrapping problem: in order to utilize all of the local memory
and simultaneously minimize interprocessor communication costs, the original graph
should be distributed across the processors in some intelligent way before the dissection
process is begun. Finally, nested dissection is similar to minimum degree in that it
enjoys a very efficient sequential implementation, and its primary subtask (generating
a level structure via breadth-first search) is inherently serial.

To summarize this discussion, it is evident that the problem of computing effec-
tive parallel orderings in parallel is very difficult and remains largely untouched by
research efforts to date. We focus our attention in the remainder of this section on
the effectiveness of various ordering strategies in facilitating the subsequent paral-
lel factorization, with little regard for whether the ordering can itself be computed
effectively in parallel.

3.1.3. Parallel ordering algorithms. We now turn our attention to the prob-
lem of ordering for parallel factorization and/or executing the ordering algorithms
on the target parallel machine. As noted above, these problems are very difficult to
deal with, and much work remains to be done before mature, reliable algorithms and
software become available.

Tree restructuring for parallel elimination. One approach to generating low-fill
orderings that are suitable for parallel sparse factorization is to decouple the reduction
of fill and enhancement of parallelism into separate phases. First a standard ordering
technique, such as minimum degree, is applied to produce a low-fill ordering for the
matrix, then based on this initial ordering an equivalent reordering is produced that
is more suitable for parallel factorization. By “equivalent” we mean an ordering that
generates the same fill edges but may substantially restructure the elimination tree.
Thus, an equivalent ordering is simply a different perfect elimination ordering for the
filled graph F(A) that models the sparsity structure of L determined by the initial
fill-reducing ordering. The effectiveness of this approach depends in part on whether
there is in fact a good parallel ordering within the class of orderings equivalent to
the initial low-fill ordering. The tridiagonal example cited earlier demonstrates that
there may be no such ordering. On the other hand, since some of the parallelism
in sparse factorization is due specifically to sparsity, low-fill would seem to enhance
potential parallelism rather than suppress it. Very little is known, however, about
the conditions under which good equivalent parallel orderings might exist for realistic
classes of problems.

Implementation of the equivalent ordering approach requires an initial fill-reducing
ordering, a mechanism for restructuring the elimination tree, and a computable crite-
rion for determining when a given reordering will in fact reduce the subsequent parallel
factorization time. In [77], Liu uses tree rotations [73] to find equivalent orderings
that reduce elimination tree height, where the initial ordering used is a minimum
degree ordering. He reports substantial reductions for a number of test problems.
In the same report, Liu proves that the Jess and Kees algorithm [62] produces an
equivalent ordering whose associated elimination tree height is minimum among all
equivalent orderings. In [80] Liu and Mirzaian present a practical O(n(L)) implemen-
tation of the Jess and Kees algorithm. Tests comparing Liu’s tree rotations heuristic
with their implementation of the Jess and Kees algorithm showed that the heuristic
almost always produces a minimum-height tree. This interesting phenomenon is not
fully understood. Their timings showed the tree rotations heuristic to be far more

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 435

efficient than their implementation of the Jess and Kees algorithm. In [67] a more
efficient implementation of the Jess and Kees algorithm is presented. Roughly speak-
ing, the latter implementation is linear in the number of compressed subscripts used
to represent the structure of L. Tests of this implementation indicate that a Jess
and Kees ordering can usually be obtained in roughly the same amount of time as an
ordering using the tree rotations heuristic.

Of course, the height of the elimination tree may not be a very accurate indicator
of the actual parallel factorization time. Moreover, elimination trees produced by
minimum degree orderings typically have height already close to the minimum, so
that the potential gain from restructuring may be quite small. Perhaps the primary
problem with this approach is that it fails to get at the heart of the problem. Our
intuition based on limited experience is that equivalent orderings have the capacity
to modify only relatively minor features of the parallelism possessed by the initial
fill-reducing ordering. Thus, this approach may be able to fine-tune an ordering for
use in parallel factorization, but the key question of how much parallelism might be
available in the original underlying problem goes unanswered.

Nested dissection and graph partitioning heuristics. Given the natural divide-and-
conquer parallelism exhibited by nested dissection, several researchers have explored
various implementations of nested dissection in an effort to generate good orderings
for parallel factorization. The effectiveness of nested dissection in reducing fill and
enhancing parallelism depends on graph partitioning heuristics to find small node
separators for the graph. Some of the graph partitioning heuristics employed in fact
produce edge separators, which then must be converted into node separators.

The basic scheme in nested dissection is as follows:

1. Use a graph partitioning heuristic to obtain a small edge separator of the
graph, or more specifically, a small set of edges whose removal from the graph
separates the graph into two vertex sets of roughly equal size.

2. Transform the small edge separator into a small node separator, or more
specifically, a small set of nodes whose removal separates the graph into two
portions of roughly equal size.

3. Number the nodes of the separator last in the ordering, and recursively apply
steps 1 and 2 to the two subgraphs produced in step 2.

We now review some specific implementations of this approach.

Level structures. In [44] the adaptation of an automatic nested dissection algo-
rithm [45] for execution on distributed-memory MIMD machines is discussed. The
algorithm first generates a level structure by means of a breadth-first search. The
choice of starting node in the search can be crucial; see [45] for details. Then one of
the middle levels is chosen as a node separator, subdividing the problem into two or
more independent subgraphs, to which the process is applied recursively. This method
generates a node separator directly, and therefore omits step 1 from the general scheme
given above. An advantage of this method is that it is simple and generally inexpen-
sive to compute. But the automatic nested dissection heuristic is generally not as
effective at reducing fill as the minimum degree heuristic, and thus the quality of the
ordering is poorer on many, but not all, problems. As with most nested dissection
algorithms, the algorithm for finding a separator appears to be inherently sequential.
Thus, there is little parallelism to exploit until the ordering algorithm is several levels
down into the recursion, where there are adequately many independent subproblems
to work on.

Kernighan—-Lin. Gilbert and Zmijewski [55] use the Kernighan-Lin heuristic [63]

436 M.T. HEATH, E. NG, AND B.W. PEYTON

to generate a small edge separator. Associated with an edge separator are wide and
narrow node separators, defined as follows. Let P; and P, be the two sets of nodes
into which the edge separator partitions the graph. Let V; contain the nodes in P,
incident on at least one edge in the separator set, and define Vo C P; in the same
way. The set V = V] U V; is the associated wide separator and both V; and V5 are
the associated narrow separators. Gilbert and Zmijewski ran tests using both kinds
of separators and report ordering times and factorization times on an Intel iPSC /1
hypercube.

Fiduccia—Mattheyses. Leiserson and Lewis [65] use a variant of the Kernighan—Lin
heuristic due to Fiduccia and Mattheyses [31] to generate edge separators. They use
a greedy heuristic to generate node separators from edge separators. Their heuristic
is guaranteed to find a minimal node separator among the nodes belonging to V' =
V, UVs. In their tests they use elimination tree height to compare the quality of their
orderings with those obtained by using tree rotations to reduce the elimination tree
height of minimum degree orderings. They report fairly substantial and consistent
reductions in tree height for their test problems. However, they did not implement
their algorithm on a parallel machine; all their tests were run on an unspecified
sequential machine and no timings results were reported.

Spectral separators. Pothen, Simon, and Liou [95] study the use of spectral par-
titions [32], [33] in the framework described above. To generate an edge separator,
they first compute the eigenvector y associated with the smallest positive eigenvalue
of the Laplacian matrix associated with the G(A). They use an implementation of
the Lanczos algorithm to compute the required eigenvector for general sparse graphs.
Then the median entry y., of ¥ is found, and the vertices in P; are taken to be those
corresponding to entries y; of y for which y; < ym, while the vertices in P, are those
corresponding to entries y; of y for which y; > ym. The authors use matching theory
for bipartite graphs, in particular the Dulmage-Mendelsohn decomposition, to gener-
ate from the edge separator a minimum-cardinality node separator [94]. Thus, their
bipartite-matching method for transforming an edge separator into a node separator
is optimal in the sense that it minimizes the size of the node separator over all possi-
ble node separators that can be obtained from the given edge separator (i.e., over all
separators contained in the set of nodes incident on the separator edges). The report
cited here does not include statistics for complete nested dissection orderings based
on this technique; it includes statistics for the top-level separator only. Since most of
the time is spent performing Lanczos iterations, which can be parallelized in a fairly
straightforward manner, their method should run efficiently in parallel even in the
top few levels of the nested dissection recursion.

A hybrid approach. In [74] and [75] Liu presents a hybrid approach that combines
elements of both the minimum degree and nested dissection algorithms. The primary
emphasis of the two papers is simply to produce improved fill-reducing orderings, but
the application of the method to parallel factorization is noted in both papers. The
method proceeds as follows. After a standard minimum degree ordering algorithm is
initially applied to the problem, a “middle” separator determined by the minimum
degree ordering is chosen. A technique based on matching theory for bipartite graphs
is then used to improve (i.e., shrink) this separator. The nodes of the new separator
are numbered last in the ordering, and then the process is applied recursively to the
subproblems remaining to be ordered.

This method generates a nested dissection ordering (a top-down ordering), but
uses a minimum degree ordering (a bottom-up ordering), along with some matching

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 437

theory, to obtain the separators. Thus, it is a hybrid of two very different ordering
techniques. Again, computing the ordering in parallel with this approach appears to
be very difficult. However, the timings and ordering statistics reported indicate that
it obtains good orderings in a reasonably efficient manner on a sequential machine.

3.2. Task partitioning and scheduling.

3.2.1. Shared-memory MIMD machines. In implementing sparse column-
Cholesky on a shared-memory MIMD machine, the problem of partitioning the fac-
torization into tasks for concurrent execution on multiple processors is fairly simple.
Each column j corresponds to a task Tcol(j) defined by

Tcol(j) := {cmod(j, k) | k € Struct(L;.)} U {cdiv(j)}.

That is, T'col(j) consists of all column modifications, as well as the final scaling op-
eration, to be applied to column j. The tasks T'col(j) are maintained in a queue
and doled out to processors as they complete previous tasks. Since all necessary data
are globally accessible by all processors, there need be no concern over which spe-
cific processor picks up a given task. This approach achieves good load balancing
dynamically, an ideal arrangement for the highly irregular task profile usually gen-
erated by sparse problems. In short, uniform access to main memory permits the
use of dynamic load balancing and a fairly simple restructuring of a sequential sparse
Cholesky algorithm to obtain a good parallel algorithm. See §3.4.1 and [41], [88] for
parallel implementations of sparse Cholesky based on these ideas.

Efficient scheduling of the tasks Tcol(j) on shared-memory MIMD machines is
also easily accomplished. An ordering of the elimination tree is a topological ordering
if each node is numbered higher than all of its descendants. Performance usually is
not very sensitive to which topological ordering is used to schedule the column tasks,
and it is often adequate to use the fill-reducing ordering to schedule the tasks. In this
case, the task queue @ is given by

Q := {Tcol(1), Tcol(2),-- -, Tcol(n)}.

However, scheduling columns by their height in the elimination tree usually improves
performance by reducing synchronization delays, as shown in [88]. The ordering of the
elimination tree shown in Fig. 8 is particularly appropriate. Scheduling the column
tasks in this manner is especially worthwhile, since the overhead required to do so is
trivial—a single n-vector computed in O(n) time. A more dynamic queue management
strategy is to initialize the queue to contain only the tasks corresponding to the leaf
nodes, with additional column tasks appended to the queue after their descendants
have been completed.

3.2.2. Distributed-memory MIMD machines. The situation is much more
difficult on distributed-memory MIMD machines, the target architecture for much of
the algorithm development for parallel sparse factorization reported in the literature.
On these machines, the lack of globally accessible memory means that issues concerned
with data locality are dominant considerations. Currently, there is no efficient means
of implementing dynamic load balancing on these machines for problems of this type.
Thus, a static assignment of tasks to processors is normally employed in this setting,
and such a mapping must be determined in advance of the factorization, based on the
tradeoffs between load balancing and the cost of interprocessor communication.

Elimination trees. As we have seen, the elimination tree contains information on
data dependencies among tasks and the corresponding communication requirements.

438 M. T. HEATH, E. NG, AND B.W. PEYTON

OROmOEOROmOmO

®
®

(3 9 G 9
(30 Q))
(29) (26) () (28)
(7 D (19 (20 2y (22 (23 D
ONONONONONONONONONONORORORONONT

®

FIG. 8. A good ordering of column tasks in task queue used by parallel column-Cholesky algo-
rithm for shared-memory MIMD machines.

Thus, the elimination tree is an extremely helpful guide in determining an effective
assignment of columns (and corresponding tasks) to processors in the distributed-
memory case. In attempting to compute the elimination tree, however, we appear to
be confronted by a bootstrapping problem: prior to symbolic factorization, we do not
yet know the structure of L on which the definition of T'(4) is based. Fortunately,
T(A) can be generated directly from the structure of A by an extremely efficient
algorithm [79]. It is desirable to compute the elimination tree in parallel, but again we
face the recurring problem of having very little work to distribute over the processors.
For large problems, if a single processor cannot store the adjacency structure of A,
then the structure of A must be distributed among the processors, which also requires
distributed computation of the elimination tree. In [110], Zmijewski and Gilbert
present an algorithm for computing the elimination tree in parallel on a distributed-
memory multiprocessor. Roughly speaking, their algorithm proceeds as follows. Each

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 439

processor uses its portion of the adjacency structure of A to compute a “local” version
of the elimination tree. In essence, this “local” tree contains in a compressed form
the contribution of each processor’s local adjacency list to the final elimination tree.
The final phase of the algorithm combines these “local” trees to obtain the final
elimination tree. All communication associated with the algorithm is restricted to
this final “combining” operation. In the experiments reported in [110], the parallel
algorithm takes considerably more time than the sequential algorithm, though the
differences are not unreasonable.

Mapping the problem onto the processors. After the elimination tree has been
generated, the next step is to use it in mapping the columns onto the processors.
The primary goals of the mapping are good load balance and low interprocessor
communication. These goals can be in conflict, however, especially for highly irregular
problems.

In the early work on this problem, successive levels in the elimination tree were
wrap-mapped to the processors, as shown in Fig. 9. This results in good load bal-
ancing for the model problem, but it also often results in unnecessarily high message
volume. The “subtree-to-subcube” mapping, introduced in [49], does an excellent
job of reducing communication while maintaining good load balance for model grid
problems and other problems with similar regularity in their structure. Although the
use of subcubes is specific to hypercube architectures, a similar processor clustering
concept is applicable to most distributed-memory architectures.

The basic idea is quite simple. If P is the number of processors, select an ap-
propriate set of P subtrees of the elimination tree, say Ty, T1,---,Tp—1, and then
assign the columns corresponding to T; to processor ¢ (0 < i < P — 1). Where two
subtrees merge together into a single subtree, their processor sets are merged together
and wrap-mapped onto the nodes/columns of the separator that begins at that point.
The root separator is wrap-mapped onto the set of all available processors. Figure 10
shows this mapping for our model problem. George, Liu, and Ng [49] show that for
the fan-out distributed factorization algorithm (see §3.4.2) applied to model problems
defined on k x k grids, communication volume can be limited to O(Pk?), which is
asymptotically optimal. Gao and Parlett [35] prove the slightly stronger result that
the communication volume for each processor is O(k?), which indicates that the over-
head associated with communication is, in some sense, balanced amoug the processors.
Closely related results can be found in two papers by Naik and Patrick [86], [87].

It is quite easy and natural to obtain a good “subtree-to-subcube” mapping for
elimination trees obtained by applying standard nested dissection orderings to model
problems. It is difficult, however, to generalize the subtree-to-subcube mapping to
more irregular problems. Progress in that direction is reported in [38] and [101].
However, an adequate understanding of the tradeoffs between communication and
load balance for more realistic problems will require further study.

3.3. Symbolic factorization. On a distributed-memory MIMD multiproces-
sor, it is necessary to compute Struct(L.;) for every column j of L and to store
Struct(L.;) on the processor responsible for computing that column. Thus, a dis-
tributed algorithm for computing the symbolic factorization is required. The sequen-
tial algorithm for this step is remarkably efficient, and so once again we find ourselves
with little work to distribute among the processors, so that good efficiency is difficult
to achieve in a parallel implementation.

As we have seen, Struct(L,;) depends on Struct(A,;) and on Struct(L.x) for
every k such that p(k) = j (i.e., for every child k£ of j in the elimination tree).

440 M. T. HEATH, E. NG, AND B.W. PEYTON

FiG. 9. A wrap-mapping of the factor columns onto four processors numbered 0, 1, 2, and 3.
Nodes belonging to the same separator in the elimination tree are assigned to the processors in wrap
fashion.

In [42] a column-oriented parallel symbolic factorization algorithm is presented. At
any point during the execution of this algorithm, the number of tasks available for
parallel execution is limited to the number of leaves in the subtree of the elimination
tree induced by nodes whose structures are not yet complete. Limited parallelism,
small task sizes, and communication overhead make it difficult to attain good speed-
ups. Moreover, the subscript compression technique so critical to the space and time
efficiency of the sequential symbolic factorization algorithm can be only partially
realized on these machines. For example, let columns j and j+ 1 of L be two columns
belonging to the same supernode but assigned to two distinct processors, say, po and
p1, respectively. The sequential algorithm exploits the fact that Struct(L. j41) =
Struct(Ly;) — {j + 1} to save both time and storage, as discussed earlier in §2.2. The
parallel algorithm, however, must store Struct(L,;) on processor py and Struct(L ;1)

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 441

Fi1G. 10. Subtree-to-subcube mapping of the columns of the matriz to four processors numbered
0,1, 2, and 3.

on processor p;. Good mappings typically wrap-map columns belonging to the same
supernode. Thus the situation in our illustration is typical—even pervasive; hence
parallel symbolic factorization necessarily requires more total work and storage on
distributed-memory MIMD multiprocessors, although the parallel completion time
will usually still be less. The test results reported in [42] confirm that currently only
modest speed-ups are attainable.

It is possible to improve parallel symbolic factorization on distributed-memory
MIMD multiprocessors if the supernodal structure is known in advance [81]. The key
observation is that it is necessary to compute only the structure of the first column
of each supernode. Processors holding other columns in that supernode do not have
to compute the structures of these columns; all they need to do is to retrieve the
structure from the processor that is responsible for computing the structure of the
first column.

442 M.T. HEATH, E. NG, AND B.W. PEYTON

In [110] Zmijewski and Gilbert present a row-oriented parallel symbolic factor-
ization algorithm that has more potential parallelism, but is more complicated and
requires rearrangement of the output into a column-oriented format. Timing results
for this algorithm are not presented, but the authors indicate that its cost is high.
However, the problems they experimented with were quite small, so it remains unclear
how competitive the algorithm might be on larger problems. In a study [53] that may
be applicable on massively parallel machines, Gilbert and Hafsteinsson show that
using a shared-memory CRCW (concurrent-read, concurrent-write) PRAM (paral-
lel random access machine) model of computation, there is a parallel algorithm for
symbolic factorization that requires O(log® n) time using (L) processors.

3.4. Numeric factorization. On sequential machines, numeric factorization is
typically much more expensive than the other steps in the solution process. As a
result, parallel numeric factorization has received considerably more attention than
the other steps in the parallel solution process. It is also more amenable to paralleliza-
tion than the other solution steps, though it is still much more difficult to deal with
than dense factorization. Development of reasonably good parallel sparse Cholesky
algorithms has taken longer than development of their dense counterparts. The book-
keeping and irregular structure dealt with in the sparse algorithms present a greater
challenge to the algorithm developer; consequently, many more issues and difficulties
remain to be addressed in future work.

Most of the work has been directed towards the development of parallel algorithms
that exploit medium- and large-grain parallelism on shared-memory or distributed-
memory MIMD machines. Some exceptions are work on vectorizing sparse Cholesky
factorization on powerful vector supercomputers [3], [5], [11], [19], work on fine-grained
algorithms for massively parallel SIMD machines [54], and work on systolic-like algo-
rithms for multiprocessor grids [18], [105]. We will restrict our discussion to algorithms
designed for MIMD machines.

3.4.1. Parallel column-Cholesky for shared-memory machines. Of the
three formulations of sparse Cholesky, column-Cholesky is in many ways the simplest
to implement. As noted earlier, it has been more commonly used in sparse matrix
software packages [17], [27], [29] than other methods, such as the multifrontal method.
It is probably better known to a broader audience than the other methods. George
et al. [41] show that the algorithm can be adapted in a straightforward manner to
run efficiently in parallel on shared-memory MIMD machines. For all these reasons
this algorithm is an ideal place to begin our discussion of parallel sparse Cholesky
algorithms.

A parallel algorithm. To facilitate our discussion, we introduce a more detailed
version of the column-Cholesky algorithm shown earlier in Fig. 3. In particular,
we need to indicate how the row structure sets Struct(L;.) are generated by the
algorithm. The more detailed version of the algorithm shown in Fig. 11 requires the
following new notation. Let next(j, k), k < j, be the lowest numbered column greater
than j that requires updating by column k. That is, next(j, k) is the row index of
the first nonzero in column k after row j. (Note that next(j,j) is merely the parent
of j in the elimination tree.) The column index sets S; (1 < ¢ < n) are initially
empty, but when column j is processed, S; = Struct(L;.), as required. For simplicity
and brevity, the algorithm in Fig. 11 does not detail how to handle the case when
there is no “next” column to be updated. The use of the index sets S; and other
implementation details of the serial algorithm are discussed in [47]. However, we note
one particular detail in the implementation. Since each completed column k appears

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 443

in no more than one set S; at any time during the algorithm’s execution, a single
n-vector link suffices to maintain each set S; (1 <14 < n) as a singly-linked list [47].

for]—ltondo

=0
for] =1tondo
for k<€ S; do
cmod(j, k)
i := next(j, k)
S; == 8; U{k}
cdiv(j)
z = next(],)
=S u{j}

FiGc. 11. Sparse column-Cholesky factorization algorithm, showing the computation of row
structure sets Struct(Li«) in the sets S,, 1 <i < n.

This algorithm can be implemented in parallel on a shared-memory MIMD ma-
chine in a fairly straightforward manner [40]. Each column j corresponds to a task

Tcol(j) := {cmod(j, k) | k € Struct(L;x)} U {cdiv(j)},

as discussed in §3.2. Initially, the task queue, denoted by @), contains all column
tasks T'col(j) ordered by some topological ordering of the elimination tree. For ease
of notation, we assume that the elimination ordering and the schedule-prescribed
ordering are the same, so we have

Q := {Tcol(1),Tcol(2),---,Tcol(n)}.

As the computation proceeds, a processor obtains (and removes) the column task
currently at the front of the queue and proceeds to compute that task. After com-
pleting the task, the processor obtains from another column task to compute, and
it continues in this manner, as do all the other processors, until the factorization is
complete. This simple “pool of tasks” approach does an excellent job of dynamically
balancing the load, even though the column task profile for typical sparse problems
is quite irregular. Obviously, access to this queue must be synchronized to ensure
that each column task Tcol(j) is executed by one and only one processor. The par-
allel algorithm also must synchronize access to the n-vector link in which the sets S;
(1 <4 < n) are maintained. Only one processor at a time can modify this array, and
thus the two sequences of instructions that manipulate link must be critical sections
in the algorithm. A high-level description of the parallel algorithm is given in Fig. 12.

Recent improvements. The algorithm in Fig. 12 has two significant drawbacks.
First, the number of synchronization operations (obtaining and relinquishing a lock)
is O(n + n(L)), which is quite high. Second, since the algorithm does not exploit
supernodes, it will not vectorize well on vector supercomputers with multiple proces-
sors, natural target machines for the algorithm. The introduction of supernodes into
the algorithm deals quite effectively with both problems [88].

The use of supernodes to improve computational rates on vector supercomput-
ers is well documented [3], [5], [11], [19]. The duplicate sparsity structure found in
columns within the same supernode enables us to organize the computation around
level-2 or level-3 BLAS-like computational kernels. Such block operations reduce
memory traffic by retaining and reusing data in cache, vector registers, or whatever

444 M.T. HEATH, E. NG, AND B.W. PEYTON

Q := {Tcol(1),Tcol(2),---,Tcol(n)}
for j =1tondo
Sj = @
while @ # 0 do
pop Tcol(j) from Q
while column j requires further cmod’s do
if Sj = @ do
wait until S; # 0
obtain & from ASZ]‘
i := next(j, k)
lock
S; :=S; U {k}
unlock
cmod(j, k)
cdiv(j)
1 := next (7, j)
lock
S; = S; U{j}
unlock

Fi1G. 12. Parallel sparse column-Cholesky factorization algorithm for shared-memory MIMD
machines.

limited rapid-access memory resource is provided on the particular machine in ques-
tion.

In the following discussion, we will let boldface integers 1, 2, - - -, N stand for the
supernodes. Thus, N < n is the number of supernodes. We will also use boldface
capital letters such as J and K to denote each supernode by its index, and use
lowercase letters such as i, j, and k to denote each individual column by its number.

Let K be a supernode comprising the set of contiguous columns {k,k + 1,k +
2,---,k +t}. Because of the sparsity structure shared by each column of K, every
column of K modifies column j, 7 > k + ¢, if and only if at least one column of K
modifies column j. For example, column 40 in supernode 30 in Fig. 5 is modified by
each column 37, 38, and 39 in the previous supernode, but it is modified by none of
the columns 19, 20, and 21 that compose supernode 15. The block operation used to
improve the algorithms in Figs. 3 and 12 is a level-2 BLAS-like kernel, cmod(j, K),
which modifies column j with a multiple of the appropriate entries of each column
k € K. In particular, the modifications from the columns in K can be accumulated
as dense saxpy operations and no indirect addressing is required until the result is
applied to column j. For a column k + i € K, we let cmod(k + %, K) denote the
operation of updating column k + ¢ with every column of K numbered earlier than
k + 4. That is, cmod(k + ,K) is given by

cmod(k + 4, K) := {cmod(k + i, k), cmod(k + i,k + 1),---,cmod(k + ¢,k + ¢ — 1)}.
For the matrix in Fig. 5, cmod(30,22) is given by
cmod(30, 22) := {cmod(30, 28), cmod(30, 29)}.

Since columns k, k+ 1, ---, k + i — 1 in supernode K have the same structure below
row k-+1i—1, the modifications to column &+ can again be performed by dense saxpy
operations, with no indirect addressing required. The next column to be updated by
supernode K after it has updated column j is denoted by next(j, K), and similarly

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 445

the first column outside supernode K requiring modification by the columns of K
is denoted by next(K,K). Using this notation, Figs. 13 and 14 display supernodal
versions of the sequential and parallel column-Cholesky algorithm shown in Figs. 11
and 12, respectively.

for]—ltondo

for .]J 1 to N do
for j € J do
for K€ S; do
cmod(j, K)
i := next(7, K)
S; == S; U {K}
cmod(j,J)
cdiv(y)
i :=next(J,J)
S; =S, U{J}

F1c. 13. Sequential sparse supernodal column-Cholesky factorization algorithm.

Q := {Tcol(1),Tcol(2),---,Tcol(n)}
for j =1tondo
Sj = Q)
while Q # 0 do
pop T'col(j) from Q
let J be the supernode containing column j
while column j requires further cmod’s do
if S, =0do
wait until S; #0
obtain K from S
i := next(j, K)
lock
S; :=S; U {K}
unlock
cmod(7, K)
cmod(7,J
cdiv(j)
if j is the last column of supernode J do
i :=next(J,J)
lock
S; == S; U {J}
unlock

FiG. 14. Parallel sparse supernodal column-Cholesky factorization algorithm for shared-memory
MIMD machines.

Let o(L) denote the number of subscripts in the supernodal representation of the
sparsity structure of L. The use of supernodes reduces the number of synchronization
operations to a number proportional to o (L), which is often much less than n(L),
sometimes by as much as an order of magnitude [46].

3.4.2. Distributed fan-out algorithm. The algorithm introduced in [43], now
known as the fan-out algorithm, was the first sparse Cholesky factorization algorithm

446 M. T. HEATH, E. NG, AND B.W. PEYTON

developed for distributed-memory machines. It is a parallel version of the submatrix-
Cholesky factorization algorithm shown in Fig. 4. We will denote the kth task per-
formed by the outer loop of the algorithm by T'sub(k), which is defined by

Tsub(k) := {cdiv(k)} U {cmod(j, k) | j € Struct(L.x)}-

That is, Tsub(k) first obtains L, by performing the cdiv(k) operation, and then
performs all column modifications that use the new column.

Algorithms for distributed-memory machines are usually structured around some
prior distribution of the data to the processors. In order to keep the cost of in-
terprocessor communication at acceptable levels, it is essential for the algorithm to
make local use of local data as much as possible. The distributed fan-out, fan-in,
and multifrontal algorithms are typical examples of this type of distributed algorithm
(the fan-in and multifrontal algorithms will be discussed in the following subsections).
These three distributed algorithms are all designed within the following framework.

e All three require assignment of the matrix columns to the processors.

e All three use the column assignment to distribute among the processors the
tasks found in the outer loop of one of the serial implementations of sparse
Cholesky factorization.

The differences among these algorithms stem from the various formulations of serial
sparse Cholesky upon which they are based. The fan-in algorithm is based on column-
Choleskys; it partitions each task T'col(j) among the processors. The distributed multi-
frontal algorithm partitions among the processors the tasks upon which the sequential
multifrontal method is based: partial dense submatrix-Cholesky factorization and the
assembly operations, both of which are introduced later in the subsection dealing with
this algorithm. The fan-out algorithm is based on submatrix-Cholesky; it partitions
each task T'sub(k) among the processors.

We now detail how the fan-out algorithm partitions the task T'sub(k) among the
processors. Each column L,y is stored on one and only one of P available processors.
An n-vector map is required to record the distribution of columns to processors: if
column # is stored on processor p, then map[k] := p. We let mycols(p) denote the set
of columns owned by processor p. The fan-out algorithm is a data-driven algorithm,
where the data sent from one processor to another are the completed factor columns.
The outer loop of the fan-out algorithm constantly checks the message queue for
incoming columns. When it receives a column L.y, it uses it to modify every column
j € mycols(p) for which cmod(j, k) is required. In other words, it performs the
following set of cmods:

{cmod(j, k) | j € Struct(L.) Nmycols(p)}.

Indeed, each task T'sub(k) is partitioned among the processors by the partition defined
by the column mapping. More precisely, the column partition

{mycols(1), mycols(2), - - - ,mycols(P)}
induces the partition of T'sub(k) into subtasks of the form
{Tsub(k,1), Tsub(k,2),---, Tsub(k, P)}
where

Tsub(k,p) := {cmod(j, k) | j € Struct(L.x) N mycols(p)},

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 447

with each nonempty task T'sub(k, p) assigned to processor p, the owner of the columns
updated by the task.
Of course, many of these tasks will be empty. Only the processors in the set

procs(Lg) := {map[j] | j € Struct(L.x)}

require column L,;. When processor p = map[j] has completed all column modifica-
tions required by column j, it then performs cdiv(j) and sends it tc every processor
in procs(Ly;), where it eventually is used to modify later columns in the matrix. The
algorithm is shown in Fig. 15.

for j € mycols(p) do
if j is a leaf node in T'(A) do
cdiv(y)
send L,; to the processors in procs(L*J)

mycols(p) = mycols(p) — {;}
while mycols(p) # 0 do
receive any column of L, say L.k
for j € Struct(L.) N mycols(p) do
cmod(7j, k)
if column j required no more cmod’s do
cdiv(j)
send L,; to the processors in procs(L.;)
mycols(p) := mycols(p) — {5}

Fi1Gc. 15. Fan-out Cholesky factorization algorithm for processor p of a distributed-memory
MIMD machine.

Historically, the fan-out algorithm was first to be implemented on a distributed-
memory machine, but due to several weaknesses it has since been superseded by fan-in
algorithms and distributed multifrontal algorithms. The distributed fan-out algorithm
incurs greater interprocessor communication costs than the other two methods, both
in terms of total number of messages and total message volume. It simply does
not exploit a good communication-reducing column mapping, such as the subtree-
to-subcube mapping, as effectively as the other methods do. Ashcraft et al. [9] and
Zmijewski [109] have independently improved the algorithm by having it send aggre-
gated update columns rather than individual factor columns for columns belonging
to a subtree that has been mapped to a single processor. Though the resulting im-
provement in performance is substantial, it still is insufficient to make the method
competitive.

Another problem with the method is the expense of mapping the entries of the
updating column & to the corresponding entries of the updated column j when per-
forming cmod(j, k). The set Struct(L.y) must accompany the factor column L, when
it is sent to other processors to enable these processors to complete column modifi-
cations of the form cmod(j, k). This roughly doubles the communication volume and
creates a more complicated message that must be packed by the sending processor and
unpacked by the receiving processor. Moreover, each cmod(j, k) requires that both
index sets Struct(L,;) and Struct(L.) be searched in order to match indices. This
results in poor semal efficiency. These weaknesses have provoked efforts to develop
better distributed factorization algorithms.

3.4.3. Distributed fan-in algorithm. One of the improved distributed factor-
ization algorithms is the fan-in algorithm, introduced by Ashcraft, Eisenstat, and Liu

448 M. T. HEATH, E. NG, AND B.W. PEYTON

in [10]. Based on the sparse column-Cholesky algorithm, it distributes each column
task T'col(j) among the processors in a manner similar to the distribution of tasks
Tsub(k) in the fan-out algorithm. Viewed in a more general way, the fan-in method
is analogous to the standard parallel algorithm for a dot product, in which each pro-
cessor first locally reduces the data assigned to it down to a single number, and then
participates in a global phase during which the processors cooperate in reducing down
to a single number the P local reductions generated during the preceding “perfectly
paralle]” phase. Indeed, the name “fan-in” is taken from the fan-in distributed al-
gorithm for dense triangular solution [58], which computes a series of inner product
calculations in precisely this manner. Note that throughout this subsection we freely
use the notation introduced in the previous subsection.

As with the fan-out algorithm, each processor p is responsible for computing
cdiv(j) for every column j € mycols(p). Of course, cdiv(j) cannot be computed
until all modifications cmod(j, k), k € Struct(Lj,), have been performed. The fan-
in algorithm is a demand-driven algorithm, where the data required are aggregated
update columns computed by the sending processor using columns it owns, and needed
by the receiving processor to update a target column. Let u(j, k) denote the scaled
column accumulated into the factor column by the cmod(j, k) operation. The outer
loop of the algorithm processes every column j of the matrix in ascending order by
column number. When processor p processes column j, it aggregates into a single
update vector u every update vector u(j, k) for which k£ € mycols(p) N Struct(L;).
Indeed, each task T'col(j) is partitioned among the processors by the partition of the
columns induced by the column mapping. More precisely, the column partition

{mycols(1), mycols(2), - - -, mycols(P)}
induces the partition of T'col(j) into subtasks of the form
{TCOl(ja 1)7 TCOl(jv 2)a e aTCOl(jv P)}

where T'col(j,p) aggregates into a single update vector every update vector u(j, k)
for which k € Struct(L;«) N mycols(p), with each nonnull task Tcol(j,p) assigned to
processor p, the owner of the updating columns used by the task.

After performing T'col(j, p), if processor p does not own column j, then it sends
the resulting aggregated update column to processor ¢ = map][j], which will eventually
incorporate it into column j. If, on the other hand, processor p does own column j, it
must receive and process any aggregated update columns required by column j from
other processors before it can complete the cdiv(j) operation. The fan-in algorithm
is given in Fig. 16.

It is interesting to note that any column j € mycols(p) will receive an aggregated
update column from every processor in the set

procs(L,.) := {maplk] | k € Struct(L;,)}.

In contrast, the fan-out algorithm sent the factor column L,; to every processor
in the processor set procs(L,;). Consider the communication costs incurred by the
two algorithms during the computation of columns that constitute a subtree of the
elimination tree that has been mapped to a single processor by a subcube-to-subtree
mapping. For the fan-in algorithm there will be no communication during this portion
of the computation, because for every column j in the subtree, Struct(L;.) also belongs
to the subtree. On the other hand, the fan-out algorithm must send L.; to another

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 449

for j :=1ton do
if j € mycols(p) or Struct(L;,) N mycols(p) # @ do
ui=
for k € Struct(L;«) N mycols(p) do

u = u+u(j, k)
if map[j] # p do
send u to processor ¢ = map|j]
else
incorporate u into the factor column j
while any aggregated update column for column j remains unreceived do
receive in u another aggregated update column for column j
incorporate u into the factor column j
cdiv(j)

FIG. 16. Fan-in sparse Cholesky factorization algorithm for processor p of a distributed-memory
MIMD machine.

processor if there is a column index k € Struct(L,;) for some column j in the subtree,
such that map[k] # map[j]. This observation is an informal indication of why the
fan-in algorithm is better than the fan-out algorithm at exploiting a good mapping
to reduce interprocessor communication.

A more visual comparison of the communication patterns of the fan-out and
fan-in algorithms is given in Figs. 17 and 18. These figures illustrate snapshots of
the execution of the two algorithms on an Intel iPSC/2 hypercube, with time on
the horizontal axis. Processor activity is shown by horizontal lines and interprocessor
communication by slanted lines. The horizontal line corresponding to each processor is
either solid or blank, depending on whether the processor is busy or idle, respectively.
Each message sent between processors is shown by a line drawn from the sending
processor at the time of transmission to the receiving processor at the time of reception
of the message. The problem being solved is the factorization of a matrix of order
225 derived from a model finite element problem on a 15 x 15 grid, using a nested
dissection ordering and subtree-to-subcube mapping on eight processors. The divide-
and-conquer nature of the nested dissection ordering is clearly visible in Fig. 18, which
also illustrates the ability of the fan-in algorithm, given an appropriate mapping, to
exploit this structure to reduce communication. By contrast, the fan-out algorithm
shown in Fig. 17 exhibits much greater communication traffic as well as a less regular
communication pattern, even under the ideal conditions represented here. These
diagrams were produced using a package developed at Oak Ridge National Laboratory
for visualizing the behavior of parallel algorithms [57].

Compute-ahead fan-in algorithm. In Fig. 16, observe that processor p will fall idle
if, while receiving aggregated update columns destined for a column j € mycols(p), it
has no such updates in its message queue. One straightforward enhancement to the
method is to probe the queue for such messages, and when there are none, proceed
with useful work on later factor columns. When unable to complete the current
column 7, the algorithm toggles between performing so-called compute-ahead tasks
on columns i > j, and detecting and processing incoming aggregated updates for the
current column j.

There are two types of compute-ahead tasks to be performed on later columns of
the factor:

1. For some column i > j, aggregate into a work vector the update vector u(i, k)
for each completed column k € Struct(L;.) N mycols(p).

450 M. T. HEATH, E. NG, AND B.W. PEYTON

=
S

TR 17
WA M 2

NN 7, W

128 TIE 632

FiG. 17. Communication pattern of fan-out algorithm for a model problem.

j AN RWAUANNENEIAG]
RN AdauaA WS, LTI
2 HHHL@\I L
VRN RWIA N RTTIA

Fic. 18. Communication pattern of fan-in algorithm for a model problem.

2. Receive an aggregated update column for some column % > j, and incorporate
it into the factor column.
Compute-ahead tasks of the first type have priority over compute-ahead tasks of the
second type; that is, compute-ahead tasks of the second type are performed only when
the algorithm has exhausted its supply of tasks of the first type.

Compute-ahead aggregating of update columns is limited to target columns i > j
that belong to the same supernode as the current column j. This is due primarily to
the ease and “naturalness” with which successive aggregate update columns sharing
the same sparsity pattern can be computed. Since the aggregated update columns
are managed so that they share the same sparsity structure as the target column,
no indirect indexing is required to incorporate them into the factor column. Thus,
compute-ahead tasks of the second type require merely a receive, followed by a saxpy.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 451

For details concerning these and other implementation issues, consult [8].

Though supernodes play an important role in organizing the compute-ahead fan-
in algorithm, current implementations of both the basic and compute-ahead fan-in
algorithms do not exploit supernodes to reduce memory traffic in the inner loops of the
computation—one of their key roles in the parallel shared-memory column-Cholesky
algorithm. There is no reason why supernodes cannot serve in this role in the fan-
in algorithm also. However, it is interesting to note that the potential exploitation
of supernodes in distributed-memory algorithms is somewhat limited because good
mappings typically distribute the columns of a supernode among several processors.

3.4.4. Parallel multifrontal algorithms. As noted earlier, multifrontal meth-
ods are generalizations of single-front methods. The original motivation for developing
frontal methods was for more effective use of auxiliary storage in the out-of-core so-
lution of sparse systems, and more efficient inner-loop computations by avoiding the
indirect addressing that is characteristic of general sparse data structures. The funda-
mental idea in frontal methods is to keep only a relatively small portion of the matrix
in main memory at any given time, and to use a full matrix representation for this
“active” portion of the matrix, so that computations involving it are more efficient on
scalar machines and more readily vectorized on vector machines. Although the data
structure for the active matrix is very simple, the overall data management required
in frontal methods is quite complicated, involving the assembly of matrix elements,
their insertion into the proper location in the full active matrix data structure, and
the writing of completed portions of the factor to disk, all of which must account for
the fact that the active matrix constitutes a moving “window” through the problem.

The success of frontal methods is dependent on keeping the size of the active
matrix small, which in turn depends on the structure of the problem and the ordering
used in solving it. In structural analysis, for example, a long thin truss is ideal for
a frontal solution technique in that, with an appropriate ordering, a single narrow
“front” passes along the length of the truss. If a single front should become unaccept-
ably large, however, then multiple fronts could be employed, leading to multifrontal
methods. Of course, the various fronts must eventually merge before the problem can
be completed, but the hope is that with an appropriate ordering such mergers can be
postponed as late as possible in the computation. The use of multiple fronts seems
to suggest an obvious parallel implementation: simply assign a separate front to each
processor. As we shall see, however, the situation is not quite so straightforward.

A self-contained presentation of parallel multifrontal algorithms would occupy
more space than we can afford in an article of this scope. The difficulties in produc-
ing a brief but clear description stem primarily from the complexity of the method:
a sequential multifrontal code is considerably more complicated than a sequential
sparse column-Cholesky code. As might be expected, modifying the method to run
on MIMD machines is also more difficult and complicated, though it is by no means
unmanageable; there have been implementations on both shared-memory [12], [22],
[23], [106] and distributed-memory [9], [36], [82] machines. This section is limited to
a brief overview of the literature on the subject and a short discussion of some of the
problems that arise in parallel implementations. The reader should consult [28] or
[78] for background material on multifrontal methods.

We should also point out that some of the codes and algorithms cited in this sec-
tion are designed for nonsymmetric linear systems, and at least one includes pivoting
for stability. For instance, the work in [22] and [23] is based on the Harwell MA37
code, which solves nonsymmetric systems and pivots for stability. Nevertheless, such

452 M. T. HEATH, E. NG, AND B.W. PEYTON

codes can be discussed within the framework of this article because they perform a
symbolic factorization of the structurally symmetric matrix A + AT, and compute a
structurally symmetric numerical factorization of A within the resulting data struc-
ture. Therefore, much of the material in [22] and [23] is directly applicable to sparse
multifrontal Cholesky factorization.

Background. As noted in §2, the multifrontal method is a sophisticated vari-
ant of the sparse submatrix-Cholesky factorization algorithm (Fig. 4) for which the
cmod(j, k) operations are not applied directly to column j of the factor matrix. In-
stead, each is accumulated and passed on through a succession of update matrices
until it is finally incorporated into the target column. The outer loop of the serial
multifrontal algorithm processes the supernodes 1,2, ---,N in order, completing the
columns of each supernode when the supernode is processed. The order in which
the supernodes are processed is critical. For reasons discussed below, they are pro-
cessed in the order in which they are visited by a postorder traversal of a supernodal
elimination tree. A supernodal elimination tree with 31 supernodes is displayed in
Fig. 6.

Every supernode K has associated with it a frontal matrix in which the factor
and update columns associated with the supernode are computed. The factor and
update columns computed within this matrix are stored in a dense matrix format,
essentially minimizing the use of indirect addressing—one of the major strengths of
the method. The algorithm performs two tasks within this frontal matrix:

1. The assembly step inserts the required data into the frontal matrix.
2. After the assembly step, dense partial submatriz-Cholesky factorization within
the frontal matrix generates the factor and update columns.
We discuss first the partial submatrix-Cholesky factorization step and then the as-
sembly step in more detail.

Suppose that K contains r columns of the matrix, and assume that the assem-
bly step for supernode K’s frontal matrix has been completed. The algorithm then
computes r major steps of dense submatriz-Cholesky factorization within the frontal
matrix, after which the first 7 columns of the frontal matrix contain the r factor
columns of K, and the trailing columns in the frontal matrix contain aggregated up-
date columns for later columns of the matrix. These trailing columns constitute the
update matrix generated by this block elimination step. Henceforth, we will denote
this task by T'sub(K). The update matrix is stored and assembled later into the
frontal matrix of its “parent supernode” in the elimination tree.

The assembly step consists of the following three steps:

1. Zero out the frontal matrix.

2. Insert the required entries of A into the appropriate locations of the matrix.

3. For each “child supernode,” obtain its associated update matrix and add each

entry to its corresponding entry in the frontal matrix.

Because the supernodes are ordered by a postorder traversal of the elimination tree,
the update matrices can be stored efficiently on a stack, limiting both the storage and
time required to store them. New update matrices are pushed onto the stack as soon
as they are generated, while update matrices for child supernodes are popped off the
stack as needed during each assembly step.

Shared-memory MIMD machines. One key problem associated with parallel mul-
tifrontal algorithms for shared-memory MIMD multiprocessors is the management
of auxiliary storage for the update matrices. The postordering of supernodes used
in the sequential algorithm severely limits the parallelism available; in particular, it

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 453

limits exploitation of the parallelism that exists among the many disjoint subtrees of
the elimination tree available in most realistic problems. To create more independent
processes, algorithm developers have abandoned the postordering and the stack of up-
date matrices. Instead, they process the supernodes in some order that allows greater
exploitation of the large-grained (subtree-level) parallelism, but which complicates
management of the working storage for update matrices, increasing both the storage
and time required by this part of the algorithm [23], [83], [106].

In [22] and [23], Duff considered several strategies for dealing with the resulting
fragmentation of working storage. Garbage collection to reclaim unused storage re-
quires a critical section that seriously inhibits parallelism. Subdividing the working
storage in an effort to localize the garbage collection operations and reduce their neg-
ative effect on parallelism proved to be too complicated and ineffective [22]. Breaking
up individual update matrices to make better use of free storage was not considered
because it would destroy the data locality vital for efficient use of cache—one of the
important strengths of the multifrontal method and a key consideration on the Alliant
FX/8 [23]. In [23], Duff used the buddy system to manage the storage for update ma-
trices. For any given update matrix, the buddy system obtains a free block of storage
of length 2, where k is the smallest power of two that provides enough contiguous
storage locations to hold the matrix. The scheme is guaranteed to waste no more
than half the working storage.

We are aware of two other parallel multifrontal codes designed to run on par-
allel shared-memory MIMD machines. A parallel multifrontal code developed by
Lucas [83] for the CRAY 2 allocates subtrees to individual processors and has each
processor manage a local stack for its assigned subtree. During the course of the com-
putation, there are eventually more processors than independent subtrees. At that
point, the code abandons the use of subtree-level parallelism. Instead, it successively
processes the remaining tasks T'sub(K), using CRAY autotasking to partition each
task T'sub(K) among all the processors. A parallel multifrontal code developed by
Vu [106] for the CRAY Y-MP uses a similar strategy.

A second issue discussed in [23] is partitioning the work among the processors
for execution in parallel. Here, we restrict our attention to issues associated with
distributing the tasks T'sub(1), Tsub(2), ---, T'sub(N) among the processors. The
situation is not as simple as it is for parallel column-Cholesky, where simply dealing
out the column tasks T'col(j), with some care in the scheduling, is very effective in
exploiting both subtree- and column-level parallelism (see §3.4.1). If the multifrontal
method distributes indivisible tasks Tsub(K) among the processors in a similar fash-
ion, then, as noted in [22] and [26], parallelism decreases as the computation proceeds
toward the root supernode and disappears altogether when the root supernode is
reached. Typically, most of the work is performed in the larger frontal matrices as-
sociated with supernodes near the root, and thus smaller granularity is required for
acceptable performance. That is, the tasks T'sub(K) for supernodes K near the root
supernode must be partitioned into smaller tasks and distributed among the proces-
sors. In [23], Duff parameterizes his code so that it can spawn tasks of any granularity
between two extremes, the largest being the tasks T'sub(K), and the smallest being
individual cmods and cdivs. His results indicate that working with small blocks of
columns is most effective. Near the root of the supernodal elimination tree, the al-
gorithms of Lucas [83] and Vu [106] use the autotasking capabilities of their target
machines, the CRAY 2 and CRAY Y-MP, to partition the tasks T'sub(K) among the
Processors.

454 M.T. HEATH, E. NG, AND B. W. PEYTON

Distributed-memory MIMD machines. Lucas, with Blank and Tieman, [82], [84]
developed the first implementation of the multifrontal method for distributed-memory
MIMD machines. Since then, Ashcraft [9] has also developed parallel multifrontal
codes for such machines. Lucas’s code and the first code developed by Ashcraft im-
plement essentially the same distributed multifrontal algorithm [6], [83]. This section
contains a brief discussion of a few features of this algorithm. Further enhancements
to the algorithm, and a systematic comparison of all the distributed-memory factor-
ization algorithms will appear in [7].

As with other distributed factorization algorithms, each column & of the matrix
is assigned to and stored on one processor, map[k]. Consider a supernode K and
let map(K) denote the set of processors that own at least one column of K or a
descendant of a column K in the elimination tree. The key feature of the algorithm
is the distribution of all the columns of K’s frontal matrix among the processors
in map(K); that is, both the factor columns and the aggregated update columns
generated by the task T'sub(K) are distributed among the processors in map(K).

The processors in map(K) work together to perform the task Tsub(K), i.e., dense
submatrix-Cholesky factorization on the first |K| columns of the distributed frontal
matrix. The algorithm used to perform this task can be viewed as a straightfor-
ward adaptation of the parallel dense submatrix-Cholesky algorithm presented in [37].
When processor p = map[k] € map(K) completes factor column k € K, it broadcasts
L.y to the other processors in map(K). The other processors in map(K) at some
point receive L, and use it to modify every column of the frontal matrix that they
own. Thus, this phase of the algorithm is very similar to the fan-out algorithm shown
in Fig. 15.

Before the task T'sub(K) can be performed, supernode K’s distributed frontal
matrix must be assembled. Contributions from distributed update matrices for any
children of K must be sent to the appropriate processors and scatter-added into
the appropriate frontal matrix locations. More precisely, if an update column from
a “child” update matrix is located on a different processor than the corresponding
column of its “parent” frontal matrix, then the aggregated update column must be
sent to its “new owner,” where it is incorporated into the appropriate column of the
frontal matrix.

Both phases of the factorization require interprocessor communication. The fac-
torization phase performs a restricted broadcast of completed factor columns, while
the assembly phase moves aggregated update columns from one processor to another.
The two forms of communication result in somewhat higher communication cost for
the multifrontal algorithm than that incurred by the fan-in algorithm. However, its
extra communication overhead is far smaller than that incurred by the pure fan-out
algorithm, and preliminary results indicate similar performance for the fan-in and
distributed multifrontal algorithms [9].

3.5. Triangular solution. Unfortunately, there is relatively little to say about
parallel algorithms for forward and backward triangular solutions. Data dependencies
and a paucity of work to distribute among the processors make it very difficult to
achieve high computational rates, even for dense problems. Heath and Romine [5§]
and Eisenstat et al. [30] have shown that intricate pipelining techniques are required
to achieve computational rates as high as 50% efficiency for large dense problems
on distributed-memory hypercube multiprocessors. Two factors make the situation
even more difficult in the sparse case. First, due to preservation of sparsity in the
factor matrix, there is usually far less work to distribute among the processors—

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 455

approximately n(L) flops rather than the n(n — 1)/2 flops available in the dense
case. Second, the successful pipelining techniques used in [30], [58] appear to require
the extremely regular structure of a dense matrix. Loss of this regularity in sparse
Cholesky factors increases the difficulty of using these complicated techniques to speed
up sparse triangular solution. Generalizing these techniques so that they can be
incorporated into a parallel sparse triangular solution algorithm is a possible avenue
for future improvement. A step in this direction has been made by Zmijewski [108],
who considered the use of cyclic algorithms for solving sparse triangular systems.

These difficulties are mitigated somewhat by the subtree-level parallelism that
is available only in the sparse case. Though the parallel algorithms for sparse for-
ward and back triangular solutions contained in [44] exploit this parallelism, they
nonetheless performed rather poorly. Other work on parallel sparse triangular so-
lution algorithms [4], [56], [85], [102] has been directed primarily toward use in the
preconditioned conjugate gradient algorithm. Some of the work in [4], however, is
applicable to complete, as well as incomplete, Cholesky factorizations.

4. Concluding remarks. In this paper, we have provided a summary of parallel
algorithms currently available for the four phases in the solution of sparse symmet-
ric positive definite systems. It is clear from the relative length of the discussions
that much of this research has been focused on the design and implementation of
parallel numerical factorization algorithms. Some of these algorithms have exhibited
reasonable speed-up ratios, particularly on shared-memory MIMD multiprocessors.
Although there have been attempts to develop parallel algorithms for the other phases,
namely, ordering, symbolic factorization, and triangular solutions, these algorithms
have generally been less successful and lacking in efficiency. Much research is needed
in those areas. The ordering problem seems particularly problematic in a distributed-
memory environment because of the difficulty of partitioning the graph of the matrix
among the processors in an intelligent way before the ordering is determined.

It may be argued that current sequential algorithms for symbolic factorization
and triangular solution are so efficient that perhaps they can be used on one proces-
sor in a multiprocessor environment instead of developing parallel versions. This may
be true for MIMD multiprocessors with globally shared memory. On MIMD multi-
processors with local memory, there are at least two reasons why parallel algorithms
are needed for symbolic factorization and triangular solution, even if these algorithms
may be less efficient than their sequential counterparts. First, although symbolic fac-
torization and triangular solution are often the least expensive phases in the solution
process on serial machines, they may become the dominant phases as more efficient
parallel numerical factorization algorithms are developed. Thus, research on the de-
sign of efficient parallel algorithms for symbolic factorization and triangular solution
will be necessary eventually. Second, even if they are somewhat inefficient, parallel al-
gorithms are still needed to make use of the large (collectively) local memory available
on distributed-memory parallel machines for solving large problems; there may not
be enough memory on a single processor to carry out symbclic factorization and/or
triangular solution serially. Third, many algorithms require multiple triangular solu-
tions.

Our emphasis in this paper has been on parallel direct methods for solving sparse
symmetric positive definite systems. Work has also been done on parallel algorithms
for other matrix computations. In the case of direct methods for solving sparse
nonsymmetric linear systems, much of the research has been carried out on shared-
memory MIMD multiprocessors. Some recent examples can be found in [1]-[3], [20],

456

M. T. HEATH, E. NG, AND B. W. PEYTON

[22], [23], [51], [52]. Parallel algorithms for sparse least squares problems are discussed
in [16], [59], [96]. There has been a great deal of research on parallel iterative meth-
ods for solving large sparse linear systems as well. For a summary of such work and
references to this extensive literature, see the book by Ortega [89]. Many additional
references on all aspects of parallel matrix computations can be found in [90).

Acknowledgments. The authors thank Eduardo D’Azevedo, Alan George, and
Joseph Liu for their suggestions and comments, which have improved the presentation
of the material.

(5]
(6]
(7]
(8]

(9]

(10]

(11]

(12]
(13]
(14]

(15]

(16]

(17]

(18]
(19]
20]

21]

REFERENCES

G. ALAGHBAND, Parallel pivoting combined with parallel reduction and fill-in control, Parallel
Comput., 11 (1989), pp. 201-221.

G. ALAGHBAND AND H. JORDAN, Multiprocessor sparse L/U decomposition with controlled fill-
in, Tech. Report 85-48, ICASE, NASA Langley Research Center, Hampton, VA, 1985.

P. AMESTOY AND I. DUFF, Vectorization of a multiprocessor multifrontal code, Internat. J.
Supercomp. Appl., 3 (1989), pp. 41-59.

E. ANDERSON AND Y. SAAD, Solving sparse triangular linear systems on parallel computers,
Internat. J. High Speed Comput., 1 (1989), pp. 73-95.

C. ASHCRAFT, A vector implementation of the multifrontal method for large sparse, symmet-
ric positive definite linear systems, Tech. Report ETA-TR-51, Engineering Technology
Applications Division, Boeing Computer Services, Seattle, WA, 1987.

, Personal communication, 1990.

——, The aggregate model for the factorization of symmetric positive definite matrices,
Ph.D. thesis, Dept. of Computer Science, Yale University, New Haven, CT, 1990.

C. ASHCRAFT, S. EISENSTAT, J. Liu, B. PEYTON, AND A. SHERMAN, A compute-ahead
implementation of the fan-in sparse distributed factorization scheme, Tech. Report
ORNL/TM-11496, Oak Ridge National Laboratory, Oak Ridge, TN, 1990.

C. ASHCRAFT, S. EISENSTAT, J. L1u, AND A. SHERMAN, A comparison of three column-based
distributed sparse factorization schemes, Tech. Report YALEU/DCS/RR-810, Dept. of
Computer Science,Yale University, New Haven, CT, 1990.

C. ASHCRAFT, S. EISENSTAT, AND J. W.-H. L1u, A fan-in algorithm for distributed sparse
numerical factorization, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 593-599.

C. ASHCRAFT, R. GRIMES, J. LEwis, B. PEYTON, AND H. SIMON, Progress in sparse matriz
methods for large linear systems on vector supercomputers, Internat. J. Supercomp. Appl.,
1 (1987), pp. 10-30.

R. BENNER, G. MONTRY, AND G. WEIGAND, Concurrent multifrontal methods: shared mem-
ory, cache, and frontwidth issues, Internat. J. Supercomp. Appl., 1 (1987), pp. 26-44.

P. BERMAN AND G. SCHNITGER, On the performance of the minimum degree ordering for
Gaussian elimination, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 83-88.

J. BROWNE, J. DONGARRA, A. KARP, K. KENNEDY, AND D. KuUCK, 1988 Gordon Bell prize,
IEEE Software, 6 (May 1989), pp. 78-85.

I. CAVERSs, Tiebreaking the minimum degree algorithm for ordering sparse symmetric posi-
tive definite matrices, Master’s thesis, Dept. of Computer Science, University of British
Columbia, Vancouver, B.C., 1987.

E. CHU AND A. GEORGE, Sparse orthogonal decomposition on a hypercube multiprocessor,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 453—465.

E. CHu, A. GEORGE, J. W.-H. Liu, aAND E. G.-Y. Ng, User’s guide for SPARSPAK-A:
Waterloo sparse linear equations package, Tech. Report CS-84-36, University of Waterloo,
Waterloo, Ontario, 1984.

J. CONROY, Parallel direct solution of sparse linear systems of equations, Tech. Report TR
1714, Dept. of Computer Science, University of Maryland, College Park, MD, 1986.

A. DAVE AND 1. DUFF, Sparse matriz calculations on the Cray-2, Parallel Comput., 5 (1987),
pp- 55-64.

T. Davis AND P. YEwW, A nondeterministic parallel algorithm for general unsymmetric sparse
LU factorization, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 383-402.

J. DONGARRA, F. GUSTAVSON, AND A. KARP, Implementing linear algebra algorithms for
dense matrices on a vector pipeline machine, SIAM Rev., 26 (1984), pp. 91-112.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 457

[22] 1. DuFF, Parallel implementation of multifrontal schemes, Parallel Comput., 3 (1986),
pp. 193-204.

. Multiprocessing a sparse matriz code on the Alliant FX/8, J. Comput. Appl. Math.,
27 (1989), pp. 229-239.

[24] 1. DuUFF, A. ERISMAN, AND J. REID, On George’s nested dissection method, SIAM J. Numer.
Anal., 13 (1976), pp. 686-695.

[25] 1. DUFF, A. ERISMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Oxford University
Press, Oxford, U.K., 1987.

[26] 1. DuFF, N. GouLD, M. LESCRENIER, AND J. K. REID, The multifrontal method in a parallel
environment, in Advances in Numerical Computation, M. Cox and S. Hammarling, eds.,
Oxford University Press, Oxford, U.K., 1990.

[27] 1. DUFF AND J. REID, MA27 - a set of Fortran subroutines for solving sparse symmetric sets
of linear equations, Tech. Report AERE R 10533, Harwell, 1982.

, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans.
Math. Software, 9 (1983), pp. 302-325.

[29] S. EISENSTAT, M. GURSKY, M. SCHULTZ, AND A. H. SHERMAN, The Yale sparse matriz package
1. the symmetric codes, Internat. J. Numer. Methods Engrg., 18 (1982), pp. 1145-1151.

[30] S. EisensTAT, M. HEATH, C. HENKEL, AND C. ROMINE, Modified cyclic algorithms for solving
triangular systems on distributed-memory multiprocessors, SIAM J. Sci. Statist. Comput.,
9 (1988), pp. 589-600.

[31] C. Fipuccia AND R. MATTHEYSES, A linear-time heuristic for improving network partitions,
in Proceedings of the 19th Design Automation Conference, 1982, pp. 175-181.

[32] M. FIEDLER, Algebraic connectivity of graphs, Czech. Math. J., 23 (1973), pp. 298-305.

[33] , A property of eigenvectors of non-negative symmetric matrices and its application to
graph theory, Czech. Math. J., 25 (1975), pp. 619-633.

[34] K. GALLIVAN, R. PLEMMONS, AND A. SAMEH, Parallel algorithms for dense linear algebra
computations, SIAM Rev., 32 (1990), pp. 54-135.

[35] F. GAO AND B. PARLETT, Communication cost of sparse Cholesky factorization on a hyper-
cube, Tech. Report PAM-436, Center for Pure and Applied Mathematics, University of
California, Berkeley, CA, 1988.

[36] G. GEIST, Solving finite element problems with parallel multifrontal schemes, in Hypercube
Multiprocessors 1987, M. T. Heath, ed., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1987, pp. 656-661.

G. GEIST AND M. HEATH, Parallel Cholesky factorization on a hypercube multiprocessor, Tech.
Report ORNL-6211, Oak Ridge National Laboratory, Oak Ridge, TN, 1985.

G. GEIST AND E. G.-Y. NG, Task scheduling for parallel sparse Cholesky factorization, Inter-
nat. J. Parallel Programming, 18 (1989), pp. 291-314.

[39] A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10

A
A

(23]

(28]

(37]

(38]

(1973), pp. 345-363.

. GEORGE, M. HeATH, AND J. W.-H. Liu, Parallel Cholesky factorization on a shared-
memory multiprocessor, Linear Algebra Appl., 77 (1986), pp. 165-187.

. GEORGE, M. HeaTH, J. W.-H. L, aND E. G.-Y. Ng, Solution of sparse positive defi-
nite systems on a shared memory multiprocessor, Internat. J. Parallel Programming, 15
(1986), pp. 309-325.

(40]

(41]

[42] , Symbolic Cholesky factorization on a local-memory multiprocessor, Parallel Comput.,
5 (1987), pp. 85-95.

[43] , Sparse Cholesky factorization on a local-memory multiprocessor, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 327-340.

[44] , Solution of sparse positive definite systems on a hypercube, J. Comput. Appl. Math.,

27 (1989), pp. 129-156.
[45] A. GEORGE AND J. W.-H. L1U, An automatic nested dissection algorithm for irregular finite
element problems, SIAM J. Numer. Anal., 15 (1978), pp. 1053-1069.

[46] , An optimal algorithm for symbolic factorization of symmetric matrices, SIAM J.
Comput., 9 (1980), pp. 583-593.

[47] , Computer Solution of Large Sparse Positive Definite Systems, Prentice—Hall, Engle-
wood Cliffs, NJ, 1981.

[48] . The evolution of the minimum degree ordering algorithm, SIAM Rev., 31 (1989),

pp. 1-19.

[49] A. GEORGE, J. W.-H. Liu, aND E. G.-Y. NG, Communication results for parallel sparse
Cholesky factorization on a hypercube, Parallel Comput., 10 (1989), pp. 287-298.

[50] A. GEORGE AND D. MCINTYRE, On the application of the minimum degree algorithm to finite
element systems, SIAM J. Numer. Anal., 15 (1978), pp. 90-111.

458 M.T. HEATH, E. NG, AND B. W. PEYTON

[51] A. GEORGE AND E. G.-Y. NG, Parallel sparse Gaussian elimination with partial pivoting,
Ann. Oper. Res., 22 (1990), pp. 219-240.

[62] J. GILBERT, An efficient parallel sparse partial pivoting algorithm, Tech. Report CMI
No. 88/45052-1, Centre for Computer Science, Dept. of Science and Technology, Chr.
Michelsen Institute, Bergen, Norway, 1988.

[53] J. GILBERT AND H. HAFSTEINSSON, Parallel symbolic factorization of sparse linear systems,
Parallel Comput., 14 (1990), pp. 151-162.

[54] J. GILBERT AND R. SCHREIBER, Highly parallel sparse Cholesky factorization, Tech. Report
CSL-90-7, Xerox Palo Alto Research Center, 1990; SIAM J. Sci. Statist. Comput., sub-
mitted.

[55] J. GILBERT AND E. ZMUJEWSKI, A parallel graph partitioning algorithm for a message-passing
maultiprocessor, Internat. J. Parallel Programming, 16 (1987), pp. 427-449.

[56] A. GREENBAUM, Solving sparse triangular linear systems using fortran with extensions on the
NYU Ultracomputer prototype, Tech. Report 99, NYU Ultracomputer Note, New York
University, New York, April 1986.

[67] M. HEATH, Visual animation of parallel algorithms for matriz computations, in Proc. Fifth
Distributed Memory Computing Conf., Charleston, SC, 1990.

[58] M. HEATH AND C. ROMINE, Parallel solution of triangular systems on distributed-memory
multiprocessors, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 558-588.

[59] M. HEATH AND D. SORENSEN, A pipelined Givens method for computing the QR factorization
of a sparse matriz, Linear Algebra Appl., 77 (1986), pp. 189-203.

[60] A. HOFFMAN, M. MARTIN, AND D. ROSE, Complexity bounds for regular finite difference and
finite element grids, SIAM J. Numer. Anal., 10 (1973), pp. 364-369.

[61] B. IRONS, A frontal solution program for finite element analysis, Internat. J. Numer. Methods
Engrg., 2 (1970), pp. 5-32.

(62] J. JEss AND H. KEES, A data structure for parallel L/U decomposition, IEEE Trans. Comput.,
C-31 (1982), pp. 231-239.

[63] B. KERNIGHAN AND S. LIN, An efficient heuristic procedure for partitioning graphs, Bell
Systems Tech. J., 49 (1970), pp. 291-307.

[64] C. LawsoN, R. HANSON, D. KINCAID, AND F. KROGH, Basic linear algebra subprograms for
Fortran usage, ACM Trans. Math. Software, 5 (1979), pp. 308-371.

[65] C. LEISERSON AND J. LEWIS, Orderings for parallel sparse symmetric factorization, in Parallel
Processing for Scientific Computing, G. Rodrigue, ed., Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1989, pp. 27-32.

[66] M. LEUZE, Independent set orderings for parallel matriz factorization by Gaussian elimina-
tion, Parallel Comput., 10 (1989), pp. 177-191.

[67] J. LEwis, B. PEYTON, AND A. POTHEN, A fast algorithm for reordering sparse matrices for
parallel factorization, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1156-1173.

(68] R. LipTON, D. ROSE, AND R. TARJAN, Generalized nested dissection, SIAM J. Numer. Anal.,
16 (1979), pp. 346-358.

[69] R. LipTON AND R. TARJAN, A separator theorem for planar graphs, SIAM J. Appl. Math., 36
(1979), pp. 177-199.

[70] J. W.-H. L1y, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141-153.

[71] , A compact row storage scheme for Cholesky factors using elimination trees, ACM
Trans. Math. Software, 12 (1986), pp. 127-148.

[72] , Computational models and task scheduling for parallel sparse Cholesky factorization,
Parallel Comput., 3 (1986), pp. 327-342.

[73] , Equivalent sparse matriz reordering by elimination tree rotations, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 424-444.

[74] , A graph partitioning algorithm by node separators, ACM Trans. Math. Software, 15
(1989), pp. 198-219.

[75] , The minimum degree ordering with constraints, SIAM J. Sci. Statist. Comput., 10
(1989), pp. 1136-1145.

[76] , The multifrontal method and paging in sparse Cholesky factorization, ACM Trans.
Math. Software, 15 (1989), pp. 310-325.

[77] , Reordering sparse matrices for parallel elimination, Parallel Comput., 11 (1989),
pp. 73-91.

[78] , The multifrontal method for sparse matriz solution: theory and practice, Tech. Report
CS-90-04, Dept. of Computer Science, York University, North York, Ontario, 1990.

[79] , The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl., 11

(1990), pp. 134-172.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 459

[80] J. W.-H. Liu AND A. MIRZAIAN, A linear reordering algorithm for parallel pivoting of chordal
graphs, SIAM J. Discrete Math., 2 (1989), pp. 100-107.

[81] J. W.-H. Liu AND E. G.-Y. NG, A supernodal symbolic Cholesky factorization on a local-
memory multiprocessor, 1990, in preparation.

[82] R. Lucas, Solving planar systems of equations on distributed-memory multiprocessors, Ph.D.
thesis, Dept. of Electrical Engineering, Stanford University, Stanford, CA, 1987.

(83] , Personal communication, 1990.

[84] R. Lucas, W. BLANK, AND J. TIEMAN, A parallel solution method for large sparse systems
of equations, IEEE Trans. Computer Aided Design, CAD-6 (1987), pp. 981-991.

[85] R. MELHEM, Parallel solution of linear systems with striped sparse matrices, Parallel Comput.,
6 (1988), pp. 165-184.

[86] V. NAIK AND M. PATRICK, Data traffic reduction schemes for sparse Cholesky factorization,
Tech. Report ICASE Report no. 88-14, ICASE, NASA Langley Research Center, Hamp-
ton, VA, 1988.

, Data traffic reduction schemes for Cholesky factorization on asynchronous multipro-
cessor systems, Tech. Report ICASE Report no. 89-40, ICASE, NASA Langley Research
Center, Hampton, VA, 1989.

[88] E. NG AND B. PEYTON, A supernodal Cholesky factorization algorithm for shared-memory
multiprocessors, 1990, in preparation.

187]

[89] J. ORTEGA, Introduction to parallel and vector solution of linear systems, Plenum Press, New
York, 1988.

[90] J. ORTEGA, R. VoicT, AND C. ROMINE, A bibliography on parallel and vector numerical
algorithms, Tech. Report ORNL/TM-10998, Oak Ridge National Laboratory, Oak Ridge,
TN, 1989.

[91] S. PARTER, The use of linear graphs in Gaussian elimination, SIAM Rev., 3 (1961), pp. 364—
369.

[92] F. PETERS, Parallel pivoting algorithms for sparse symmetric matrices, Parallel Comput., 1
(1984), pp. 99-110.
[93] A. POTHEN, The complezity of optimal elimination trees, Tech. Report CS-88-16, Dept. of
Computer Science, The Pennsylvania State University, University Park, PA, 1988.
A. POTHEN AND C.-J. FAN, Computing the block triangular form of a sparse matriz, Tech. Re-
port CS-88-51, Dept. of Computer Science, The Pennsylvania State University, University
Park, PA, 1988; ACM Trans. Math. Software, to appear.
[95] A. POTHEN, H. SIMON, AND K. L10U, Partitioning sparse matrices with eigenvectors of graphs,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430-452.

[96] P. RAGHAVAN AND A. POTHEN, Parallel orthogonal factorization, SIAM Symposium on Sparse
Matrices, Gleneden Beach, OR, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 1989.

[97] D. ROSE, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970),
pPp. 597-609.

, A graph-theoretic study of the numerical solution of sparse positive definite systems
of linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press,
New York, 1972, pp. 183-217.

[99] D. RoOskg, R. TARJAN, AND G. LUEKER, Algorithmic aspects of vertex elimination on graphs,
SIAM J. Comput., 5 (1976), pp. 266-283.

[100] E. ROTHBERG AND A. GUPTA, Fast sparse matriz factorization on modern workstations, Tech.
Report STAN-CS-89-1286, Stanford University, Stanford, CA, 1989.

[101] P. SADAYAPPAN AND V. VISVANATHAN, Distributed sparse factorization of circuit matrices via
recursive E-tree partitioning, SIAM Symposium on Sparse Matrices, Gleneden Beach,
OR, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[102] J. SALTZ, Aggregation methods for solving sparse triangular systems on multiprocessors, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 123-144.

[103] R. SCHREIBER, A new implementation of sparse Gaussian elimination, ACM Trans. Math.
Software, 8 (1982), pp. 256-276.

[104] A. SHERMAN, On the efficient solution of sparse systems of linear and nonlinear equations,
Ph.D. thesis, Yale University, New Haven, CT, 1975.

[105] P. WORLEY AND R. SCHREIBER, Nested dissection on a mesh-connected processor array, in
New Computing Environments: Parallel, Vector, and Systolic, A. Wouk, ed., Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1986, pp. 8-38.

[106] C. YANG AND P. Vu, A vector/parallel implementation of the multifrontal method for sparse
symmetric definite linear systems on the Cray Y-MP, Tech. Report, CRAY Research,
1990.

(94]

(98]

460 M. T. HEATH, E. NG, AND B.W. PEYTON

[107] M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete
Methods, 2 (1981), pp. 77-79.

[108] E. ZMIJEWSKI, Sparse Cholesky Factorization on a Multiprocessor, Ph.D. thesis, Dept. of
Computer Science, Cornell University, Ithaca, NY, August 1987.

, Limiting communication in parallel sparse Cholesky factorization, Tech. Report
TRCS89-18, Dept. of Computer Science, University of California, Santa Barbara, CA,
1989.

[110] E. ZM1JEWSKI AND J. GILBERT, A parallel algorithm for sparse symbolic Cholesky factorization
on a multiprocessor, Parallel Comput., 7 (1988), pp. 199-210.

[109]

	Article Contents
	p. 420
	p. 421
	p. 422
	p. 423
	p. 424
	p. 425
	p. 426
	p. 427
	p. 428
	p. 429
	p. 430
	p. 431
	p. 432
	p. 433
	p. 434
	p. 435
	p. 436
	p. 437
	p. 438
	p. 439
	p. 440
	p. 441
	p. 442
	p. 443
	p. 444
	p. 445
	p. 446
	p. 447
	p. 448
	p. 449
	p. 450
	p. 451
	p. 452
	p. 453
	p. 454
	p. 455
	p. 456
	p. 457
	p. 458
	p. 459
	p. 460

	Issue Table of Contents
	SIAM Review, Vol. 33, No. 3 (Sep., 1991), pp. 349-518
	Front Matter
	Vorticity, Turbulence, and Acoustics in Fluid Flow [pp. 349-388]
	The Fractional Fourier Transform and Applications [pp. 389-404]
	The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods [pp. 405-419]
	Parallel Algorithms for Sparse Linear Systems [pp. 420-460]
	Erratum: The Simplex and Projective Scaling Algorithms as Iteratively Reweighted Least Squares Methods [p. 461]
	Classroom Notes
	Activator-Inhibitor Control of Tissue Growth [pp. 462-466]
	Choosing an Inner Product that Separates Variables [pp. 467-471]

	Problems
	Exponentials of Certain Hilbert Space Operators: Problem 91-11 [p. 472]
	Linear System with Positive Solutions: Problem 91-12 [pp. 472-473]
	An Inequality for a Family of Means: Problem 91-13 [p. 473]
	An Infinite Integral: Problem 91-14 [p. 473]
	Point of Minimum Temperature: Problem 91-15 [p. 474]

	Solutions
	Two Integrals Arising from a Cloud Model: Problem 90-12 [pp. 474-477]
	A Two-Point Boundary Problem for Airy Functions: Problem 90-13 [pp. 477-479]
	Elements of Maximum Order in a Matrix Group: Problem 90-14 [pp. 479-481]
	A Multidimensional Integral: Problem 90-15 [pp. 481-483]
	Problem 91-14 (Quickie) [p. 483]

	Book Reviews
	Review: untitled [pp. 484-486]
	Review: untitled [pp. 486-487]
	Review: untitled [pp. 487-489]
	Review: untitled [p. 489]
	Review: untitled [pp. 489-493]
	Review: untitled [pp. 493-495]
	Review: untitled [pp. 495-496]
	Review: untitled [pp. 496-499]
	Review: untitled [pp. 499-501]
	Review: untitled [pp. 501-502]
	Review: untitled [p. 502]
	Review: untitled [pp. 502-503]
	Review: untitled [pp. 503-504]
	Review: untitled [pp. 504-506]
	Review: untitled [pp. 506-507]
	Review: untitled [p. 508]
	Review: untitled [pp. 508-509]
	Review: untitled [pp. 509-510]
	Review: untitled [p. 510]
	Review: untitled [pp. 510-511]
	Review: untitled [pp. 511-512]

	Chronicle [pp. 513-518]
	Back Matter

