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SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
ON VECTOR AND PARALLEL COMPUTERS*

JAMES M. ORTEGA' aND ROBERT G. VOIGT#*

Abstract. In this work we review the present status of numerical methods for partial differential
equations on vector and parallel computers. A discussion of the relevant aspects of these computers and a
brief review of their development is included, with particular attention paid to those characteristics that
influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as
explicit and implicit methods for initial-boundary value problems. The intent is to point out attractive
methods as well as areas where this class of computer architecture cannot be fully utilized because of either
hardware restrictions or the lack of adequate algorithms. A brief discussion of application areas utilizing
these computers is included.
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1. Introduction. For the past 20 years, there has been increasing interest in the use
of computers with a parallel or pipeline architecture for the solution of very large
scientific computing problems. As a result of the impending implementation of such
computers, there was considerable activity in the mid and late 1960’s in the develop-
ment of parallel numerical methods. Some of this work is summarized in the classical
review article of Miranker [1971]. It has only been in the period since then, however,
that such machines have become available. The Illiac IV was put into operation at
NASA’s Ames Research Center in 1972; the first Texas Instruments Inc. Advanced
Scientific Computer (TI-ASC) became operational in Europe in 1972; the first Control
Data Corp. STAR-100 was delivered to Lawrence Livermore National Laboratory in
1974; and the first Cray Research Inc. Cray-1 was put into service at Los Alamos
National Laboratory in 1976.

Since 1976, the STAR-100 has evolved into the CDC Cyber 203, which is no
longer in production, and the Cyber 205, which is now CDC’s entry in the supercom-
puter field. The Cray-1 has evolved into the Cray-1S, which has considerably more
memory capability than the original Cray-1, and the Cray X-MP, a faster multi-
processor version. On the other hand, the TI-ASC is no longer in production, and the
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Illiac IV ceased operation in 1981. For the last twenty years, the most expensive
commercial computer at any given time has cost in the $10-$20 million dollar range;
this is still the correct interval for today’s supercomputers.

The Illiac IV consisted of 64 processors. Other computers consisting of a (poten-
tially large) number of processors include the Denelcor HEP and the International
Computers Ltd. DAP, both of which are offered commercially, and a number of one of
a kind systems in various stages of completion or development: the Finite Element
Machine at NASA’s Langley Research Center; MIDAS at the Lawrence Berkeley
Laboratory; Cosmic Cube at the California Institute of Technology; TRAC at the
University of Texas; Cm* at Carnegie—Mellon University; ZMOB at the University of
Maryland; Pringle at the University of Washington and Purdue University; and the
MPP at NASA’s Goddard Space Flight Center. The first two of the latter group of
machines are designed primarily for numerical computation while the others are for
research in computer science, for image processing, etc. A recent development made
possible by the increasing power and flexibility of microprocessors and the dropping
cost of fabrication is the emergence of several small entrepreneurial companies offering
commercial parallel and vector systems at modest prices. Examples include Elxsi,
Flexible Computer, Inc. and Convex, Inc.

Other computers of some historical interest, although their primary purpose was
not for numerical computation, include Goodyear Corporation’s STARAN (Goodyear
[1974], Gilmore [1971], Rudolph [1972], and Batcher [1974]), and the C.mmp system at
Carnegie—Mellon University (Wulf and Bell [1972]). Also of some historical interest,
although it was not brought to the market, is Burroughs Corporation’s Burroughs
Scientific Processor (Kuck and Stokes [1982]).

During the last 15 years, the literature on parallel computing has been increasing
at a rapid rate and a number of books and survey papers have been written which
complement the present work. The book by Hockney and Jesshope [1981] contains
much information on architectures as well as languages and numerical methods. Other
books or surveys dealing with architecture or other computer science issues or applica-
tions include Worlton [1981] and Zakharov [1984] on the history of (and future for)
parallel computing, Hord [1982] on the Illiac IV, Kogge [1981] on pipelining, Avizienis,
et al. [1977] on fault-tolerant architectures for numerical computing, Hockney [1977],
Kuck [1977], [1978], Kung [1980], Stone [1980] and Uhr [1984]. Surveys on numerical
methods include, in addition to Miranker [1971] already mentioned, Traub [1974a],
Poole and Voigt [1974], which was an essentially complete annotated bibliography up
to the time of its publication, Heller [1978], which concentrates on linear algebra
problems and gives considerable attention to theoretical questions, T. Jordan [1979],
which summarizes performance data for linear algebra software for several vector
computers of the late 1970’s, Book [1981], Buzbee [1981], Evans [1982a], which also
contains a number of nonnumerical articles, Sameh [1977], [1981], [1983], Voigt [1977],
Ortega and Voigt [1977] which the present work updates, Rodrigue [1982], a collection
of review papers on various numerical methods and applications, Gentzsch [1984b],
which concentrates on vectorization of algorithms for fluid mechanics, and Schnendel
[1984], an introductory textbook.

There are also several interesting papers which review the need and uses for
supercomputers. These include Ballhaus [1984], Buzbee [1984a], Buzbee, et al. [1980],
Chapman [1979], Fichtner, et al. [1984], Gautzsch, et al. [1980], Gloudeman [1984],
Hockney [1979], Inouye [1977], Kendall, et al. [1984], Lomax [1981], Peterson [1984a,b],
Rodrigue, et al. [1980], and Williamson and Swarztrauber [1984]. Finally, we mention
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that there has been increasing interest in the use of add-on array processors such as
those made by Floating Point Systems, Inc. (Floating Point Systems [1976]), but this
topic is beyond the scope of this paper; see, for example, Eisenstat and Schultz [1981]
and Wilson [1982].

The challenge for the numerical analyst using vector or parallel machines is to
devise algorithms and arrange the computations so that the architectural features of a
particular machine are fully utilized. As we will see, some of the best sequential
algorithms turn out to be unsatisfactory and need to be modified or even discarded. On
the other hand, many older algorithms which had been found to be less than optimal
on sequential machines have had a rejuvenation because of their parallel properties. In
§83 and 4 we review the current state of parallel algorithms for partial differential
equations, especially elliptic boundary value problems. In §3 we discuss direct methods
for the solution of linear algebraic systems of equations while in §4 we consider
iterative methods for linear systems as well as time-marching methods for initial and
initial-boundary value problems. Finally, in §5, we briefly review selected applications
which have been reported in the literature.

In order to have a framework in which to study and evaluate algorithms, a variety
of concepts have been introduced which we will use in the algorithm discussions that
follow. Many of these ideas are becoming widely accepted as a basis for study and we
introduce them in general terms now.

Traditionally, one of the most important tools of the numerical analyst for evaluat-
ing algorithms has been computational complexity analysis, i.e., operation counts. The
fact that the fast Fourier transform of » samples requires O(rnlogn) arithmetic opera-
tions (here and throughout, log denotes log,) while the straightforward approach
requires O(n?) provides a clear choice of algorithms for serial computers. This arith-
metic complexity remains important for vector and parallel computers, but several
other factors become equally significant. As we will see in the next section, vector
computers achieve their speed by using an arithmetic unit that breaks a simple opera-
tion, such as a multiply, into several subtasks, which are executed in an assembly line
fashion on different operands. Such so-called vector operations have an overhead
associated with them that is called the start-up time, and vector operations are faster
than scalar operations only when the length of the vector is sufficient to offset the cost
of the start-up time. In §3, we show that this start-up time typically enters the
complexity formula as a coefficient of the next to the highest order term. Thus, terms
that are neglected in the usual complexity analysis may play a prominent role in
choosing algorithms for vector computers.

Nor is it sufficient just to minimize the number of vector operations. Every
arithmetic operation costs some unit of time on a vector computer even if it is part of a
vector operation. Thus, for vectors of length n, an algorithm that requires logn vector
operations will not be faster for sufficiently large »n than an algorithm that requires n
scalar operations since nlogn operations will be performed. This preservation of arith-
metic complexity is made more precise by the introduction of the concept of con-
sistency in §3, and we will show that in general for vector computers one should choose
algorithms whose arithmetic complexity is “consistent” with the best scalar algorithm.

Two techniques for improving the performance of vector computers involve the
restructuring of DO loops in Fortran in order to force a compiler to generate an
instruction sequence that will improve performance. It is important to note that the
underlying numerical algorithm remains the same. The technique of rearranging nested
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DO loops is done to help the compiler generate vector instructions. For example,

DO 100 I=1,N
DO 100J=1,N
100 B(I)=B(I)+A(LJ)

would yield scalar add instructions and would be changed to

DO 100 J=1,N
DO 100 [=1,N
100 B(I)=B()+A(LJ)

resulting in a vector add instruction for each value of J. The other technique, char-
acterized as unrolling DO loops in Dongarra and Hinds [1979], is used as a way to
force the compiler to make optimal use of the vector registers on the Cray computers.
(The role of these registers will be discussed in the next section.) In its simplest form,
loop unrolling involves writing consecutive instances of a DO loop explicitly with
appropriate changes in the loop counter to avoid duplicate computation. Several exam-
ples are given by Dongarra [1983] and Dongarra and Eisenstat [1984] for basic linear
algebra algorithms. Although of little value in helping to evaluate different numerical
algorithms, these techniques do provide insight into how to obtain maximum perfor-
mance on vector computers.

The previous two examples indicate some of the limitations with present Fortran
compilers, but a general discussion of compilers for vector and parallel computers,
though crucial to performance, is beyond the scope of this review. For discussions of
the present state of the art see, for example, Arnold [1982], [1983], Kuck, McGraw and
Wolfe [1984], and Kuck, et al. [1984].

The above discussion has focused on vector computers, and although some of the
issues are relevant to computers consisting of parallel processors, there are other
important considerations as well. Arithmetic complexity remains fundamental but extra
computations may not involve the penalty that they would on vector computers (if, for
example, there are processors that would otherwise be idle). Equally important will be
the degree of parallelism, the amount of the computation that can be done in parallel,
which will be defined in §3 and used extensively in the discussions on algorithms. We
will see that there are algorithms with relatively high operation counts that are attrac-
tive on parallel computers because a high percentage of those operations can be done in
parallel.

As emphasized by Gentleman [1978], a nonnumerical issue that is crucial to the
performance of algorithms on parallel computers is the frequency and cost both of
communication among processors and of synchronization of those processors. A simple
iterative method provides an example. If unknowns are distributed among processors
and if the new approximate solution has been computed in these processors, then parts
of this solution must be communicated to other processors in order to compute the next
iterate. The amount and destination of this information depends on the underlying
problem, on how it is mapped onto the processors, and on the numerical algorithm.
Once the communication takes place there must be synchronization if the processors
are to stay on the same iteration step. There are a number of ways to do this, with
varying costs depending on the architecture. Many examples of communication and
synchronization costs will be brought out in §§3 and 4 but they will not be incorpo-
rated into a formal complexity analysis. Such analyses are only beginning to appear
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and a more complete discussion of the costs and how to analyze them may be found in
Adams and Crockett [1984], Reed and Patrick [1984a,b] and Gannon and Van Rosen-
dale [1984b].

Less formal consideration of communication and synchronization involves as-
sumptions such as an equal cost to communicate one floating point number and to
perform one floating point operation. As an extreme case, one can assume zero cost to
communicate. This zero-cost model, although unrealistic, can provide useful bounds on
the performance of an algorithm, and it was this motivation that led to the proposal of
the Paracomputer by Schwartz [1980]. In this model the parallel array contains an
unbounded number of processors all of which may access a common memory with no
conflict and at no cost. Such unrestrained resources make it possible to study the
inherent, total parallelism in an algorithm and to obtain an indication of its optimal
performance. It also provides a standard by which to measure the effectiveness of other
architectures. Some of the algorithm development discussed in this review fits the
paracomputer model. The paracomputer assumption of an unbounded number of
processors has historically been a popular assumption and Heller [1978] reviews re-
search of this kind, particularly for linear algebra algorithms.

At the opposite end of the spectrum from the paracomputer are actual running
arrays where the number of processors is obviously fixed, and (for the immediate
future) usually small relative to the size of the problem. These systems motivate
research on models involving p processors where p is fixed and is much less than », a
parameter measuring the size of the problem. In between, one finds the model of a
system with the number of processors given as some simple function of n. We will see
that these different models can lead to different algorithms for the same problem.

Most parallel numerical algorithms follow one or both of two related principles
which we refer to as divide and conquer and reordering. The divide and conquer
approach involves breaking a problem up into smaller subproblems which may be
treated independently. Frequently, the degree of independence is a measure of the
effectiveness of the algorithm for it determines the amount and frequency of communi-
cation and synchronization. Applying the divide and conquer concept to the inner
product computation X.a,b,, where the product a,b, has been computed in processor p,,
might involve sending a;,,b;,; to processor p;, for i odd. The sum operation is now
“divided” among p/2 processors with p; doing the addition a,b,+a,, b, for i odd.
The idea is repeated logn times until the sum is “conquered” in processor p,. There are
several other ways to organize the computation, all of which will be superior (on
reasonable architectures) to simply sending all the products a,b, to a single processor
for summation. We will see that this simple idea pervades many parallel algorithms.

The concept of reordering may be viewed as restructuring the computational
domain and/or the sequence of operations in order to increase the percentage of the
computation that can be done in parallel. For example, the order in which the nodes of
a grid are numbered may increase or decrease the parallelism of the algorithm to be
used. An analogous example is the reordering of the rows and columns of a matrix to
create independent submatrices that may be processed in parallel. Specific algorithms
based on this concept will be discussed in §§3 and 4.

After one has obtained a parallel algorithm it is natural to try to measure its
performance in some way. The most commonly accepted measure is speedup, which is
frequently defined as

__execution time using one processor
P execution time using p processors




154 JAMES M. ORTEGA AND ROBERT G. VOIGT

The strength of this definition is that it uses execution time and thus incorporates any
communication or synchronization overhead. A weakness is that it can be misleading to
focus on algorithm speedup when in fact one is usually more interested in how much
faster a problem can be solved with p processors. Thus, we wish to compare the best
serial algorithm with the parallel algorithm under consideration, and we define

__execution time using the fastest sequential algorithm on one processor

S, — - -
4 execution time using the parallel algorithm on p processors

This second definition makes clear that an algorithm with excellent parallel characteris-
tics, that is, a high speedup factor S,,, still might not yield as much actual improvement
on p processors as S, would indicate.

Ware [1973] suggested another definition of speedup in order to reflect more
clearly the role of scalar computation in a parallel algorithm:

S, = [(1—01)+%]_1 .

Here a is the fraction of work in the algorithm that can be processed in parallel, and
the execution time using a single processor has been normalized to unity. Buzbee
[1983c] points out that

as,

G|, PP

a=1

and this quadratic behavior is shown in Fig. 1.1 where it is clear that the fraction of
work that can be done in parallel must be high to achieve reasonable speedups. Buzbee
also points out the similarity between Fig. 1.1 and the behavior of vector performance
if the abscissa is interpreted as the fraction of vectorizable work. Buzbee [1983b] uses
the Ware model to discuss the parallel properties of particle-in-cell codes for fusion
studies, concluding that a large percentage of the work can be processed in parallel.
Buzbee [1983c] also notes that a weakness of the Ware model of speedup is that
S,=p for an algorithm that is completely parallel (a =1), which is unlikely because of
various overheads associated with parallel computation. In fact, Minsky [1970] conjec-
tured that speedup for p processors would be proportional to logp. Buzbee suggests the

16 processors

Speedup
=3

r~1 1 17 -1 1Tl

8 processors

t——= 4 processors

| Il
.6 7 .8 .9 1

Fraction of work in parallel

FIG. 1.1. Speedup as a function of parallelism and number of processors.
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following change to the Ware model:
a -1
s,=(1 —a)+;+ o(p)

where o( p) reflects the overhead of using p processors. Thus it is clear that if we are to
improve on the Minsky conjecture, algorithms and implementations must be found for
which a is near unity and o( p) is near zero. Other studies by Kuck, et al. [1973] and
Lee [1977] suggest that over a broad range of problems it is reasonable to expect an
average speedup proportional to p/logp.

Knowing the speedup, it is reasonable to ask how efficiently the parallel system is
being utilized by the algorithm. One way to accomplish this is to use the efficiency
measure defined by

S
E,=—".
Pop

Thus in the ideal situation of a speedup of p for p processors, the efficiency measure is
unity. For some other speedup factors, such as the conjectured p/log p discussed
above, E, tends to zero as p is increased, giving a clear indication that certain algo-
rithms may not yield good processor efficiency for systems with a large number of
processors.

In §2, we will review in more detail various architectural features of both pipelined
computers and arrays of processors, and give further details on some of the machines
mentioned in this section, as well as others. Among the topics that will not be discussed
in §2 are digital optical computing and special devices designed to execute a specific
algorithm or to solve a specific problem. Digital optical computing utilizes photons as
the information carrying media, but, generally, issues involving algorithms are the same
as for conventional digital computing. For a review see Sawchuk and Strand [1984]
and for a discussion of some algorithmic considerations see Casasent [1984]. Computers
designed specifically for an algorithm or problem are receiving increased attention
because of the dropping cost of components. One such system, described by Christ and
Terrano [1984], would deliver several billion floating point operations per second for
elementary particle physics calculations.

2. Review of the hardware. In this section we shall review some of the basic
features of vector and parallel computers. However, because of the plethora of such
systems, each differing in detail from the others, we shall attempt to stress some of the
basic underlying architectural features, especially as they affect numerical algorithms,
and refer the reader to the literature for more details on the individual computers.
Another reason that we shall not attempt to give a detailed treatment of any particular
system is that the field is changing so rapidly. For example, as of this writing, Cray
Research Inc. has announced the Cray-2, Control Data Corp. the Cyberplus, Denelcor
the HEP-2, ETA the GF-10, and there are a number of university development pro-
jects. Moreover, there is an expected impact from VLSI technology, although the
precise form this will take is not yet clear. Finally, the Japanese are developing several
systems (Buzbee, et al. [1982], Kashiwagi [1984] and Riganati and Schneck [1984]).

One obvious way to achieve greater computational power is to use faster and faster
circuits, and improvements in this area have been immense. However, the limits on
transmission speeds imposed by the speed of light and fabrication limitations (see, for
example, Seitz and Matisoo [1984]) have led to attempts to improve performance by
parallelism, which, in its most general form, occurs whenever more than one function is
being performed at the same time. This idea actually dates back to the ENIAC, the first
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electronic computer (Eckert, et al. [1945]), which was capable of executing many
arithmetic operations simultaneously. However, the authors discussed several levels of
parallelism and concluded that serial operation was to be preferred. One of their
reasons—the difficulty of programming for parallel operations—was certainly pro-
phetic. They also observed that improving component speeds made parallelism unnec-
essary!

Parallelism did reappear occasionally in various forms beginning in the early
1950’s. For example, there was parallelism in the arithmetic units of the Institute for
Advanced Study computer at Princeton University and The Whirlwind I at the Mas-
sachusetts Institute of Technology (Kuck [1978]), and parallelism between program
execution and I/0 on the UNIVAC I (Kogge [1981]). For a brief history of computers
and an excellent guide to the literature the reader is referred to Kuck [1978].

The general notion of parallelism discussed above is basically the same as that set
forth by Hobbs and Theis (Hobbs, et al. [1970]) but is too broad for our interests here
since we are focused primarily on numerical algorithms. For our purposes, parallelism
in computing will be exemplified by those computers which contain instructions for
performing arithmetic operations on a collection of operands as an entity, such as
vectors, or which contain independent processing elements that may be used on the
arithmetic aspects of the same problem simultaneously.

Pipelining. One way of obtaining significant speedups is by the technique known
as pipelining. We will use the term pipelining (as given in Kogge [1981]) to refer to
design techniques that take some basic function to be invoked repeatedly and partition
it into several subfunctions which can be done in an assembly line fashion. This is
illustrated in Fig. 2.1, which shows how a floating point instruction is broken down into
more elementary parts.

Operands sign Ex- Align- Normal-fNormal-] ENd Result
—{ control | Ponent | ment Add 1ze ize case | g

compare| shift count | shift |detec-
tion

F1G. 2.1. Floating point pipeline.

By the early 1960’s pipelining was being used in a variety of computers to speed up
functions like memory access and instruction execution (Kogge [1981]). Eventually the
technique was used in arithmetic units on the CDC 7600 and the IBM System 360
Model 91. However these computers do not fit our view of parallelism because the
arithmetic instructions are executed with only one set of operands. The last necessary
step was taken with computers such as the CDC Cyber 200 series (formerly the
STAR-100), the Cray series and the TI-ASC, which have hardware instructions which
accept vectors as operands. Since the ASC is no longer available, we will focus on the
former two computers (see Watson [1972] for a description of the ASC). For simplicity,
thoughout the remainder of this paper we will refer to the Cyber 200 series including
the 203 and 205 as the Cyber 200 and to the Cray family as the Cray unless there is
some reason to make a further distinction.

Cyber 200. We next give a very brief functional description of the Cyber 200 and
Cray families. A thorough review of the Cray-1, the Cyber 205 and the Cray X-MP may
be found in Russell [1978], Lincoln [1982] and Chen [1984], respectively; see also
Larson [1984] for the X-MP. The Cyber 200 has separate arithmetic units for scalar and
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vector floating point arithmetic. The latter units, which we shall refer to as pipelines,
are accessed by hardware vector instructions which obtain their operands directly from
main memory. Main memory size ranges from 0.5 to 2 million 64-bit words on the 203
and 1 to 16 million on the 205 with further increases in memory size already an-
nounced. The 203 had two separate pipelines while the 205 may have 1,2 or 4. The
pipelines are reconfigurable via microcode in order to execute a variety of arithmetic
operations. A schematic of the Cyber 200 is given in Fig. 2.2.

Floating point
pipeline

Main Memory Floating point

pipeline

F1G. 2.2. Cyber 200 schematic.

A vector hardware instruction initiates the flow of operands to the pipeline, and
assuming that the instruction involves two source vectors, each segment of the pipeline
accepts two elements, performs its particular function (e.g., exponent adjustment),
passes the result to the next segment, and receives the next two elements from the
stream of operands. Thus, several pairs of operands are being processed concurrently in
the pipeline, each pair in a different stage of the computation. The number of results
emerging from the pipeline each clock period (cycle time) depends upon the arithmetic
operation and the word length (64 bits or 32 bits). The maximum result speeds are
given in Table 1 for various cases. For a 4-pipeline 205, the computation rates shown in
Table 1 are doubled. Moreover, the 205 has the capability of handling “linked triads”
of the form vector + constant X vector at the same rate as addition; hence, this opera-
tion achieves 200 million floating point operations per second (MFLOPS) for 64-bit
arithmetic on a 2 pipeline machine, and 800 MFLOPS for 32-bit arithmetic on a 4
pipeline machine. This is the fastest possible result rate for the 205.

TaBLE 1
Maximum computation rates in MFLOPS for Cyber 203 /205.
203 (2 pipe) 205 (2 pipe)
64-bit 32-bit 64-bit 32-bit
+ 50 100 100 200
X 25 50 100 200
/ 12.5 25 100 200

The maximum result rates given above are not achievable because every vector
operation has associated with it a delay incurred after the instruction is issued for
execution and before the first result emerges from the pipeline. An approximate timing
formula for vector instructions for the Cyber 200 has the form

(2.1) T=S+an

where S is the overhead, frequently called the start-up time, « is the time per result in
clock periods, n is the length of the vector, and T is measured in clock periods. For the
Cyber 203, the clock period is 40ns, « is 3, 1 and 2 for addition, multiplication and
division, respectively, in 64-bit arithmetic and S ranges from 70 clock periods for
addition to 165 for division. On the 205, the clock period is 20ns, while a =% for 64-bit
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arithmetic and. S =50 for all the arithmetic operations. The effect of the start-up time is
to degrade seriously the performance when # is small. This is illustrated in Table 2 for
the 205 for a particular case.

TABLE 2

Performance for 2-pipeline Cyber 205 in 64-bit arithmetic.

n T(clocks) T/n MFLOPS
10 55 5.5 9
100 100 1 50
1000 550 .55 91
10000 5050 .505 99
%) - 5 100

As Table 2 shows, for short vectors (n=10) performance is less than 10 percent of the
maximum rate and vectors of length almost 1000 are required to achieve 90 percent of
the maximum rate. The computation rates can be further degraded by the fact that a
vector on the Cyber 200 is a set of contiguously addressable storage locations in
memory, and if the data for a vector operation is not already stored in such fashion, it
must first be rearranged. Although there are hardware instructions (gather, scatter,
merge, compress) to effect this data transfer, they add further overhead to the computa-
tion.

Hockney and Jesshope [1981] have introduced the useful concept of the half-per-
formance length, n, ,,, which is defined as the vector length required to achieve one-half
the maximum performance; in the example of Table 2, n;,=100. They use this
parameter together with the maximum performance rate to characterize a number of
vector and array computers; see also Hockney [1983a,b]. We also mention that it has
been noted by several people that “Amdahl’s law”, first suggested in Amdahl [1967]
and a special case of Ware’s law discussed in §1, is particularly relevant in parallel
computing. Briefly, if a computation contains x scalar operations and y operations that
can be done by vector instructions, then the computation can be accelerated by no
more than a factor of (x+y)/x, even if the vector operations are infinitely fast. For
example, if there are 50 percent scalar operations no more than a factor of 2 improve-
ment over scalar code can be achieved.

Cray. The Cray computers are similar in many ways to the Cyber 200 but have
fundamental differences. Memory size ranges from 500,000 to 4 million 64-bit words on
the Cray-1 and 1S and up to 8 million words on a 4 processor X-MP, but there is no
provision for 32-bit arithmetic. Again, there are hardware vector instructions but these
utilize separate pipelined arithmetic (functional) units for addition, multiplication, and
reciprocation rather than reconfigurable units as on the Cyber 200. The clock period is
12.5ns on the Cray-1 and 1S and 9.5ns on the Cray X-MP, as compared with 20ns on
the Cyber 205. The X-MP series allows a configuration of 1,2 or 4 processors. The most
basic functional difference between the processors, however, is that the Cray vector
instructions obtain their operands only from eight vector registers, of 64 words each. A
schematic of a Cray processor is given in Fig. 2.3.

For data in the vector registers, the vector instructions on the Cray again obey
approximately the timing formula (2.1) but now the start-up times are O(10) clock
periods, considerably lower than the Cyber 200, while a is, again, O(1). The effect of
the small start-up time is evident in Table 3.
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TABLE 3
Performance for Cray-1.
n T(clocks) T/n MFLOPS
10 250 25 40
20 375 18.75 53
64 925 14.5 69

Discounting the relatively low start-up time, the maximum result time for each of the
three arithmetic operations is 80 MFLOPS on the Cray-1 so that n, ,, =10, a significant
reduction from the Cyber 205 figure of 100. In addition, all functional units can be
operated in parallel so that, theoretically, the maximum speed on the Cray-1 is 160
MFLOPS for addition and multiplication running concurrently. On the X-MP, this
figure increases to 210 MFLOPS per processor because of the faster cycle time and
would be 840 MFLOPS on a full 4 processor X-MP system.

Although the vector operations on the Cray have relatively low start-up times, this
is balanced by the time needed to load the vector registers from memory. For example,
for an addition, two vector registers must be loaded and the result stored back in
memory from a vector register. Although arithmetic operations can be overlapped to
some extent with the memory operations, there is only one path from memory to the
registers on the Cray-1 and 1S, and since memory load and store operations require one
clock period per word (after a short start-up), only a load or a store can be done
concurrently with the arithmetic operations. This problem is alleviated to a large extent
on the Cray X-MP series, which has three paths between memory and the registers on
each processor, allowing two loads and a store to be done concurrently. In any event,
and especially on the Cray-1, one attempts to retain data in the registers as long as
possible before referencing memory. One says that vector speeds are being obtained if
vector hardware instructions are being utilized but that sufficient memory references
are required to hold the operation rate to nominally less than 50 MFLOPS on the
Cray-1, and that super-vector speeds are obtained if information can be held in the
registers long enough to obtain rates in the 50-150 MFLOP range. These figures would
be scaled up appropriately for the X-MP. The attainment of super-vector speeds is
enhanced by the capability of chaining which is the passing of results from one
arithmetic unit directly to another as illustrated in Fig. 2.4.

Another major advantage that the Cray X-MP offers over the Cray-1 is that of
multiple CPU’s. The CPU’s function off of a shared central memory with a set of
shared data and synchronization registers for communication. Some early benchmarks
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indicate speedups of from 1.5 to 1.9 for two processors (Chen [1984], and Chen, et al.
[1984]).

To summarize the main functional differences between the Cray and Cyber 200,
one attempts to organize a computation on the Cyber 200 to utilize vector lengths as
long as possible while on the Cray one attempts to organize the computation so as to
minimize references to storage and utilize as much as possible information currently in
the vector registers. However, any realistic computation will require deviation from
these ideals and will also require a certain amount of scalar processing. Several
benchmarking studies have been published (e.g. Rudinski and Pieper [1979], Nolen, et
al. [1979], Gentzsch [1983], [1984a]) which gave valuable performance data for certain
classes of problems. See also Ginsburg [1982].

Japan. It should be noted that Fujitsu, Hitachi and Nippon Electric have devel-
oped supercomputers whose performance would appear to be comparable to the Cyber
and Cray machines (see, for example, Riganati and Schneck [1984]). The previous
discussion on the Cray is appropriate for these machines for they are architecturally
similar to it; in particular, they employ vector registers in much the same way as the
Cray does (see, for example, Miura and Uchida [1984]). Preliminary benchmark results
including a comparison to the Cray are given in Mendez [1984] and Worlton [1984].

Parallel computers. We turn now to computer organizations consisting of a poten-
tially large number of processing elements. These computer architectures fall into two
classes as defined by Flynn [1966]. In Single Instruction Multiple Data (SIMD) sys-
tems, each processor executes the same instruction (or no instruction) at the same time
but on different data. In Multiple Instruction Multiple Data (MIMD) systems, the
instructions may differ across the processors, which need not operate synchronously. A
much more detailed taxonomy has been given by Schwartz [1983] based on fifty-five
designs, and excellent reviews of various architectural approaches are given by Haynes,
et al. [1982], Siewiorek [1983] and Zakharov [1984].

Illiac. In the late 1950’s, interest in designing a parallel array computer began to
grow. Designs such as the Holland Machine (Holland [1959]) and von Neumann’s
Cellular Automata (von Neumann [1966], first published in 1952), consisting of arrays
of processing cells operating in MIMD mode and communicating with their four
nearest neighbors, were proposed. In the same period, Unger [1958] had proposed a
parallel array of bit-serial processors using the four nearest neighbor communication
strategy: the machine was intended for pattern recognition and suggested the architec-
ture of later machines such as the SOLOMON and the DAP. In the early 1960’s,
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Westinghouse Electric Corp. constructed prototypes of a parallel computer
(SOLOMON) designed by Slotnick, et al. [1962]. The design was modified and refined
into the Illiac IV at the University of Illinois (Barnes, et al. [1968] and Bouknight, et al.
[1972]) and constructed by the Burroughs Corporation.

The Illiac IV consisted of 64 fast processors (about 1 MFLOP each), with mem-
ories of 2048 64-bit words connected in an 8 X8 array as illustrated in Fig. 2.5. The
individual processors were controlled by a separate control unit and all processors did
the same instruction (or nothing) at a given time. Hence, the machine was of SIMD
type and could be visualized as carrying out vector instructions on vectors of length 64
or shorter. In many ways, algorithm considerations were very similar for the Illiac IV
and the Cray and Cyber 200 machines. The Illiac IV was the first parallel array
computer to become operational for the benefit of a large, diverse user community
when it was installed at the NASA Ames Research Center in the early 1970’s. (It was
removed from service in 1981.) Although a large number of parallel computers have
been, and continue to be, developed, probably most of the computational experience
with such computers has been gained on the Illiac IV (see, for example, Feierbach and
Stevenson [1979]).

At the same time that the Illiac IV was becoming operational, advances in micro-
processors led to a variety of speculations on connecting tens of thousands, or even
hundreds of thousands, of such processors together. A major consideration is how these
processors are to communicate. The design of the Illiac IV, in which each processor is
connected to its four nearest neighbors in the north, south, east, and west directions
with wrap-around connections at the edges (Fig. 2.5), is suitable for the simplest
discretizations of simple partial differential equations but becomes less suitable for
more complicated situations and more sophisticated algorithms. Although the Illiac IV
was capable of performing in the 50 MFLOP range, this rate was difficult to sustain
because of the relatively small memories and the limitations of the processor intercon-
nection scheme.

Communication. The importance of communication among processors has led to
extensive research on interconnection methods. Fundamental work was done by Clos
[1953] and by Benes [1962], [1965] for telephone networks, and surveys of more recent
research may be found in Anderson and Jensen [1975], Sullivan and Bashkow [1977],
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Siegel [1979], Feng [1981], Haynes, et al. [1982] and Broomell and Heath [1983]. It is
now clear that the interconnection scheme is probably the most critical issue in the
design of parallel systems because it determines how data, and possibly instructions,
are made available to the appropriate processing elements. For many algorithms, the
total time required to move data to the appropriate processors is as large or larger than
the time required for the completion of the computation (see, for example, Gentleman
[1978]).

Ideally, every processor would have a dedicated connection to every memory.
Although this would allow access in unit time independent of the number of processors,
it is impractical for systems with a large number of processors for two reasons. In the
first place, the complexity of the interconnection scheme for n processors increases as
n2. Furthermore, since each processor must support n communication lines, if a
processor is a single chip or even a few, the number of pins required to provide the
communication connections will exceed what present technology can provide, even for
moderate size n. On the other hand, an inadequate interconnection scheme limits the
performance of the system and thereby reduces the class of problems which can be
solved in reasonable time; this is the trade-off facing the designer of a parallel machine.

In practice, three fundamentally different interconnection schemes have been used
and, in turn, we will use these to introduce a classification of some simple types of
parallel arrays. More complex systems can usually be viewed as a combination of these
three types. We also note that, in principle, each of these interconnection schemes could
be used to implement a global shared memory.

Lattice. P processors, each with local memory, arranged into some form of regular
lattice. Each processor is permanently connected to a small subset of the others, usually
its neighbors in the lattice (Fig. 2.5).

Bus. P processors, each with local memory, connected to a bus structure allowing
communication among the processors (Fig. 2.6).

Switch. P processors, and M memories connected by an electronic switch so that
every processor has access to some, possibly all, of the memories (Fig. 2.7).

Lattice arrays. The classical lattice array is the Illiac IV. Other lattice computers
include the Distributed Array Processor (DAP) (Flanders, et al. [1977] and Parkinson
[1982]), constructed by International Computers Limited, the Massively Parallel
Processor (MPP) at NASA-Goddard (Batcher [1979], [1980]), and the systolic arrays
proposed by H. T. Kung and his collaborators (Kung and Leiserson [1979], and Kung
[1979], [1980], [1982], [1984]). The DAP is an array of single bit processors, each
connected to their four newest neighbors, and with additional row and column data
paths. A 64 X 64 array performing multiplication of two 64 X 64 matrices using software
to effect 32-bit arithmetic provides a computation rate of 18 MFLOPS (Reddaway
[1979]). The bit orientation, which permits parallelism at a very low level, and the row
and column connections should alleviate some of the communication difficulties of the
Illiac IV. The MPP, constructed by Goodyear Aerospace Corp., is also an array of
single bit processors, 16,000 of them operating in SIMD mode. It was designed prim-
arily for satellite data reduction but is capable of substantial floating point computa-
tion rates. For example, for 32-bit operands, addition may be done at a rate of 430
MFLOPS while the rate for multiplication is 216 MFLOPS (Batcher [1979]). Gallopou-
los [1984] discusses performance on several fluid dynamics applications.

Systolic arrays consist of very simple processors capable of performing a single
operation such as ab+c. They are designed to perform specific computations such as
matrix multiplication or LU factorization. This specificity makes it possible to use a
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simple interconnection pattern and move the data continuously through the array. Thus
one could view the device as a large pipeline with each processor accepting data,
performing a simple operation and passing the operands and/or the result on to the
next processing element. The difference between this and a usual pipeline is that each
processor performs precisely the same simple function rather than different subfunc-
tions. A significant number of systolic algorithms have been developed; see, for exam-
ple, Bojanczyk, et al. [1984], Brent and Luk [1983a,b], Heller and Ipsen [1983], Ipsen
[1984], Kung [1980], [1984], Kung and Leiserson [1979], Melhem [1983a,b], and
Schreiber [1984].

Another lattice that has received considerable attention is the tree structure. For
example, Magd [1979], [1980] has proposed a design for directly executing the func-
tional programming languages of Backus [1978] based on a binary tree in which a
typical processor is connected to one processor above it and two processors below.
Such a tree is said to have a “fan-out” of two; larger fan-outs have been discussed, but
there is a potential for communication bottlenecks as the fan-out increases. This can be
particularly troublesome at the root of the tree if a large amount of global communica-
tion is required. One way to lessen the demand on the root is to introduce horizontal
communication links among the processors on any given level of the tree. Shaw [1984]
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has also proposed a tree structure for the NON-VON machine, which is intended
primarily for nonnumerical processing.

It is also possible to consider, at least conceptually, multi-dimensional lattices. An
example of such a structure is the binary k-cube for connecting n=2* processors (see,
for example, Bhuyan and Agrawal [1984]). If the processors are viewed as the corners of
a cube in k dimensions, then the connections are the edges of the cube. For k=3 this
reduces to a simple cube with each processor connected to three others. In general, if
each processor is given a unique label from the integers zero through n—1, then
processor i is connected to processor j if and only if the binary representations of i and
j differ in a single bit. The strength, and potential weakness, of this strategy is that the
number of processors connected to a given processor is k; thus there is a rich inter-
connection structure but at some point the requirement for & wires would introduce a
fabrication difficulty. A 64-processor machine based on the 6-cube and known as the
Cosmic Cube is operational at the California Institute of Technology (see, e.g., Seitz
[1982], [1984]). The processors utilize the Intel 8086,/8087 chip family and have 128K
bytes of memory. In addition, Intel Corp. has announced a commercial version of the
machine using the 80286 /80287 chip family.

Bus arrays. Examples of bus arrays include Cm* at Carnegie—Mellon University
(Swan, et al. [1977], Jones and Gehringer [1980]), ZMOB at the University of Maryland
(Rieger [1981]), and Pringle at the University of Washington and Purdue University
(Kapauan, et al. [1984]). Cm* is a research system consisting of approximately 50
Digital Equipment Corporation LSI-11’s configured in clusters, with the clusters con-
nected by a system of buses. The processors share a single virtual address space and the
key to performance lies in the memory references. For example, if the time to service a
local memory reference is one unit, then Raskin [1978] reports that a reference to a
different memory, but one within the same cluster, requires a little more than three
units while a reference to a different cluster requires more than seven units, assuming
no contention. Further performance data based on some applications programs, includ-
ing the iterative solution of a discretized Laplace’s equation and a problem in computa-
tional chemistry, are given in Raskin [1978] and Hibbard and Ostlund [1980], respec-
tively. Additional applications are treated in Ostlund, et al. [1982], and general pro-
gramming considerations are discussed in Jones, et al. [1978]. The machine was also
used to simulate electrical power systems (Dugan, et al. [1979] and Durham, et al.
[1979)).

ZMOB is an array of up to 256 Z-80 microprocessors configured in a ring as
depicted in Fig. 2.6. The performance of the bus relative to that of the processors is so
great that there are not the usual delays in communication characteristic of bus arrays.
Because of the high speed bus, a processor can obtain data from any memory in
approximately the same time but, unfortunately, this is not a characteristic that could
be maintained if the array were scaled up to a larger number of more powerful
Pprocessors.

The Pringle system was designed and built to serve as a test bed to emulate the
CHiP architecture (Snyder [1982]) as well as others. The system consists of 64 process-
ing elements based on 8-bit Intel processors with a floating point coprocessor (Field, et
al. [1983]). The processing elements, with a modest amount of local memory, are
connected via separate input and output buses. The two buses are connected via a
message routing processor or “switch” which establishes communication patterns that
allow the Pringle to emulate a variety of communication networks. Some preliminary
performance data is given in Kapauan, et al. [1984] for summing a sequence of numbers
using an algorithm based on recursive doubling.
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Switch arrays. The now classic example of a switch array is C.mmp, a research
machine developed at Carnegie—Mellon University in the early 1970’s (Wulf and Bell
[1972] and Wulf and Harbison [1978]). The system consisted of up to sixteen Digital
Equipment Corporation PDP minicomputers connected to sixteen memory modules via
a 16 X 16 crosspoint switch, as depicted in Fig. 2.7. There is not a great deal of data on
the performance of C.mmp on scientific applications; however, one study by Oleinick
and Fuller [1978] provides insight into the importance of synchronization on perfor-
mance. In a parallel version of the bisection method for finding the root of a monotoni-
cally increasing function, after all processors have evaluated the function they must halt
and await the decision of which subinterval to use next. Several synchronization
techniques were investigated and it was found that their time of execution varied by a
factor of 15 with the more sophisticated techniques requiring over 30 milliseconds. This
obviously adds significant overhead to the algorithm for all but the most complicated
functions. Synchronization techniques are a major area of concern in the design and
use of parallel arrays.

The crosspoint switch is also the basis for the communication mechanism for the
S-1 array under development at Lawrence Livermore National Laboratory (Farmwald
[1984]). This machine is intended to support up to sixteen processors of approximately
Cray-1 performance connected to a shared memory consisting of about 10° bytes per
processor.

The full crosspoint switch for connecting n processors with n memories contains n>
switches, which is not feasible for large n. This has led designers to consider simpler
switches consisting of O(nlogn) subswitches. An introduction to this area is contained
in Haynes, et al. [1982]. An example of an nlogn switch (and there are many) is the
Banyan switch (Goke and Lipovksi [1973]), which is the basis for the Texas Reconfig-
urable Array Computer (TRAC) under development at the University of Texas
(Sejnowski, et al. [1980] and Browne [1984b]). Some projected performance data for the
TRAC, based on odd-even reduction algorithms for block tridiagonal systems (Heller
[1976)), is given by Kapur and Browne [1981], [1984].

Another computer utilizing a Banyan type switch is the Heterogeneous Element
Processor (HEP) manufactured by Denelcor, Inc. (Smith [1978] and H. Jordan [1984]).
It consists of up to sixteen processors with the switch providing access to a data
memory. In a HEP processor two queues of processes are maintained. One of these
controls program memory, register memory and the functional units while the other
controls data memory. The mode of operation is as follows. If the operands for an
instruction are contained in the register memory, the information is dispatched to one
of several pipelined functional units where the operation is completed; otherwise the
process enters the second queue which provides information to the switch so that the
necessary link between processor and data memory can be established. After the
memory access is complete, the process returns to the first queue, and when its turn for
service occurs, it will execute since the data is available. The time required to complete
an instruction is 800 ns, but a new instruction may be issued every 100 ns. Thus, if the
processors can be kept fully utilized, on a sixteen processor machine a 160 MFLOP rate
is theoretically possible. Some preliminary information on utilizing the HEP for solving
linear systems is given by Lord, et al. [1980], [1983], H. Jordan [1983], [1984], Dongarra
and Hiromoto [1984] and by H. Jordan [1981], who concentrates on the sparse matrix
package from AERE, Harwell, England (Duff [1977]). Moore, et al. [1985] discuss
several hydrodynamic applications for which efficiencies very close to unity are ob-
tained on a single processor HEP. Operational results for a four processor HEP at the
Army Ballistic Research Laboratory are given in Patel and Jordan [1985], where an
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iterative method for a problem in fluid mechanics is discussed. Some preliminary
performance data for the HEP and several other MIMD systems may be found in
Buzbee [1984b].

Other connection schemes. We have indicated many examples of parallel array
computers covering the three major classifications. Because of the importance of com-
munication and the limitations of the various strategies, we may expect to see com-
puters which utilize combinations of the techniques described above. One such machine
is the Finite Element Machine (H. Jordan [1978a], Storaasli, et al. [1982] and Adams
and Voigt [1984b]) at the NASA Langley Research Center. This lattice array was
designed for 36 16-bit microprocessors configured in a planar array with each processor
connected to its eight nearest neighbors as shown in Fig. 2.8. It is also a bus array
because the nearest neighbor connections are augmented by a relatively high perfor-
mance bus which services every processor of the array. Some preliminary performance
data are available in Adams [1982] and Adams and Crockett [1984]. A rather similar
machine, PACS, is being developed in Japan (Hoshino, Kawai, et al. [1983] and
Hoshino, Shirakawa, et al. [1983]).

Another system which combines communication strategies is MIDAS, a prototype
of which is operational at the Lawrence Berkeley Laboratories (Maples, et al. [1983)).
The array consists of clusters of processors configured as a tree, with each cluster
containing up to eight processors interconnected by a full crosspoint switch. A discus-
sion of programming considerations and some results for a Monte Carlo simulation are
given in Logan, et al. [1984]; additional results are reported in Maples, et al. [1984].

Another approach to the communication problem is the configurable highly paral-
lel (CHiP) computer (Snyder [1982]). An interesting feature of this project is that the
communication network is programmable and reconfigurable. Thus, for an application
involving the direct solution of linear systems, it can be made to function as an
appropriate systolic device, while for another application involving the iterative solu-
tion of a discretized differential equation, it can function as a lattice array. Reconfig-
urability offers additional benefits for adapting to varying problem sizes and for
providing fault tolerance. An example of this flexibility is given in Gannon and Panetta
[1985] which discusses implementing SIMPLE, a benchmark hydrodynamics code, on
the CHiP.

| yd
Ny G N 1
4 % H » o (- P
| } } |
| Mo | ! : ", | "5
|
TR T oK T KT
; P [ DS 1 s I P11
| T b
|

| " | t | Mg I My
/T \! | T '
I : | |

1 | : |
!_ P30 :_ P31 . I P35
| T .
| 30 | M3y | M35
TN AT '
\ / |

AN 7

F1G. 2.8. Finite Element Machine.



PARTIAL DIFFERENTIAL EQUATIONS ON VECTOR AND PARALLEL COMPUTERS 167

There are also several other efforts whose impact will have to await further
development. More exotic switching networks such as the shuffle exchange, cube-con-
nected-cycles and omega networks have been studied (see, for example, Haynes, et al.
[1982]). The Ultracomputer project at New York University is building, in cooperation
with IBM, a large array based on the shuffle exchange (Gottlieb and Schwartz [1982],
Gottlieb, Grishman, et al. [1983] and Gottlieb [1984]). The nodes of the shuffle ex-
change network possess rudimentary processing capability which is used to help al-
leviate memory contention. The Cedar project (Gajski, et al. [1983], [1984]) at the
University of Illinois makes use of the omega network to connect clusters of processors
to a large shared memory. Wagner [1983] has proposed the Boolean Vector Machine
(BVM) as a large array of single-bit processors with very small memories operating in
SIMD mode using bit serial arithmetic. The processors are interconnected via a cube-
connected-cycles network (Preparata and Vuillemin [1981]) which links each processor
to three others. An algorithm for solving sparse linear systems on the BVM is analyzed
in Wagner [1984].

Another interesting idea is the dataflow computer, which has been the subject of
over 10 years of research by J. Dennis of MIT and his colleagues as well as others (see
e.g. Dennis [1980], [1984b] and Agerwala and Arvind [1982] and the references therein
for a general overview). Two systems based on this concept are the Manchester Data
Flow Machine (Watson and Gurd [1982]) which has been operational since 1981, and
the SIGMA-1 (Hiraki, et al. [1984] and Shimada, et al. [1984]) which is under construc-
tion at the Electrotechnical Laboratory in Japan. Gurd and Watson [1982] report very
promising results for a variety of problems run on the Manchester machine. Studies on
the effectiveness of data flow computers for applications such as the weather problem
and computational fluid dynamics have been done by Dennis and Weng [1977] and
Dennis [1982], [1984a], respectively.

It is now clear that new designs from commercial manufacturers will utilize a
combination of vector and array concepts for computers that might be characterized as
arrays of vector processors. The first of these was the Cray X-MP (see e.g. Chen [1984)),
which was introduced as a two processor version and is now available with four
processors. The Cray-2 and Cray-3 are also expected to involve multiple processors
with the Cray-2 initially offering four. Control Data Corp. has announced the Cyber-
plus (Ray [1984]) which consists of up to 64 processors each with multiple pipelined
functional units. The functional units within a processor may be connected via a
crossbar switch to obtain the equivalent of chaining, and the processors themselves are
connected via three independent buses. ETA Systems Inc., a spin-off of Control Data
Corp., has announced the GF-10 (Johnson [1983]). This system is expected to utilize up
to eight pipelined processors similar to the Cyber 205, but faster, operating off of a
shared memory with up to 256 million words. The individual processors will also have
local memory of approximately four million words.

3. Direct methods for linear equations. We consider in this section direct methods
for solving linear algebraic systems of equations

(3.1) Ax=Db

where A is n X n. Our main concern will be when A4 is banded and usually symmetric
positive definite (or at least pivoting is not required). We will treat first elimination
(factorization) methods, then methods based on orderings such as nested dissection,
and finally special methods for tridiagonal systems and fast Poisson solvers.
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Elimination methods. Consider first Gaussian elimination, without pivoting, when
A is a full matrix. If we assume that 4 is stored by columns, as done by Fortran, then
the usual row-oriented elimination process is not suitable for vector machines. Rather,
we need a column-oriented algorithm as illustrated by the following first step of the
elimination process. Let a; be the n—1 long vector of the last n—1 elements of the ith
column of 4. Then
(3.2) m=ala,, a,—a; m—a, i=2,---,n
completes the first step of the reduction. Note that all operations except one are n—1
long scalar-vector multiplies or vector additions.

Following Hockney and Jesshope [1981], we will say that the degree of parallelism
of an algorithm is the number of operations that can be done concurrently. On vector
computers, such as the Cyber 200 and Cray, we will interpret this to mean the vector
lengths while on parallel computers it will mean the number of processors that can be
operating simultaneously. Clearly the degree of parallelism is n—1 for the first stage of
the elimination reduction. For the second stage, the vector lengths decrease to n —2 and
so on down to a vector length of 1 for the last stage. Hence, the degree of parallelism
constantly decreases as the reduction proceeds, with an average degree of parallelism of
0(3n/2) since there are n —j vector operations of length n — at the jth stage.

If 4 is banded, with semi-bandwidth m defined by m =max{|i—j|: a,,#0}, then
the above algorithm allows constant vector lengths m until the reduction has proceeded
to the last m X m block, at which time the vector lengths again decrease by one at each
stage down to a length of 1. Thus, this algorithm leads to a low degree of parallelism
for small m and is totally inappropriate for tridiagonal matrices (m=1), for which
special methods will be discussed later in this section.

While the above form of Gaussian elimination is an appropriate starting point for
a parallel algorithm, the architectural details of a particular machine may necessitate
changes, perhaps drastic, to achieve a truly efficient algorithm. Several early papers
(e.g. Lambiotte [1975], Knight, et al. [1975], Calahan, et al. [1976], George, et al.
[1978Db], Fong and Jordan [1977]) considered in detail the implementation of Gaussian
elimination and the Choleski decomposition 4 = LL” on the CDC STAR-100, TI-ASC,
and Cray-1. The variations on the basic algorithms because of the machine differences
are summarized in Voigt [1977].

An important aspect of the analysis in some of the above papers is the derivation
of precise timing formulas which show the effect of the start-up times for vector
operations. For example, George, et al. [1978b] gave the following formula, which omits
scalar arithmetic times, for the Choleski decomposition of a banded matrix, taking
advantage of symmetry in the storage, on the STAR-100.

(3.3) T=0.75nm?+ 232nm+ low order terms.

This timing formula is in units of machine cycles. The leading term reflects the
arithmetic operation count and the result rate for addition and multiplication while the
second term shows the effect of the vector operation start-up times which contribute
most of the large coefficient of the nm term. As an example of the effect of machine
architecture, Voigt [1977] showed that by modifying the Choleski algorithm to take
advantage of some features of the TI-ASC, the timing formula on that machine became

1
T=nm?+ %nm +485n + low order terms
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which gave a dramatic decrease in the coefficient of the nm term. Timing formulas
analogous to (3.3) can be developed for the Cyber 205 and show a similar, but smaller,
effect of start-up time in the second term.

On the Cray-1, one is much less concerned with the start-up times; instead the
basic Choleski or elimination algorithms must be revised to keep data in the vector
registers as long as possible. This is accomplished by completely modifying the (k + 1)st
column of the matrix during the kth step of the factorization, leaving all other columns
unchanged. The details may be found in Voigt [1977] for the Choleski algorithm and in
Dongarra, Gustavson and Karp [1984] for Gaussian elimination. The latter paper gives
an interesting detailed analysis of six different forms of the basic algorithm which differ
only in how the data is accessed.

The above discussions concern only the factorization phase of the overall algo-
rithm and it still remains to carry out the forward and backward substitutions, i.e. to
solve lower and upper triangular systems. Perhaps the simplest and most natural
approach to this, called the column sweep algorithm in Kuck [1976], is as follows for the
upper triangular system Ux=b. First, x, is computed from the last equation and its
value is inserted into each of the remaining equations so as to modify the right-hand
side, and, clearly, the n—1 equations can be processed in parallel. The original system
is now reduced to an n—1Xn—1 system and the process is repeated. The degree of
parallelism is the bandwidth m until the system has been reduced to m X m and then the
degree of parallelism is reduced by one at each stage. We will consider other algorithms
for triangular systems later.

One way to circumvent, in a sense, the back substitution phase is by the
Gauss—Jordan algorithm, which is not often used on serial computers since its opera-
tion count of O(n*/2) to solve a linear system has a larger constant than the O(n*/3)
of Gaussian elimination. However, it is relatively more attractive for parallel computing
since the back substitution is effectively combined with the triangular reduction in such
a way that a degree of parallelism of order » is maintained throughout the computation.
The implementation of the Gauss—Jordan algorithm on arrays of processors has been
discussed by Kant and Kimura [1978] and Kimura [1979]; see also Parkinson [1984] for
a banded system. Unfortunately, the algorithm fills in the upper triangle and so is not
attractive for a banded system.

In principle the factorization methods discussed above may be implemented on
parallel arrays and a nice introduction may be found in Heller [1978]. For example, the
vector operations in expression (3.2) could be given to the ith processor, i=2,- - -,n, or
if fewer processors are available, groups of columns could be assigned to processors. It
should also be noted that the more usual row-oriented elimination could be imple-
mented in a similar fashion. But these algorithms have at least three drawbacks. First,
as was pointed out above, the degree of parallelism decreases at each stage of the
elimination, eventually leaving processors unused. Second, the algorithms require sig-
nificant communication because the pivot column (row) must be made available to all
other processors (see e.g. Adams and Voigt [1984a]). Third, when the problem does not
match the array size, a very difficult scheduling problem may arise (see, e.g., Srinivas
[1983]). For banded matrices the processor utilization problem is not as severe since it
is not a factor except in the final stages.

A detailed analysis of the computational complexity of factorization algorithms
may be found in Kumar and Kowalik [1984]. Algorithms for the Denelcor HEP are
given in Dongarra and Hiromoto [1984] and the banded case is discussed in Dongarra
and Sameh [1984]. Computational results are reported by Leuze [1984b] for the Finite
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Element Machine, and an interesting aspect of this study is the influence that different
organizations of the rows of the matrix have on the performance of the algorithm due
to different communication requirements. Leuze [1984a] and Leuze and Saxton [1983]
have also noted that minimizing the bandwidth does not always lead to the best parallel
factorization time for a banded matrix. They suggest other orderings of the matrix
which appear to improve on the degree of parallelism. Huang and Wing [1979] present
a heuristic for reordering a matrix specifically to increase the degree of parallelism.
They also discuss an implementation on a hypothetical parallel system designed to take
advantage of the heuristic.

Algorithms based on a block partitioning of A4 are natural to consider on arrays of
processors. Lawrie and Sameh [1983], [1984] (see also Sameh [1983] and Dongarra and
Sameh [1984]) give a block elimination algorithm for symmetric positive definite banded
systems which generalizes one of Sameh and Kuck [1978] for tridiagonal systems. The
coefficient matrix A is partitioned into the block tridiagonal form

Al Bl
B[ 4,
A=
t . Bp——l
T
Bp—l Ap

where each B, is strictly lower triangular and p is the number of processors. For
simplicity, assume that each 4, is ¢ X g so that n=pq. The factorizations 4,=L,D,LT
are then carried out in parallel, one per processor. Using these factorizations, the
systems AV,=B,, A,.,U,,=Bl, i=1,---,p—1, are solved, utilizing the zero struc-
ture of the B,. These solutions are done in parallel, one pair per processor. The matrix
A has now been reduced to

and, provided that 2 pm < n, where m is the semi-bandwidth of the system, there is an
uncoupling of 2m( p —1) equations in the corresponding system, namely the equations
jg—m+k,j=1,---,p—1,k=1,---,2m. Once this smaller system is solved, the remain-
ing unknowns can be evaluated by substitution. Note that the larger 2mp, the larger the
size of the uncoupled system, which is undesirable. A reasonable balancing of work
would have all systems roughly the same size. Since the 4, are n/pXn/p this would
imply that 2mp =n/p or 2mp*= n which, of course, also implies that 2mp <n.

Other block algorithms have been proposed by Hwang and Cheng [1980] and
Halada [1980], [1981]. The former authors, motivated by VLSI design, propose a block
Gaussian elimination scheme in which four basic chips handle LU decomposition
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without interchanges, matrix multiplication, matrix-vector multiplication, and inversion
of triangular matrices, respectively. Halada presents an algorithm for banded linear
systems with n>3m based on the partitioning of the system as

Ay Ap || % _ b,
0 Ayl|lx, b,

where A,, is n—mXn—m, triangular, and assumed nonsingular. The key step in the
algorithm solves an auxiliary system with the coefficient matrix

A, O
Ay, IV

Unfortunately, without further (and unreasonable) assumptions on 4,,, the algorithm
is numerically unstable.

The above discussions are predicated primarily on the assumption that A4 is
symmetric positive definite or, in any case, that no interchanges are required to
maintain numerical stability. The incorporation of an interchange strategy into Gauss-
ian elimination causes varying degrees of difficulty on parallel architectures. Partly to
alleviate these difficulties, Sameh [1981] (see also Sorensen [1985] for further analysis)
introduced a different pivoting strategy in which only two elements at a time are
compared. This ensures that the multipliers in the elimination process are bounded by
1, but requires an annihilation pattern different from the usual one for Gaussian
elimination. (This annihilation pattern is identical to the one used for the parallel
Givens algorithm of Sameh and Kuck, to be discussed next.)

Givens reduction. The difficulties with implementing interchange strategies on
parallel architectures suggest that orthogonal reductions to triangular form may have
advantages. It was observed by Gentleman [1975] that the orthogonal reduction to
triangular form by Givens or Householder transformations has a certain natural paral-
lelism, and an algorithm for the Givens reduction was given in detail by Sameh and
Kuck [1978], who also show that the use of Givens transformations is slightly more
efficient in a parallel environment than Householder transformations. Recall that the
Givens reduction to triangular form can be written as

0, QA=U

where r=n(n—1)/2 and each Q, is a plane rotation matrix whose multiplicative effect
is to zero one element in the lower traingular part of 4. The Sameh—Kuck algorithm
groups these rotations in such a way as to achieve a degree of parallelism essentially the
same as Gaussian elimination. An illustration of the grouping is given in Fig. 3.1 for an
8 X 8 matrix in which only the subdiagonal elements are shown. In this figure, the
number indicates the stage at which that element is annihilated. Gannon [1980] devel-
ops an implementation of the Sameh-Kuck Givens algorithm for a mesh-connected
array of processors such as the Finite Element Machine. The implementation is such
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F1G. 3.1. Sameh-Kuck Givens annihilation pattern.

that the data moves through the array so as to give a pipelining or systolic effect. The
back solve is carried out in an analogous way.

Lord, et al. [1980], [1983] (see also Kowalik, Kumar and Kamgnia [1984]) also
discuss Givens transformations for full systems, motivated by multiprocessor systems
and the Denelcor HEP in particular. As opposed to the annihilation pattern of Sameh
and Kuck [1978], which is predicated on using O(n?) processors, they assume that
P = 0(n/2) and give two possible annihilation patterns as illustrated in Fig. 3.2. The
zigzag annihilation pattern is based on using (n—1)/2 processors, one for each two
subdiagonals, while the column sweep pattern assumes p << n. Numerical results indi-
cating the effectiveness of the zigzag algorithm on the Denelcor HEP are given in Lord,
et al. [1980]. Although not discussed by the authors, note that the zigzag pattern adapts
nicely to banded systems; here one would assume that p =[m/2]. Moreover, for banded
systems the process is relatively more efficient since in the full case, the higher num-
bered processors are doing considerably less work. The column sweep pattern also
adapts nicely to banded systems and seems to be very efficient. Other parallel orderings
for Givens annihilations are considered by Modi and Clarke [1984].

In general, it would seem that the use of Givens transformations could be prefer-
able on some architectures to Gaussian elimination if interchanges are required and not
otherwise. For least squares problems, however, orthogonal reduction has other ad-
vantages, and Sameh [1982] considered the use of Givens transformations for this
problem in the context of a ring network of processors.

Some other methods. Toeplitz matrices (each diagonal is constant) arise in a
number of applications. Grear and Sameh [1981] consider banded Toeplitz matrices
and, under various assumptions on the matrix, they give three algorithms. For banded
symmetric positive definite matrices, their algorithm requires O(mlogn) time steps
using 4n processors. See also Bini [1984] for other work on Toeplitz matrices.

P eee

F16. 3.2. Givens annihilation patterns and processor assignments.
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An interesting variation of the elimination process has been advanced by D. Evans
and several colleagues in a series of papers (Evans and Hatzopoulos [1979], Evans and
Hadjidimos [1980], Evans, et al. [1981], Shanehchi and Evans [1981], [1982]) and
reviewed in Evans [1982b], [1983]. The basic idea is a factorization of A, called the
Quadrant Interlocking Factorization (QIF), which has the structure

1 0 o] [ = i
1 * 0 0
0 0
(34) A=WZ=| . * 1 * : : 0 = 0
0 0o -
* . * 0
| 0 0 1 | _* *J

Here W has 1’s on its main diagonal, Z has nonzeros on its main diagonal and the *’s
indicate generally nonzero elements. Variations of this factorization have been given
that allow a Choleski type decomposition WDW T and that are appropriate for banded
systems.

The decomposition (3.4) is carried out as follows. First z,,=a,,, z,,=a,,i=1, - -,n,
and then the first and last columns of W are obtained from the n—2 2 X2 systems

(3'5) wi1211+winzn1iai1’
Wilzln+ WinZnn=Qin>

The first and last columns of W and Z are now determined and the elements of 4 are
updated by

(3.6) A—>A-wzl-w,zT

where W, and W, are the first and last columns of W, and Z] and Z the first and last
rows of Z. The first stage of the factorization is now complete and the second stage
proceeds in the analogous way to determine the remaining elements in the 2nd and
(n—1)st rows and columns of W and Z and then to update 4 corresponding to (3.6).
Thus the factorization is complete in O(n/2) stages.

At the kth stage, n—2k 2X2 systems need to be solved to determine the w’s at
that stage, and these 22 systems can be solved in parallel. Also, an n—2k Xn—2k
submatrix of 4 needs to be updated and these calculations can also be done in parallel.
Hence, the degree of parallelism at the k th stage is O(n—2k) and the overall average
degree of parallelism is O(n/2). To complete the solution of Ax =b, we then need to
solve the systems Wy=b and Zx=y. The solution of the first system can be over-
lapped with the factorization; as the w’s become available during the factorization, the
corresponding y’s can be computed.

Evans and his coworkers have done various analyses of this and related QIF
methods and claim essentially the same numerical stability as Gaussian elimination; in
particular, the algorithms are stable if 4 is symmetric positive definite or diagonally
dominant. These QIF methods seem to be potentially attractive alternatives to Gauss-
ian elimination or Choleski factorization for parallel computation but more experience
with their numerical stability and efficiency on different parallel architectures is needed.
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Maximum parallelism. The methods we have reviewed so far all have a maximum
degree of parallelism of O(r) for full systems or O(m) for banded systems. There have
been a number of attempts, especially in the earlier literature, to devise methods with a
higher degree of parallelism. In general, these papers have been directed at the theoreti-
cal question of how fast a system can be solved given an unlimited number of
processors, ignoring such practical constraints as communication delays, etc. Several
results of this kind are reviewed in detail in Sameh [1977] and Heller [1978] and we give
here only a sampling.

It is quite easy to see that, for a full matrix and without pivoting, Gaussian
elimination can be carried out in 3(n—1) time steps using (n—1)? processors. Pre-
parata and Sarwate [1978], improving on a result of Csanky [1976], showed that the
system can be solved in O(log?n) time steps using no more than 2n*3!/log?n
processors. The algorithm makes use of the Cayley—Hamilton theorem to compute 47!
and is numerically unstable. It is an interesting complexity result but does not yield a
practical algorithm.

Triangular systems. Similarly, for triangular systems (which are to be solved in the
back substitution phase of elimination or orthogonal reduction algorithms), Sameh and
Brent [1977] gave algorithms which could be carried out in O(log?n) steps using no
more than n3/68 + O(n?) processors for full matrices, and O((log m)(log n)) steps using
no more than m?n/2+ O(mn) processors if the bandwidth is m. These results im-
proved on previous ones of Chen and Kuck [1975], but the error analysis given, as well
as some numerical results, shows that the algorithms may be numerically unstable in
certain cases. Chen, et al. [1978] gave another algorithm for banded systems which
requires O(2m?>n/p) time steps, where p, the number of processors, is assumed to be at
least 2m. Generally, this algorithm will require more time steps, but uses fewer
processors; for example, if p=2m, O(mn) time steps are required. Again, an error
analysis performed by the authors showed a potential exponential growth in rounding
error, but numerical experiments indicated that these error bounds were probably
unrealistically large.

More recently, Montoye and Lawrie [1982] have given an algorithm for full
triangular systems on a hypothetical SIMD array of p processors which are connected
to p memories with suitable alignment networks. The algorithm uses partitioning of the
system and requires O(n%~") time steps with r=1logp/logn; for example it requires
O(n) steps with n processors.

Evans and Dunbar [1983] give two algorithms for solving triangular systems called
the Wavefront and Delayed Wavefront methods. The former assumes that the number
of processors satisfies 2(n—1) /3 < p <n—1 while the latter assumes that p <2(n—1)/3.
In both cases, optimal performance is achieved for p=2(n—1)/3 and, in this case,
O(2n) time steps are required. The algorithms proceed in 3 phases. In the first,
processors are assigned to the 2nd through ( p +1)st rows of the system. The known
value x, is substituted into row 2, giving x,, and processor 2 is reassigned to row p + 2.
The process continues in this way until a processor has been assigned to row n. This is
the end of the first phase. In the second stage, as soon as processor k becomes available
it is reassigned to row n at column k+1, processor k+1 is assigned to row n—1 at
column k+ 2, and so on. The x; are now being worked on in two pieces until the two
“wavefronts” come together. At this point, there remains only a triangular system of
less than p rows and it is solved by assigning one row per processor. A potential
drawback of these methods is the large amount of communication required by reassign-
ing processors.
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Although many of the above algorithms for triangular systems are interesting, and
may turn out to be useful in practice, it is unlikely that they will give enough speedup
over the basic column sweep algorithm to justify their increased complexity. Moreover,
the numerical stability of the column sweep algorithm is well understood since it is just
the usual serial algorithm.

Nested dissection. The previous discussion has focused on banded systems such as
might arise from discretizations of elliptic equations in which the node points are
ordered so as to achieve relatively small bandwidths. We now consider other orderings
that are known to reduce both the number of arithmetic operations and the storage
requirements for factoring the matrix of the resulting system. The first of these is
known as one-way dissection and is discussed in detail in George [1972], [1977] and
George and Liu [1981]. Referring to Fig. 3.3, the idea is first to divide the grid of N X N
nodes with / horizontal separators. The nodes in the /+1 remaining rectangles are
numbered toward a separator as indicated by an arrow and then the separators are
numbered. For the proper choice of / this ordering has been shown (see George [1972])
to reduce the number of arithmetic operations required for the factorization of the n X n
(n=N?) system from O(n?) for the natural ordering to O(n"/*).

The nested dissection ordering further reduces the operation count to O(n3/?) as
shown in George [1973], [1977]. The idea here is to divide the grid with both horizontal
and vertical separators as shown in Fig. 3.4. Regions 1-4 are again divided using
horizontal and vertical separators. Clearly the idea may be applied recursively, and in
the case N=2k—1, dissection will terminate after k—1 steps. In order to obtain the
O(n*/?*) operation count, dissection must be carried to completion; however, as noted
in George, et al. [1978a], there are advantages in terms of storage to terminating
dissection early.

Nested dissection for vector computers was first discussed by Calahan [1975] in the
context of rather general rectangular finite elements, and estimates are given of the
number of vector operations required for the factorization and their average lengths,
assuming dissection is carried to completion. The appropriate level of dissection be-
comes an interesting question for a vector computer. We have already seen that for the
Cyber 200 it is desirable to work with vectors whose length is as great as possible;
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Fi1G. 3.3. An N X N mesh dissected into 4 blocks with the ordering indicated by the circled numbers and the
arrows.
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FI1G 3.4. One step of the nested dissection ordering for the NX N grid.
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however, from Figs. 3.3 and 3.4 it is clear that at least some of the vectors become
shorter as dissection continues. This problem is studied in detail in George, et al.
[1978b] for vector computers with a range of start-up times covering both the Cray and
the Cyber 200. For the Cyber 200 their results indicate that the minimum time for
factorization is obtained by stopping nested dissection two levels from completion.
Another approach to the problem of vector lengths was suggested by Calahan [1975].
He noted that on the TI-ASC it was possible to execute simple triply nested DO loops
as one vector instruction resulting in vector lengths equal to the product of the loop
lengths. Applying this idea to nested dissection resulted in an increase in average vector
lengths. Unfortunately no vector computer presently available provides this capability;
however, the idea is closely related to unrolling DO loops, a technique that has become
a powerful way to increase performance (see §1).

Another result discussed in George, et al. [1978b] deals with the general problem
of how effectively an algorithm translates into vector operations. Both the one-way and
the nested dissection algorithms translate almost entirely into vector operations; how-
ever, in spite of a lower operation count, one-way dissection introduces more vector
operations than are present in banded algorithms for the natural ordering, resulting in
the natural ordering being superior for all but very large n. Fortunately this phenome-
non is fairly rare, and as expected, nested dissection can be implemented with fewer
vector operations than the usual banded algorithms. This situation is discussed in more
detail in Voigt [1977]. In principle, both dissection algorithms would be attractive for
the Cray X-MP; however, the limited paths between memory and the vector registers
could adversely affect performance on the earlier Crays.

Calahan [1979b] introduces a variant of nested dissection in which the separators
are the diagonals indicated by the square points in Fig. 3.5. The dissection may be
performed recursively, and Calahan claims that if the nodes are properly ordered,
resulting in 4 X 4 diagonal blocks, the process may be implemented on the Cray-1 with
performance in excess of 50 MFLOPS on the 4 X4 factorizations. The dense lower
right-hand block corresponding to the separators may be factored at rates in excess of
100 MFLOPS. For the processing required by the blocks that represent the connections
between the separators and the 4 X 4 diagonal blocks, Calahan estimates performance
in the 30 MFLOP range but this requires introducing new nodes and unknowns in
order to achieve regularity of the block structure. This technique adds approximately 25
percent more nodes to the dense lower right block and the overall effect on computa-
tion time is not known.

Another variant of nested dissection suggested by Liu [1978] may offer distinct
advantages for parallel arrays. Liu suggests making the separators two mesh lines wide
rather than one as in the George algorithm shown in Fig. 3.4. This provides more
complete independence of the remaining subsets which may lead to better inter-
processor communication characteristics. A possible disadvantage is that the sub-
matrices associated with the separators are twice as large. Nevertheless, Liu shows that,
in theory, the algorithm will solve an N X N grid problem in O(N ) steps using O(N ?)
processors.

F1G. 3.5. Diagonal variant of nested dissection.
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For parallel arrays, a careful analysis of nested dissection has been given by
Gannon [1980]. He considers an MIMD array with nearest neighbor connections and
assumes a processor for each node in the discretization. The algorithm uses a pipelined
version of Givens rotations as a building block. Utilizing an N X N array for an N X N
grid, Gannon shows that nested dissection will run in C(N +rlogN) time for r right-
hand sides. The constant C is fairly large and may result in the algorithm not being
competitive with other methods for a single right-hand side. Communication time is
included, and he shows that contention for data in common regions such as the
bisectors can be avoided. The MIMD capability is essential because different processors
execute different code sequences. Allocation of one grid point per processor does mean
that some processors would be idle during the algorithm. Using more points per
processor could increase processor utilization but it might also increase communication
time.

General sparse matrices. We now turn to general sparse matrices. The methods
discussed above do not explicitly deal with the sparsity structure of the system (3.1).
For banded matrices this is not normally necessary because the matrix fills out to the
band during the factorization. However, there are applications such as load in electrical
power networks which produce very sparse matrices with little exploitable structure,
and treating these as dense systems incurs an intolerable overhead. The importance of
such systems was recognized by Control Data Corp. in the development of the STAR-
100 and sparse arithmetic instructions were implemented; these remain available on the
Cyber 200. The idea is to store as vectors only the nonzero values, together with a bit
vector which indicates the location of the nonzero elements. There seems to be little use
of the instructions, however, because their performance is not much better than the
standard arithmetic instructions unless the vectors are extremely sparse and the non-
zeros occur in clusters. In addition, the storage requirements of the bit vector are much
greater than those of modern sparse matrix methods. For example, since a word on the
Cyber 200 contains 64 bits, the storage of an n X n sparse matrix requires n2/64 words
plus the nonzeros even though the matrix may be less than 1 percent dense. For large
matrices this is simply too large an overhead.

The storage requirement is potentially reduced in a sparse arithmetic processor
proposed by Gao and Wang [1983]. In their scheme, an integer vector denoting the
locations of the nonzero elements of the data vector is carried with the data vector.
Depending on the storage format for the integer vector and the degree of sparsity, this
could be an efficient scheme. They include a high level description of a machine that
uses a floating point pipeline for the arithmetic processor; however, details such as the
integer format are not discussed.

We next consider algorithm development for general sparse matrices. In one
approach, changes are made in the implementation of standard methods in order to
improve performance; in the other approach, different ordering schemes are employed
specifically to introduce parallelism. Most of the implementation changes have focused
on vector computers, and we begin the discussion with these techniques.

As noted in Duff [1984] (see also Duff [1982a, b]), for example, the difficulty with
vectorizing a general sparse routine is the indirect addressing as given below.

DO 10 II=I1, 12
1=INDEX (II)
T(I)=T(I)+ CONST*A(II)

10 CONTINUE
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This loop may be treated directly using a GATHER operation to form a vector out of
the T'’s, performing the arithmetic operation on the vector, and then using a SCATTER
operation to distribute the new vector to the proper locations in 7. The Cyber 200
provides hardware instructions for these operations while on the Cray they are availa-
ble as assembly language routines. For the Cray-1 this technique has an asymptotic rate
of 7 MFLOPS or approximately double that obtained from the FORTRAN code given
above (see Duff [1984]). Additional results involving assembly coding also are reported
in Dodson [1981] and Duff and Reid [1982].

In order to avoid the problem of indirect addressing in sparse systems, Duff [1984]
proposed using a frontal technique based on the variable band or profile scheme
suggested by Jennings [1966]. The idea is not to form the entire matrix but to eliminate
each variable whenever its row and column are available. This allows one to work with
a relatively small dense submatrix whose size is governed by the distance from the main
diagonal of the first nonzero in a row. The size may vary as the process moves down the
diagonal since all elements will not in general be the same distance from the diagonal.
No extra storage is used because the factorization produces fill inside the first nonzero
of each row. By holding appropriate values in the vector registers in the spirit of the
algorithms discussed earlier, Duff [1984] claims performance in the 80 megaflop range
for the factorization, a dramatic improvement over general sparse techniques. The
frontal technique is particularly attractive for finite element analysis since the factoriza-
tion may be coupled with the assembly of the global stiffness matrix so that the entire
matrix is never formed. The technique also offers a possible solution to the I1/0
problem produced by very large problems and known to be potentially devastating on
high performance systems (see for example Knight, et al. [1975]).

In a series of papers, Calahan [1979a, b], [1981a] has suggested a block approach to
solving sparse systems that has some of the characteristics of the frontal technique
discussed above. Again the motivation is to reduce the cost of indirect addressing
usually associated with sparse methods. In Calahan [1979a], for example, it is pointed
out that sparse matrices arising from discretization of partial differential equations
typically give rise to matrices that are globally sparse but locally dense. This observa-
tion is particularly true if the fill associated with direct methods is taken into account.
Motivated by the ability of the Cray to process relatively short vectors efficiently,
Calahan [1979a, b] suggests the use of block factorization methods where efficient dense
solvers are used to factor the diagonal blocks. As one would expect, the approach
becomes very efficient on the Cray as the block size approaches 64. Based on a very
accurate simulator described in Orbits [1978], Orbits and Calahan [1978] and Calahan
[1979a] predict performance exceeding 100 MFLOPS.

The choice of the blocks is an interesting issue, particularly if the sparse matrix is
not sufficiently regular. Calahan [1979a] suggests that the blocking should be done on
the LU map of the factored matrix, thus taking into account any fill that may take
place. He also proposes that it be based on selecting the largest diagonal block available
followed by the next largest and so on. There remains the problem of determining when
to end one block and begin with a new one since there is a trade-off between the
inclusion of a row in order to approach the optimum size of 64 and the unnecessary
computations that may result because of the structure of the row. This is illustrated in
Fig. 3.6 where one must decide between the blocking indicated by solid lines and the
one indicated by dashed lines. Note that neither this approach nor the frontal method
would be as attractive on the Cyber 200 because of the short vector lengths.
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F1G. 3.6. Matrix blocking.

The matrix in Fig. 3.6 also demonstrates that blocking can be used to introduce
parallelism. If the solid line blocking is used, then the 4 X4 block cannot be factored
until the 2 X 2 block is factored and the 3,1 element is eliminated. However the dashed
line blocking decouples the matrix and makes it possible to factor both 3 X3 blocks
simultaneously. For systems with a sufficiently large number of decoupled diagonal
blocks of the same size and structure, this strategy could be effective on the Cyber 200
where vectors would consist of appropriate elements from successive blocks. Arrays of
processors could also be used on the system, and if the array is of MIMD-type, the
blocks could have a different size and structure.

This suggests another way to seek parallelism in the sparse matrix problem,
namely, can the underlying grid be numbered or can the rows and columns be inter-
changed so as to decouple blocks of the matrix? In an early paper, Calahan [1973]
noted that the odd-even reduction strategy of Buneman [1969] applied to tridiagonal
matrices could be viewed as a decoupling of those matrices. This will be treated in more
detail shortly. Calahan [1973] also discussed a reordering strategy for finding diagonal
submatrices in order to introduce parallelism.

Substructuring. The existence of diagonal blocks that are also diagonal matrices,
although attractive, is not necessary for parallel factorization of a matrix. Thus we seek
orderings which produce diagonal blocks, with no particular structure, that are decou-
pled from one another. Such an ordering has been used by structural engineers and is
called substructuring (see, for example, Noor, et al. [1978], and also Golub and Mayers
[1983] and Widlund [1984] for related approaches). The motivation for substructuring
in structural analysis was not to introduce parallelism but to decouple as much as
possible different parts of a structure that were united by a relatively small number of
points; for example, the wing and fuselage of an aircraft would be treated as separate
structures joined by a few points where the wings are attached. Conceptually, the
situation is depicted in Fig. 3.7, in which the circle points represent interface nodes
between the two regions. Notice that the regions may consist of different types of
elements—in this case rectangular and triangular elements. The nodes in the region
may be numbered in any appropriate order but the interface points are numbered last.

L
[

F1G. 3.7 Substructuring.
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This gives rise to a block matrix of the form

Al Cl
A 2 CZ
D, D, B

where the 4 matrices represent the two substructures, the B matrix represents the
interface points, and the C and D matrices represent the dependencies between the
interface nodes and the two regions. For many problems, the matrix is symmetric so
that D,=C7, i=1,2. The A matrices may be factored in parallel, and then steps of the
form B— D, A;'C, are used to eliminate the off-diagonal blocks. Finally the modified B
matrix is factored. This process may be generalized to any number of substructures,
and is discussed in more detail in Adams and Voigt [1984a]. They use a three-dimen-
sional cube as a model region and obtain formulas to help in the selection of the
number of substructures, for if too many are chosen, there will be too many interface
nodes and the work involved in factoring the modified B matrix will dominate all other
computation. They also compared the technique with a parallel band solver and found
that for sufficiently large problems the substructuring technique has advantages.

It should be noted that the nested dissection process described earlier may be
viewed as a type of substructuring in which the ordering is chosen so as to minimize
storage requirements and operation counts. If the dissection is carried to completion,
the diagonal blocks of the resulting matrix reduce to single elements and the upper
left-hand corner of the matrix is diagonal. If the dissection is stopped early, as dis-
cussed in George, et al. [1978a), the matrix has a block structure of the type obtained
by substructuring.

The computing system considered for the substructuring study in Adams and
Voigt [1984a] was of MIMD type. This is particularly attractive because in general the
A matrices will not be of the same size nor will they have the same structure. Conse-
quently, it would be difficult to use a vector processor where the vectors were defined
across substructures or submatrices. For sufficiently large problems, the Cray would be
effective applied to each diagonal block in turn; however, the relatively short vector
lengths would probably make the technique less desirable for the Cyber 200.

Tridiagonal systems. As we have already pointed out, the degree of parallelism for
factorization methods is governed by the semi-bandwidth, m, of the linear system. The
tacit assumption has been that m is sufficiently large so that vector operations are
efficient or so that there is reasonable processor utilization in a parallel system.
However, for small bandwidth systems, and in particular tridiagonal systems (m=1),
the methods discussed above are inappropriate, and we will now focus on algorithms
which have been designed specifically for tridiagonal systems.

If we consider an LU factorization of a tridiagonal matrix A where L is unit lower
bidiagonal and U is upper bidiagonal, the usual algorithm is inherently serial. Defining
the ith row of these matrices as (0,---,0,c,,a,,b,,0,---,0), (0,---,0,{,1,0,- - -,0), and
©,---,0,u,b,0,---,0) respectively, the ith element of the diagonal of U is given by

(37) u1=az_clb1—l/u1—l'

Since u, depends on u,_;, expression (3.7) cannot be evaluated directly using vector
operations or an array of processors. This example points out the importance of
recurrence relations and indicates why they are a particular problem for parallel
processing. We will not discuss algorithms for recurrence relations but instead refer to
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Kogge and Stone [1973], Hyafil and Kung [1977], Heller [1978], Kuck [1978] and
Hockney and Jesshope [1981] for detailed discussions and additional references.

There are algorithms which avoid the difficulty suggested by (3.7). The first of
these was introduced by Stone [1973] and it still represents one of the very few new
algorithms that have resulted from considering parallel computation; most others are
attempts to introduce parallelism into traditional sequential algorithms. Stone began
with the well-known fact that the formulas required by LU factorization of a tridiago-
nal matrix could be expressed as first and second order linear recurrences. In particu-
lar, if one uses the recurrence

(38) q0=1’ q1=(11, ql=atql—-1_cib1—1q1—2’ i=2’”"n
then u; of (3.7) is given by

u,=q,/9,_1, i=1,---,n.

On the surface this does not appear to help, but Stone also observed that the recurrence
(3.8) can be written in matrix form as

(39) QIE[ q; ]={at _C'b'ﬁlHq'_l]EG,Q,kl—_—(IL[G)Ql, i=2,3,--.
qi*l 1 0 q1—2 Jj=2 /

Similar expressions are given for the forward and back substitution.

Stone proposed the parallel computation of (3.9) by recursive doubling, a proce-
dure which, in the simplest case, expresses the 2ith element in a sequence in terms of
the ith. Thus for n=2* the nth component can be computed in logn steps. For
purposes of illustration, let n =38 and define p, =I1/_,d,, where d,, I=1,- - -,nis a set of
scalars. Then Fig. 3.8 shows the k vector multiply operations that compute each of the
P, for j=1,2,---,n. The blanks left in some of the vectors are to indicate that no
operations are performed there. Thus the first is a multiply of length 7, then 6, and then
4. In general for n=2*, there are k multiplies of length n—2' for i=0,1,2,---,k—1.
The average length of each multiply is given by

k-1
n,=(1/k) Y. (n—2")=(n(logn—1)+1)/logn=n.
=0
Since there are logrn such multiplies, the total number of results generated is then
nlogn—n+1. Thus we have replaced a serial computation requiring O(n) computa-
tions with one that requires O(nlogn) computations. If there are n processors available,

a’lT Pu Pu i (Pu —Pu_ [ 1 _Puj
d, d, P2 P12 P12 P12 P12
d, d, X] P23 Pu P13 P13 P13
d, . d; _| P P34 . Pz |_| Pua Pia . _| Pua
ds d, Pas |’ Pas P23 Pas | Pas Pu Pis
dg ds Pse Pse P34 P36 P36 P12 Pie
d; de Pe7 Pe7 Pas Pa7 P47 P13 P17
| ds | | 47 LPs] [ Pw] |pse| | Pss] | Pss | | P1a| | Pis |

F1G. 3.8. Recursive doubling.
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then we have gone from O(r) steps to O(logn), a clear improvement. However, as was
pointed out in Lambiotte and Voigt [1975], for vector computers the total number of
operations is important, so that even though vector operations can be used, at some
point the nlogn operations will dominate and the vector algorithm will require more
time than the scalar algorithm. This led them to propose the following definition for a
consistent algorithm. A vector implementation of an algorithm for solving a problem of
size n is said to be consistent if the number of arithmetic operations required by this
implementation as a function of » is the same order of magnitude as required by the
usual implementation on a serial computer. Thus both the recursive doubling algorithm
and the tridiagonal algorithm which uses it are inconsistent. Stone [1975] and Lambiotte
and Voigt [1975] give consistent versions of Stone’s original algorithm although the
latter paper points out that the asymptotic superiority has little significance for prob-
lems whose size might be of practical interest.

Cyclic reduction. Another consistent algorithm known as odd-even reduction or
cyclic reduction appears to be the most popular alternative to the standard sequential
algorithm. Cyclic reduction was originally proposed by Gene Golub and Roger Hock-
ney and is discussed in Hockney [1965] for the block tridiagonal systems arising from
the 5-point difference approximation for Poisson’s equation. Subsequently, several
authors, including Hockney [1970] and Ericksen [1972], pointed out that the algorithm
could also be adapted to general tridiagonal systems. The idea is to eliminate the odd
numbered variables in the even numbered equations by performing elementary row
operations. Thus if R(2/) represents the 2ith row of the tridiagonal matrix, the follow-
ing operations can be performed in parallel fori=1,- - -,(n—1)/2, assuming » is odd:

(3.10) R(2i)=(¢3/az1)* R(2i=1) = (by,/a3,,1) * R(2i +1).

There are several observations about cyclic reduction that should be noted. If the
matrix is stored by diagonals, then expression (3.10) may be evaluated using vector
operations on a computer like the Cray or the Cyber 200. After the step indicated by
(3.10) is completed, the resulting system under a reordering is again tridiagonal but
only half as large. Thus the process may be continued for k steps until, in the case that
n=2%—1, only one equation remains; then all of the unknowns are recovered in a back
substitution process. The details of these observations are given in Lambiotte and Voigt
[1975], where it is also shown that cyclic reduction requires O(n) operations and is thus
consistent. It should be noted that this is another example of the paradigm of reorder-
ing to increase parallelism that was discussed in §1.

One major difficulty with cyclic reduction is that it can require significant data
rearrangement between steps. For example, on the Cyber 200 one cannot apply vector
operations directly to every other element of a vector. Thus extra operations must be
employed to reformat those elements into a new vector. Lambiotte and Voigt [1975]
show that this overhead accounts for approximately half of the total operations. Their
analysis is based on STAR-100 timing but the situation remains essentially the same for
the Cyber 200. Accessing elements of a vector on the Cray at a fixed increment or stride
is possible but it may lead to a degradation in performance if the same memory bank is
read too frequently. This was recognized in Kershaw [1982], where a storage scheme is
discussed that makes it possible to avoid memory bank conflicts. Results reported there
indicate that the algorithm is more than six times faster than the scalar algorithm for
matrices of order n>1000; even for small systems with »~10 the cyclic reduction
algorithm is faster. The importance of this overhead was also discussed by Boris [1976b]



PARTIAL DIFFERENTIAL EQUATIONS ON VECTOR AND PARALLEL COMPUTERS 183

who considered an implementation of cyclic reduction for the TI ASC, a computer
which did not require that a vector be defined as elements in contiguous memory
locations.

Because of the overhead of data rearrangement, one would expect that for suffi-
ciently small » the serial algorithm would run faster than cyclic reduction. This leads to
the possibility of a polyalgorithm in which cyclic reduction is used until the matrix size
is reduced to the point that the serial algorithm is more efficient. This idea is discussed
in Madsen and Rodrigue [1976], where it is shown to be superior to an inconsistent
algorithm proposed by Jordan [1974]. The idea also serves as a basis for discussion of
many algorithms in Hockney and Jesshope [1981], including those for the tridiagonal
problem.

Under appropriate assumptions, Heller [1976] showed that during the cyclic reduc-
tion process the off-diagonal elements decrease in size relative to the diagonal entries at
a quadratic rate. This means that it may be possible to teminate the process in less than
log n steps. For vector computers it is thus possible to avoid the last few steps which are
with short vectors; for parallel computers it means that poor processor utilization
associated with the last few steps may be avoided. A similar phenomenon was observed
earlier by Malcolm and Palmer [1974] for an LU factorization algorithm for tridiagonal
systems which are real, symmetric and diagonally dominant with constant diagonals.
Their idea was used by O’Donnell, et al. [1983] as a basis for a fast Poisson solver
tailored for the Floating Point Systems, Inc. FPS-164.

Cyclic reduction for block tridiagonal matrices has been studied for parallel com-
puters by Kapur and Browne [1981], [1984] who consider implementations on the
TRAC computer. They also considered a variant of cyclic reduction known as odd-even
or cyclic elimination that was introduced in Heller [1976], [1978]. In this elimination
method expression (3.10) is applied to each equation (or block) rather than to just the
even ones. The result is that the off-diagonal entries move away from the diagonal so
that after logn steps a diagonal matrix remains and the solution is obtained im-
mediately without a back substitution process. As with cyclic reduction, the off-diago-
nal elements decrease at a quadratic rate making early termination an attractive alter-
native. The algorithm is inconsistent, requiring O(nlogn) operations. However, it was
superior to cyclic reduction on the TRAC. This is made possible because the extra
operations of the elimination method are done in parallel at no extra cost and because
there is no back substitution step. Thus we have an example of a good uniprocessor
algorithm being outperformed by a poor uniprocessor algorithm in a parallel environ-
ment. Another interesting aspect of their study is that they were able to implement the
algorithm so that the overhead cost of data movement, synchronization, etc. was kept
to approximately ten percent of the total time. Gannon, et al. [1983] also recognized the
potential superiority of odd-even elimination in their study of implementing parallel
algorithms on the CHiP systems. The algorithm was also used by Gannon and Panetta
[1985] in a study of the performance of the SIMPLE code on CHiP. In a recent paper,
Johnsson [1984b] gives a thorough analysis of the implementation of cyclic reduction
and some variants on a family of parallel computers called ensemble architectures.
These designs are of MIMD type using simple processors and no global memory. A
variety of interconnection schemes are considered.

Other tridiagonal methods and stability. To this point we have said nothing about
the stability of the tridiagonal schemes. There has been the tacit assumption, for
example, that no pivoting is required, and in fact there does not appear to be any way
to incorporate a pivoting strategy into the algorithms discussed. Several authors have
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noted that cyclic reduction is just Gaussian elimination applied to PAPT for a particu-
lar permutation matrix P (see, for example, Lambiotte and Voigt [1975]). Thus the
algorithm is numerically stable for matrices for which Gaussian elimination is stable
without pivoting, for example, symmetric positive definite or diagonally dominant
matrices. The situation is not as attractive for Stone’s algorithm. Using a stability
analysis technique for recurrence relations introduced in Sameh and Kuck [1977a],
Dubois and Rodrigue [1977a] have shown that the algorithm is in general unstable,
suffering from exponential error growth.

As discussed earlier in this section, Givens transformations may be used to over-
come the difficulties of pivoting for stability. Sameh and Kuck [1978] present two such
algorithms for tridiagonal systems using O(n) processors. One of the algorithms re-
quires logn steps but can suffer from exponential growth of errors; the more stable
version requires O[(loglogn)(logn)] steps. Another Givens based algorithm is discussed
in Hatzopoulos [1982]. The different feature of this algorithm is that the Givens
transformations are applied from the top and from the bottom of the matrix simulta-
neously, thus increasing the degree of parallelism by a factor of two but still requiring
O(logn) steps on O(n) processors. Hatzopoulos [1982] also considers using the QIF
method discussed earlier in this section. Again the implementation requires O(logn)
steps on O(n) processors. Unfortunately all of these algorithms are inconsistent and
unless stability is a problem, they would not be attractive for vector computers. There
appears to be no implementation of a Givens transformation based algorithm that is
consistent.

There are consistent algorithms other than cyclic reduction. Swarztrauber [1979a, b]
introduced an algorithm for tridiagonal systems based on an efficient implementation
of Cramer’s rule. The algorithm requires O(logn) steps on O(n) processors but only
O(n) total operations are performed. The algorithm also requires only a single divide,
and unlike cyclic reduction it is well defined for general nonsingular systems. There has
been no formal stability analysis but Swarztrauber reports results comparable to Gauss-
ian elimination with partial pivoting for a series of experiments run on the Cray-1. The
algorithm has a slightly higher operation count than cyclic reduction but it is more
efficient than Gaussian elimination on the Cray-1 when »n exceeds 32. Kascic [1984a]
has compared cyclic reduction with the Cramer’s rule algorithm and found cyclic
reduction to be about twice as fast on the Cyber 205.

A variety of other algorithms have been proposed for tridiagonal systems. For
example, Sameh [1981] and Kowalik, Lord and Kumar [1984] consider a block algo-
rithm where the number of blocks is chosen to match the number of processors
available. An elimination scheme is used within each block until a reduced system
remains. Following an order of elimination suggested by Wang [1981], Kowalik, Lord
and Kumar [1984] obtain a system of p equations that must be solved sequentially,
where p is the number of blocks. They present results from an implementation on the
Denelcor HEP and note that the speedup falls considerably short of p because of extra
computation that the algorithm requires. Sameh [1981] considers his algorithm for a
linear array of processors. The sequential part of the algorithm is in the back substitu-
tion but the algorithm is structured nicely for a linear array so that the communication
should not be a major overhead. He shows that for p =n the algorithm requires O(n'/?)
time including communication.

Because of their inherent parallelism, iterative methods have been considered by
Traub [1974b] for solving tridiagonal systems, and further studied by Lambiotte and
Voigt [1975] and Heller, et al. [1976]. Traub’s idea was to turn the three basic recur-
rence relations associated with the LU factorization into iterations. For example,
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equation (3.7) is formulated as
ukV=q,—cb,_,/u®,  k=1,---,m,

and the rate of convergence depends on the degree of diagonal dominance of the
system. Except for certain situations such as a very strongly diagonally dominant
system or where an excellent starting value need only be improved by a few digits, these
methods do not appear to be competitive with direct methods such as cyclic reduction.

Most of the work discussed to this point has focused on reducing the parallel
computational complexity of the algorithm with occasional concerns for the overhead
arising from such things as communication. A rather different approach is taken by
Merriam [1985] where, motivated by the small memory that was available on the Illiac
IV, he considers minimizing the total time to solve tridiagonal systems by trading off
extra computation with storage that might require expensive I /0O operations. His idea
is to save a few carefully selected values from the factorization stage, and then begin
the back substitution. When an element is required that is not available it is recom-
puted using the values saved from the factorization. This idea can have merit in any
situation where the cost of communication is high relative to computation.

There are, of course, nontridiagonal matrices of interest whose bandwidth is too
small for efficient use of banded solvers on vector or parallel computers. One way to
treat these problems is to view them as block tridiagonal and apply block cyclic
reduction as discussed in Lambiotte [1975] and Heller [1976]. It would be more
attractive to apply the cyclic reduction idea directly, as suggested by Rodrigue, et al.
[1976] and Madsen and Rodrigue [1977], so that the parallelism obtained is by the
diagonals of the matrix rather than the band. Unfortunately, the numerical stability of
the algorithm remains in doubt; indeed, even reasonable conditions on the matrix that
guarantee that the algorithm remains well defined (i.e. division by zero cannot occur)
have not been given although some numerical experience in Madsen and Rodrigue
[1977] did not expose any problems.

Fast Poisson solvers. So far in this section, we have made few assumptions about
the differential equations which give rise to the linear systems to be solved. However,
for separable problems there are special methods, generally known as “fast” methods,
which are considerably better than other direct or iterative methods. These methods are
reviewed for scalar computers in, for example, Dorr [1970], Swarztrauber [1977], and
Temperton [1979a,b],[1980]. Although some of the algorithms are applicable to more
general problems we will again use the Poisson equation on a square in order to provide
a focus for the discussion. For this problem, Swarztrauber [1977] has shown how to
handle periodic, Dirichlet-Dirichlet, Dirichlet—Neumann, and Neumann-Neumann
boundary conditions.

The algorithms to be discussed depend on the Fast Fourier Transform (FFT).
Swarztrauber [1982], [1984] contains a thorough discussion of FFT’s on vector com-
puters, particularly the Cray, while the Cyber 200 motivated Korn and Lambiotte
[1979] and Lambiotte [1979] to develop algorithms for multiple transforms that give rise
to vector lengths that are longer than that provided by a single transform. These
algorithms maintain the serial complexity of O(mnlogn) for m transforms of length n
and exhibit a degree of parallelism of m or n.

Pease [1968], Stone [1971] and Jesshope [1980a] have considered the efficiency of
FFT algorithms on a variety of parallel arrays. Since the algorithms depend on data
distributed over the entire array rather than on data contained in neighboring processors,
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communication becomes a significant issue. Finally, Hockney and Jesshope [1981]
provide a lengthy discussion of algorithms for both arrays and vector processors
including guidelines on the choice of methods depending on the architecture and the
size and number of transforms required.

Both Pease and Stone noted that an interconnection scheme known as the perfect
shuffle provided the kind of data transmission required by the FFT. For processors P,,

i=0,---,N—1, the perfect shuffle provides direct communication as follows:
Pi_-)PZp Oélég—l,
N
P—>Pyii s ‘2"§i§N—1

This accomplishes an interleaving of transmitted information analogous to what one
obtains with a perfect shuffle of a deck of cards. Figure 3.9 shows the perfect shuffle
interconnection for eight processors.

[ 1 I [ P 1

0 1 2 3 4 5 6 7

[ e

F1G. 3.9. Perfect shuffle interconnection.

We now show how the Fast Fourier Transform plays a crucial role in various fast
Poisson solvers. Following Hockney and Jesshope [1981], we assume that a 5-point
difference scheme is used to discretize the Poisson equation

(3.11) Au=f

with doubly periodic boundary conditions on an N XN grid. Then taking a Fourier
transform in the x direction followed by one in the y direction gives rise to the
following expression for the transform of the right-hand side f ;,

1N1

x 27 2wikq .
f/k=N 0( ZfP‘I [ _-NLP])CXP[_ N ]’ 1§J3k§N~
q9=

A division of each fjk by the coefficient of the transformed left-hand s~ide of the discrete
form of (3.11) gives a value for each transformed unknown variable U, , and finally the
solution U, , is obtained by an inverse transform of U . The serial complexny of the
algorithm i 1s O(N?logN) and the degree of parallehsm in calculating f « 1s either N, if
a serial algorithm is used on N transforms in parallel, or N2 if a parallel algorithm is
used. As usual, the choice would depend on the machine and the value of N.

Another algorithm based on the FFT, which also has serial complexity of
O(NZ?logN), is known as matrix decomposition. It was introduced by Buzbee, et al.
[1970] and was first analyzed as a parallel algorithm by Buzbee [1973]. If (3.11) is
discretized using the 5-point difference formula on an evenly spaced square grid one
obtains the block tridiagonal system

A4 I vl [
I 4

(3.12)
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where 4 is an N X N tridiagonal matrix whose i th row is (0,- - -,0,1, —4,1,0,- - -,0), and
U, and f; are N-vectors. Matrix decomposition is based on the fact that the eigensystem
of A4 is known explicitly and thus the factorization V74V = A is possible where A is a
diagonal matrix whose entries are the eigenvalues of 4. Using this relationship, (3.12)
may be rewritten as

AU, + O, =f,,
(3.13) Uior+ AU+ Uiy =1,
Uy_1+AUy=/y,
where U= VU, and f,= Vf,,i=1,- - -, N. Because of the form of the eigenvectors of 4, f;
may be computed using a fast sine transform. Then U, is obtained by solving the
systems that result from reorganizing (3.13) into N independent tridiagonal systems
each one of which depends on a single eigenvalue of 4. The solution U, is recovered
from U by means of an inverse sine transform. Thus the degree of parallelism and the
appropriateness of the method for a particular computer depend on algorithms for the
FFT and for systems of tridiagonal equations.

Sameh, et al. [1976] obtained a complexity of O(logN) parallel steps for matrix
decomposition on a parallel computer consisting of N2 processors with an arbitrarily
powerful interconnection network that required unit time for the transfer of a piece of
data from any processor to any other processor. The interconnection requirement could
be relaxed to a perfect shuffle network without serious degradation in performance.
Sameh [1984a] has also considered a ring of p processors, p <N, where each processor
can simultaneously perform an arithmetic operation, receive a floating point number
from an immediate neighbor and transmit a floating point number to another neighbor.
With such a system, he shows that matrix decomposition requires O((N2/p)logN)
parallel steps, resulting in a speedup of O( p). He also considers a three-dimensional
problem using a 7-point difference approximation on an N3 grid. By using N copies of
the ring of N processors with each ring attached to a global memory, it is possible to
solve the Poisson equation in O( NlogN) parallel steps. Performance degrades linearly
for r < N rings of p < N processors.

Vajtersic [1982] reports results obtained from an implementation of matrix decom-
position on the MIMD system EGPA (Erlangen General Purpose Array) under devel-
opment at the Erlangen—Nurnberg University. The system consisted of a pyramid of
five processors with four processors serving as slaves to the apex processor. Using the
four processors for the execution of the algorithm he obtained speedups increasing to
3.6 for N ranging to 128. The speedup figures are not as high as they might be because
the full parallelism of the algorithm is not utilized in order to simplify synchronization
and data transfer.

As mentioned earlier in the discussion of tridiagonal systems, cyclic reduction was
developed as a fast Poisson solver for a system of the form (3.12) on which it exhibits
serial complexity of O(NZ2logN). Its parallel implementation is analogous to that
discussed for the tridiagonal problem; details for the Illiac IV are given in Ericksen
[1972].

Hockney [1965] used one step of cyclic reduction and then solved the remaining
system, which is half the original size, by matrix decomposition, resulting in an algo-
rithm he called FACR. Later, Hockney [1970] noted that the overall work could be
reduced by taking more cyclic reduction steps. The algorithm known as FACR(/)
involves / steps of cyclic reduction, the resulting system is solved by matrix decomposi-
tion, and the solution of the discretized Poisson equation is obtained by a back



188 JAMES M. ORTEGA AND ROBERT G. VOIGT

substitution step. Swarztrauber [1977] showed that the minimum computational com-
plexity of O(N2loglogN ) is obtained with /=1oglog N.

Grosch [1979b] presents an analysis of the FACR(/) algorithm including com-
munication costs for arrays with a nearest neighbor connection and a nearest neighbor
connection augmented with a perfect shuffle. He found that the augmented array
would operate with an efficiency of around 90 percent for a wide range of values for N
while the efficiency of the other array would drop off rapidly with increasing N.

As was noted in the previous discussion of cyclic reduction for tridiagonal systems,
the degree of parallelism decreases as more steps are taken and Temperton [1980]
points this out for the FACR(/) algorithm. This phenomenon has prompted research
on the selection of the appropriate value of / to maximize performance on a variety of
vector and parallel computers (see, for example, Hockney and Jesshope [1981] and
Hockney [1982a], [1983b] and the references therein). In particular, evaluating the FFT
more rapidly will lead to smaller values of / while solving tridiagonal systems faster will
lead to a larger value of /. The algorithm has been used on a variety of computers
including the Illiac IV (Ericksen [1972]), the Cray-1 (Temperton [1979b]), and the
Cyber 205 and ICL DAP (Hockney [1983b]).

Finally, we should mention that the multigrid algorithm can also be viewed as a
fast Poisson solver because of its theoretical complexity of O(N?). We defer a detailed
discussion until the next section since the method is appropriate for more general
partial differential equations but point out that Grosch [1979b] has studied parallel
implementation issues for a Poisson solver that indicates that the method is attractive
on arrays of processors.

4. Iterative and time marching methods. The parallel implementation of most of
the usual iterative methods for discrete elliptic equations has been studied extensively
by a number of authors. Some of the earlier papers were Ericksen [1972], Hayes [1974],
and Lambiotte [1975], primarily for the Illiac IV, the TI-ASC, and the CDC STAR-100,
respectively, and Morice [1972] for general parallel processors. We also note the papers
by Heller [1978] and Ortega and Voigt [1977], which survey many aspects of iterative
methods for vector and parallel computers up to that time. More recent surveys which
include material on iterative methods are Buzbee [1981], [1983a], Evans [1982b],
Feilmeier [1982], Hockney and Jesshope [1981] and Sameh [1983].

For simplicity and ease of presentation much of our discussion will be for the
model problem of Laplace’s equation on a square with Dirichlet boundary data,
discretized using the 5-point difference star. Such a problem would, of course, actually
be solved by one of the fast Poisson solvers mentioned in the last section but it makes a
convenient example with which to treat many of the issues that arise in more general
problems.

Jacobi’s method. The discrete domain is shown in Fig. 4.1 where the boundary
points are indicated by b’s, and N is the number of interior points in each row and
column. The classical Jacobi method

1
k+1_2 [ & k k k
(4.1) u, _4[u1+1,j+ui—l,j+u1,_/+l+u1,j~1]’

where the superscript denotes the iteration number, and u,; is the solution at the i,/ grid
point, is generally considered to be a prototype parallel method. However, care is
needed in certain aspects of its implementation in order to achieve the greatest degree

of parallelization. For example, (4.1) would be more efficiently implemented on the
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F1G. 4.1. Grid points.

Cray in a row by row fashion if N were 64 or a multiple thereof and on a p X p array of
processors if N were a multiple of p.

On the Cyber 200 machines, on the other hand, we would like the vector lengths to
be as long as possible. One could carry out (4.1) row by row, but then the vectors would
only be of length N and one would pay N times the number of start-up penalties.
Alternatively, we can use vectors of length O(N?) by treating the boundary positions
as unknowns. That is, let U now denote an (N +2)? long one-dimensional array with
the lexicographic ordering of Figure 4.1, and use the notation U(K; L) to denote the
L-long subvector starting at the K th position of U. With M1=(N+1)(N+2)—1 and
M?2=N(N+2)—2, we can then implement (4.1) by the instructions

T(2; M1)= U(2;M1)%—U(N+ 3. M1),
(4.2)
U(N+4; M2)=T(2; M2) 5= T(N +5; M2)

where T is a temporary vector and where we have used 4 to denote an “average”
instruction, that is, addition followed by division by 2. Such an instruction is available
on the Cyber 200’s and takes essentially the same time as an addition.

As a penalty for using vectors whose length is the total number of grid points, the
final instruction of (4.2) will overwrite the positions 2N +4,2N+5,3N+6,3N+7, - - -
corresponding to boundary positions along the vertical sides, thus destroying the
correct boundary values. One would then have to restore these values before the next
iteration. On the Cyber 200’s however, there is a convenient feature which permits
storage to be controlled by a bit vector (the control vector); this can be used to ensure
that the boundary positions are not overwritten and, hence, no “fixing up” is needed
before the next iteration. The instruction time is no greater using the control vector but,
of course, one pays the penalty for storage of approximately N2/64 words for the bit
vector.

Although the Jacobi method vectorizes well, it has not been used in practice
because of its slow convergence. However, Schonauer [1983a,b] has reported promising
results on a “meander” Jacobi overrelaxed method in which the relaxation parameter
varies with the iteration number in rather complicated ways.

SOR. Whereas the Jacobi iteration is often cited as a “perfect” parallel algorithm,
the Gauss—Seidel and SOR iterations are considered to be the opposite. The usual serial
code for Gauss—Seidel in the context of (4.1) would have new values at each point
replace the old as soon as they are computed; it is this recursive process that is not
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amenable to vectorization. However, several early authors (e.g. Ericksen [1972], Hayes
[1974], Lambiotte [1975]) observed that by using the classical red-black ordering of the
grid points, as shown in Fig. 4.2, Gauss—Seidel can be carried out in the same fashion
as the Jacobi iteration by using two vectors of length O(N?2/2) corresponding to the
red and black points. The boundary points would be handled in the same way as with
Jacobi’s method and the introduction of the SOR parameter causes no difficulty. The
time per iteration for SOR carried out in this way should be little more than for the
Jacobi iteration so that the SOR method is potentially very useful for parallel computa-
tion. Lambiotte [1975] also considered a diagonal ordering for the grid points but
showed that this is inferior to the red-black ordering.

Bl RY BL2
1‘98 }{7 1‘99 }{8 élO
R4 B6 RS BT R
1'33 }Q2 1'34 }(3 1.35
B R B
F1G 4.2. The red-black ordering.

In related work, Buzbee, et al. [1977] discussed the treatment of the equation
(au,),+(Bu,),=f on the Cray-1. They used the 5-point difference star with the
red-black ordering, and also considered a skewed 5-point difference scheme using the
NE, SE, SW and NW grid points rather than the usual north, south, east, west ones. In
the latter scheme, they ordered the grid points red-black by columns.

While the red-black ordering allows an efficient implementation of the SOR
method for the 5-point difference scheme, it does not work for higher order finite
difference or finite element discretizations or for more general elliptic equations which
contain mixed partial derivative terms. However, several authors have observed that the
red-black ordering can be extended to a “multicolor” ordering which can give the same
effect as the red-black ordering for the 5-point star. Hotovy and Dickson [1979] used a
three-color ordering for a finite difference approximation of the small disturbance
equation of transonic flow, Hackbusch [1978] used a four-color ordering for 9-point
finite difference stars and Adams and Ortega [1982] gave a general treatment of the
idea which we now describe (we note that Young [1971] had much earlier used a
three-color ordering but not in the context of parallel computing and that Berger, et al.
[1982] use multicolor orderings for the assembly of finite element equations).

The basic idea of the multicolor ordering is to label (color) the grid points in such
a way that there is local decoupling between the unknowns. This leads to the system
being expressed in the form

- - _ _
D, B, : ) : B,, r"1 rb1
B, D,
(4‘3) : . : . ) ¢ : E =
Bp—l.p
_Bpl ’ T B, -1 D, 1% ] _bpj
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for p colors, where the D, are diagonal. The case p=2 is the red-black ordering. The
(k + 1)st Gauss—Seidel iterate is then
Dix{;+1=_ZBijxf+1_ZBijx{;+b[, i=1,---,p
J<i Jj>i
and is effectively implemented by p Jacobi sweeps. As an example, Fig. 4.4 gives a
coloring suitable for a discretization in which each grid point is coupled to its eight
nearest neighbors as indicated in Fig. 4.3.

NW NE

SW SE
S

F1G. 4.3. Eight nearest neighbors.

A variety of other examples could be given (see, e.g., Adams [1982]). Provided that
the domain of the differential equation is a rectangle or some other regular two- or
three-dimensional region and that the discretization pattern is repeated at each grid
point, it is usually evident how to color the points to achieve the desired result.
However, obtaining the minimum number of colors for arbitrary discretizations is
equivalent to the graph coloring problem which is NP-complete.

R B WOREB WO

W o R B WO R B

R B WoORE WO

W o R B WOR B
F1G. 4.4. Four-color ordering of the grid points.

Other orderings which are conducive to parallel computing have also been used.
O’Leary [1984] gives a number of interesting orderings, one of which is illustrated in
Fig. 4.5. Here, the nodes are grouped in blocks of five, except at the boundaries. First,
all points labeled 1 are ordered, followed by all points labeled 2, then all points labeled
3. The resulting system has the form (4.3) with p =3 but now the D, are block diagonal
matrices with blocks that are 5 X5 or less. A block SOR iteration can then be carried
out with block Jacobi sweeps which involves solving 5 X 5, or smaller, systems.

3 3.1 13 3 1 2 3 3
3 3 22 3 3 2 2 31
31 2 2 1 1 2 2 11
112 3 1 1 3 3 11
11 3 3 1 2 3 3 2 2

F1G 4.5. O’ Leary’s Py ordering.

There are at present only partial results concerning the rate of convergence of SOR
using multicolor and related orderings. Adams [1982] showed that, in general, these are
not consistent orderings in the sense of Young. However, O’Leary [1984] proved that if
the matrix (4.3) is an irreducible Stieltjes matrix then the asymptotic rate of conver-
gence is no worse than for the natural ordering. A different approach was motivated by
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the implementation of SOR on the Denelcor HEP by Patel and Jordan [1985] in which
they use the natural ordering and let the updating take place as soon as the requisite
values at the neighboring points are available. This is illustrated in Fig. 4.6 for the
9-point stencil of Fig. 4.3; each sequence of numbers represents a grid point and
indicates the times at which the corresponding unknown can be updated. Further
analysis of this procedure by Adams and Jordan [1984] showed that it is equivalent, in
certain cases and up to transient effects, to carrying out SOR under a multicolor
ordering. In particular, they show for a wide class of discretization stencils that the
spectral radius of the SOR iteration matrix for certain multicolor orderings is the same
as that of the iteration matrix for the natural rowwise ordering and hence, in these
cases, the asymptotic rate of convergence for the multicolor orderings is the same as
that for the natural ordering.

11,15,19,23 12,16,20,24 13,17,21,25 14,18,22,26 15,19,23,27
9,13,17,21 10,14,18,22 11,15,19,23 12,16,20,24 13,17,21,25
7,11,15,19  8,12,16,20  9,13,17,21 10,14,18,22 11,15,19,23
5,9,13,17 6,10,14,18  7,11,15,19 8,12,16,20  9,13,17,21
3,7,11,15 4,8,12,16 5,9,13,17 6,10,14,18  7,11,15,19
1,5,9,13 2,6,10,14 3,7,11,15 4,8,12,16 5,9,13,17

F1G. 4.6. Update times for 9-point stencil.

We turn now to the implementation of the Jacobi or SOR iterations on an array of
processors. As discussed in §2, this will require a suitable distribution of the work
amongst the processors so as to minimize processor idleness. In order to carry out these
iterations in their mathematical form we also need to ensure that the processors are
synchronized before the beginning of each iteration, or in the case of the multicolor
SOR method, before the beginning of each Jacobi sweep. This synchronization can be
carried out in a number of ways but, in essence, it requires that each processor wait
after completion of its part of the computation until all processors have completed their
work and the next iteration can begin. This adds two forms of overhead to the
computation: one is the work required to verify that every processor is ready for the
next iteration, the other is the idle time that some processors may experience while
waiting for all processors to complete their tasks.

An alternative that has special appeal in the case of the Jacobi or SOR iterations is
to let the processors run asynchronously. This idea goes back at least to the chaotic
relaxation methods of Chazan and Miranker [1969] and has been studied in some detail
by Baudet [1978], following work of Kung [1976]. See also Deminet [1982], who gives
some performance results on the Cm*, Barlow and Evans [1982], and Dubois and
Briggs [1982]. In its simplest form, in the present context, we would simply not worry
about synchronization at each iteration in carrying out the Jacobi sweeps of the
multicolor SOR method; that is, at any given time, the Jacobi iteration would take as
its data the most recently updated values of the variables. In general, this asynchronous
iteration will deviate from the synchronized one but this need not diminish the rate of
convergence.

A different approach to the parallelization of the SOR iteration is taken by Evans
and Sojoodi-Haghighi [1982] who develop methods related to the QIF factorizations of
the previous section; they are not SOR methods but have somewhat the same spirit. Let
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A=X—W-—Z be a splitting of 4 where the zero/nonzero patterns of X, W and Z are
indicated by

N

(4.4) X= ,

that is, X has nonzero elements only on the main diagonal and the cross diagonal, and
W and Z have zeros on the main and cross diagonals and nonzeros only in the
indicated hatched positions. Evans and Sojoodi-Haghighi then define overrelaxed Jacobi
and SOR-like methods by

(4.52) = [oX {(W+2Z)+(1~w)I|u+d, k=0,1,---,
(4.5b) vl =(X—oW) [wZ+(1-w)X]uk+d, k=0,1,---

called, respectively, the Jacobi-Overrelaxed Quadrant Interlocking (JOQI) and the
Successive Overrelaxed Quadrant Interlocking (SOQI) methods. They prove most of the
usual types of convergence theorems for these methods; for example, if A is irreducibly
diagonally dominant, then SOQI converges for 0 <w=<1. If 4 and X are symmetric
positive definite, then SOQI converges for 0 <w <2 and JOQI converges if and only if
2w X — 4 is positive definite. The solution of the systems with either X or X — wW as
the coefficient matrix in (4.5) can be effected by solving n/2 2 X2 systems, which can
be done in parallel. Since the right-hand sides of these systems can be evaluated in
parallel, the degree of parallelism of the methods is essentially the same as that of SOR
with the red-black ordering. What is not clear at this time is the rate of convergence of
these new methods.

Multigrid. Relaxation methods play a critical role in the multigrid method devel-
oped by Brandt [1977], Bank and Sherman [1978], Bank and Dupont [1981], and others.
The crucial observation in all multigrid methods is that relaxation methods are very
effective at reducing the high frequency component of the error between the computed
solution on a particular grid and the true solution, but are very ineffective at reducing
the long wave length components. However, if the error is viewed on a sufficiently
coarse grid, the long wave length components become high frequency components on
that coarser grid, and thus can be effectively reduced by relaxation methods. A very
simple multigrid algorithm that incorporates the essential ideas is as follows.

1) Let G', i=1,---,m be a sequence of nested grids covering the domain of
interest such that the grid spacing of G' ™' is 2/; where , is the grid spacing of
G'. G™ is the grid on which the solution is desired and G' is an appropriately
chosen coarse grid.

2) An approximate solution, u™, to the discretized differential equation L"U" = F"
is obtained by a few iterations of a relaxation method on G™.

3) Fori=m,---,2,
a) The residual F"+ L"u'=f" is transferred to the grid G'~! by a process

known as injection.
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b) A correction to the solution u' is computed on the grid G'~'. This step
reduces high frequency errors that appear on the coarser grid G' 1.
4) The solution on the grid G’ is corrected using information interpolated from
the grid Gt for i=2,-- -, m.

This description, though somewhat simplistic, captures the main steps in the multigrid
algorithms; there are many sophisticated variations that are used in practice (see e.g.
Hackbusch and Trottenberg [1982]).

The major attraction of the multigrid method is that a wide class of problems
discretized on a grid with n points requires only O(n) arithmetic operations to obtain a
solution to within the truncation error of the discretization. This attractive computa-
tional complexity has led researchers to investigate the method for vector and parallel
computers. The relaxation steps on the various grids may be carried out using methods
discussed earlier with red-black SOR being the most popular, and the issues raised for
effective utilization of the Cray and Cyber 200 remain relevant; however, the nested
grids introduce a new difficulty. One would prefer to use vectors of grid points from the
finest grid in at least one direction of the region, but then coarser grids require sets of
points that are not contiguous in memory and are thus not vectors. For the Cray this
means that the vectors must be moved from the vector registers to memory and then
the appropriate subset read back into the registers. As indicated earlier, this prevents
operation at super vector speeds, and in fact, Caughey [1983] reports performance of 32
MFLOPS on a multigrid code for the solution of the three-dimensional transonic
potential flow equations.

For the Cyber 200, hardware instructions for data manipulation must be used to
create vectors from the coarse grid points. A detailed description of a multigrid
algorithm tailored for the Cyber 205 is given in Barkai and Brandt [1983] and, despite
the overhead associated with the data manipulation instructions, the authors report that
the vector version of the algorithm runs 15 times faster than the scalar version for a
Poisson problem discretized on a 129 X 129 fine grid. The Cyber 205 is also the target
machine for a comparison by Gary, et al. [1983] of multigrid, SOR and a conjugate
gradient method preconditioned by a fast Poisson solver. For a three-dimensional
diffusion equation with Neumann boundary conditions, they report similar perfor-
mance for the multigrid and conjugate gradient methods on a 32X 32X 32 fine grid.
They also conjecture that if the fast Poisson solver based on FFT’s were replaced with
one based on multigrid then the conjugate gradient algorithm would be 2 to 4 times
faster than the pure multigrid algorithm. Finally, Hemker, et al. [1983] discuss the
development of fast solvers for elliptic equations based on the multigrid method,
including modifications required for the Cyber 205.

Multigrid algorithms have also been considered for parallel arrays. As with vector
computers, the nested grids create some difficulties. If these grids are reproduced in
their entirety on an array of processors, then in the traditional multigrid formulation
most of the processors will be idle most of the time since computation is done only on
one grid at a time. On the other hand, if only the finest grid is laid out on the
processors, then the pattern of communication between processors will change as the
algorithm moves through coarser grids. This can create serious difficulties for a mesh
connected array because communication that is between nearest neighbors on the finest
grid will not be between nearest neighbors on the coarser grids.

This communication difficulty was recognized by Grosch [1979b] in the first paper
that discussed the parallel aspects of multigrid. He compared two strategies. In the first,



PARTIAL DIFFERENTIAL EQUATIONS ON VECTOR AND PARALLEL COMPUTERS 195

the finest grid is distributed across the processors and the necessary data is communi-
cated for each grid; in the second, the coarser grid is compressed onto directly con-
nected processors before computation is initiated on that grid. The second strategy is
shown to require fewer data transfers. In order to facilitate the communication, Grosch
proposed a perfectly shuffled nearest neighbor array by augmenting the nearest neigh-
bor connections with perfect shuffles on each row and column of processors (see Fig.
3.8). A comparison of these two arrays with the optimal paracomputer of Schwartz
[1980] indicated that the multigrid algorithm could be implemented with high efficiency
on either array.

Brandt [1981] also advocated the perfectly shuffled nearest neighbor array as the
basis of a parallel computer for multigrid. In addition he pointed out that the overall
efficiency of such computers was going to be adversely affected by processors that were
near boundaries or singularities because those processors could have higher computa-
tion requirements that would dictate the overall pace of the computation. One sugges-
tion by Brandt that may hold promise for improving the efficiency is to use the finer
grid processors to continue relaxation sweeps while the basic algorithm is requiring
computation on a coarse grid. A specific example using this idea is given in Brandt
[1981] but the results do not indicate that much is accomplished by the extra relaxation
sweeps; in fact, if the extra relaxation steps are not done with care, the solution process
can deteriorate.

Simultaneous relaxation on all grids is the basis of an algorithm proposed by
Gannon and Van Rosendale [1982]. They give a specific way for moving the solutions
and residuals between grids and thereby seem to overcome the difficulties encountered
by Brandt. This algorithm and two others based on serial implementations of multigrid
are analyzed for parallel architectures exhibiting a variety of communication topolo-
gies. Simulation experiments based on solving three specific problems indicate that the
parallel algorithm would be superior when the computer can efficiently support com-
munication between physically remote processors. One difficulty with the algorithm is
that its spectral radius increases with finer grids. This is in sharp contrast to the
“classical” multigrid algorithm which owes its attractiveness to the fact that the spectral
radius is independent of grid size.

Another study of parallel implementations of multigrid algorithms was done by
Chan and Schreiber [1985]. They considered large networks of simple processors with
local communication, incorporating the ideas that make systolic architectures attractive
for VLSI implementation. Their work contains a careful complexity analysis involving
parameters that control key aspects of the multigrid algorithms and a parameter that
specifies the number of processors as a function of the number of points in one
direction of the grid. By using these complexity results and the concepts of speedup and
efficiency they make precise the notion discussed above that if the number of processors
is related to the total number of grid points, then many of the processors will be idle a
significant amount of the time.

Another approach that has not received study would be to trade off efficiency with
performance by sizing the array of processors with one of the coarser subgrids.
Processors would go idle only when grids coarser than the one that matched the
number of processors were being used. The performance degradation would occur
because parallelism available on finer grids could not be utilized due to the restricted
number of processors. Using this approach one could be led to different size arrays and
different communication topologies depending on the power and cost of the individual
processors. It also raises the question of whether one should select a small number of
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powerful processors or a large number of simple processors for the design of a cost
effective computing system for multigrid.

ADI methods. We consider next the Alternating Direction Implicit (ADI) method,
which seems, at first glance, to be rather unsatisfactory for parallel computation since it
is based on the solution of tridiagonal or small bandwidth systems. Ericksen [1972] and
Morice [1972], however, observed that since these tridiagonal systems are independent,
they can be solved in parallel. More precisely, we recall that the ADI method—for the
model problem and the grid of Fig. 4.1—consists of two half-steps as indicated by the
iteration scheme (see, e.g., Varga [1962])

(4.62) (H+a,0)x**2=(a,]— V)x*+b,
(4.6b) (V+a, I)x**'=(a, I— H)x**1/2+p.

The first step, (4.6a), consists of the solution of N tridiagonal systems of size N
corresponding to the horizontal lines of the grid, while (4.6b) likewise is the solution of
N tridiagonal systems (after permutations of the unknowns) corresponding to the
vertical lines. On an array with p processors, p of the tridiagonal systems (4.6a) can be
solved in parallel with the usual Gaussian elimination algorithm; it is desirable in this
case that N be a multiple of p. On the next half-step, the systems of (4.6b) will be
solved in parallel. On a vector computer, the vectors would be aligned across the
systems to be solved.

A potential problem on both parallel and vector computers is to arrange the
storage so that transfers between half-steps are minimized. This storage problem is
particularly pronounced on the Cyber 200 if we vectorize across the tridiagonal sys-
tems, and the storage must be rearranged—by the equivalent of a matrix
transpose—between each sweep. However, Lambiotte [1975] observed that on the
half-sweep that the storage is not correct for the simultaneous solution of the tridiago-
nal systems, it is correct for the solution of the individual tridiagonal systems by the
cyclic reduction (CR) method of the previous section. Moreover, the N individual
systems may be viewed as forming a single tridiagonal system N times as large and the
CR method may be applied to this large system; as we saw in the last section, the larger
the system the better. Finally, because the individual systems are uncoupled, the CR
method will actually terminate in log N steps rather than the expected log N 2. Thus, the
ADI algorithm is implemented on the Cyber 200 by solving the tridiagonal systems “in
parallel” on one half-sweep and as a single large tridiagonal system on the other
half-sweep. Lambiotte also discusses a similar strategy for three-dimensional problems.

Block SOR. Many of the same considerations for ADI apply also to the implemen-
tation of Successive Line Over-Relaxation (SLOR). If one uses the lexicographic order-
ing, the same difficulties occur as with point SOR. To circumvent this, Ericksen [1972]
and Lambiotte [1975] studied various other orderings, such as a red-back ordering by
lines, which allow a number of the tridiagonal systems either to be solved in parallel or
as one large tridiagonal system by cyclic reduction. Likewise, multicoloring by lines
may be used, if necessary. More recent work on block or line methods has been
reported by Boley, et al. [1978], Buzbee, et al. [1979] and Parter and Steuerwalt [1980],
[1982], motivated largely by three-dimensional elliptic problems on the Cray-1; see also
Faber [1981]. Various possible relaxation schemes using KX K blocks are discussed,
and some of these methods may prove to be attractive. We note also that on arrays, the
number of processors may be a key factor in determining the block size. For example,
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with p processors we would probably try to arrange the computation so that the
number of blocks assigned to each processor is a multiple of p.

Somewhat related to block methods, O’Leary and White [1985] consider multisplit-
tings A=B,—C,,i=1,---,k, of A and an iteration matrix is defined by

H=Y DBC

1M

1

where the D, are nonnegative diagonal matrices, with ¥D,=1. Then the iteration
xk*1= Hx*+d is carried out by executing in parallel the partial iterations defined by

D,B'C,

Semi-iterative methods. Another group of methods which are potentially useful on
vector or parallel machines is semi-iterative (SI) methods. (See, e.g., Young [1971] for a
general discussion of these methods.) Consider, for example, the Jacobi—SI method
which can be written in the form

(4.7) uk*l=a, Bu*+ Bk +y,ut !

for suitable choice of the parameters «, 8,v. Here B is the Jacobi iteration matrix so
that Bu* is the result of a Jacobi sweep starting from u*, and the remainder of the
calculation of (4.7), once the parameters are known, is ideally suited for vector or
parallel machines. Of course, one pays the penalty of additional storage for u*~!. More
importantly, the choice of good parameters may be difficult for other than model
problems since the optimal parameters are based on a knowlege of the largest and
smallest eigenvalues (assumed real) of B. In the case that the coefficient matrix 4 is
symmetric positive definite and has property 4, then it is known that the asymptotic
rate of convergence of Jacobi—SI is approximately half that of SOR, both using optimal
parameters; in this case, Jacobi—-SI may not be useful, even on vector computers.
However, in more general situations, the rate of convergence of Jacobi—SI may be quite
superior to SOR and its somewhat better parallelization properties makes it potentially
attractive, provided that reasonable values of the parameters can be chosen. Hayes
[1974] and Lambiotte [1975] considered, for the TI-ASC and CDC STAR-100, respec-
tively, the Jacobi—SI method in some detail, as well as other semi-iterative methods
such as SSOR-SI and cyclic Chebyshev—SI.

Preconditioned conjugate gradient methods. We turn next to conjugate gradient
(CG) methods, which were first developed by Hestenes and Stiefel [1952] as alternatives
to Gaussian elimination. Although iterative in nature, they are actually direct methods
since, in the absence of rounding error, they converge to the exact solution in no more
than » steps for systems of size n. However, in the presence of rounding error, this no
longer occurs and the CG methods dropped out of contention as a competitor to
elimination. Reid [1971], however, following earlier work of Engeli, et al. [1959],
observed that for certain large sparse problems, CG methods gave sufficiently good
convergence in far less than » iterations and this spurred revival of these methods for
discrete elliptic equations. See, also, Concus, et al. [1976] as one of the important early
papers in this revival.

The rate of convergence of the CG methods, viewed as iterative, depends on the
condition number, K(A4), of A: the smaller the condition number, the more rapid the
convergence. Hence, much of the more recent work on CG methods has been devoted
to the development of suitable preconditioning strategies. It turns out (see Chandra
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[1978] for a full discussion of this and many other basic facts about CG methods) that
the preconditioning can be incorporated into the basic CG algorithm as applied to the
original matrix 4 in the following form:

Preconditioned Conjugate Gradient (PCG) Algorithm:

Set r®=b— 4x°. Solve Mi°=rC Set p°=#°.

For k=0,1, - - - until convergence
Compute a, = (r%,r%) /(p*, Ap*), x* 1 =x*+ o, p*
Check for convergence. If not, continue
Compute r"*1=r¥—q, Ap*. Solve Mtk*!1=rk*!
Compute 'Bk = (l.k+ l,i"‘“)/(rk, i'k), pk+1 —ak+l + kak

In the above, (x,y) denotes the inner product xy and M arises from the precondi-
tioning of A; if M =1, the algorithm reduces to the standard conjugate gradient
method. As pointed out earlier, inner products are not attractive computations on
parallel or vector computers because of the summation. With this in mind, Van
Rosendale [1983b] proposed a modification to the conjugate gradient method that
permits the calculation of the inner product from previously computed and stored
information. This idea is applicable to the variants discussed below and merits further
study.

The matrix M can be viewed as an approximation to 4 and should satisfy the
following criteria (see Concus, et al. [1976]):

a) M is symmetric positive definite.

b) The system Mt =r is “easily” solved.

c) M~ '4 has “small” or “nearly equal” eigenvalues or has small rank.

Condition c) ensures that the rate of convergence of the PCG method will be faster
than that of CG itself. Condition a) is a necessary part of the current theory.

There have been proposed several possible ways to obtain a suitable M; for
example:

a) Take M to be the tridiagonal or small bandwidth part of 4.

b) Obtain M from an “incomplete” Choleski decomposition of 4.

c) Obtain M as a splitting matrix for some suitable iterative method.

As we saw in §3, the solution of small bandwidth systems is not very efficient on vector
and parallel computers and option a) has not been very seriously explored for such
architectures. We discuss the other two possibilities in more detail.

Probably the most successful preconditioned conjugate gradient methods for
sequential computers are the incomplete Choleski conjugate gradient (ICCG) methods
(Meijerink and van der Vorst [1977], [1981]). Here, M is obtained as an “incomplete”
Choleski decomposition of 4; that is, M = LL” where L is constrained to have the same
sparsity pattern as the lower triangular part of 4, or some other constraint which makes
“easy” both the formation of L and the solution of the linear systems

(4.8) Li=r, LTt=r

with L and L as coefficient matrices. The decomposition can be done once and for all
at the outset of the iteration and the factor L retained. Thus in the PCG method the
solution of M#=r is effected by the solution of (4.8). As with option a), the solution of
these banded systems is not particularly attractive on parallel architectures and most of
the research to date has been on different approaches to circumvent this problem.
Rodrigue and Wolitzer [1984a,b], T. Jordan [1982a] and Kershaw [1982] all as-
sume that A4 is block tridiagonal and that the blocks themselves are tridiagonal, so that
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A is a 9-diagonal matrix. Then all of the above authors use some variant of incomplete
block cyclic reduction or block odd-even reduction (see §3) to form L and solve the
triangular systems (4.8). This extends earlier work of Greenbaum and Rodrigue [1977]
who treated 5-diagonal matrices. Kershaw reports that this vectorized algorithm gives
speedups of factors of 3 to 6 over the corresponding scalar code on the Cray-1 for
certain test problems. Axelsson [1984] also considers block tridiagonal matrices and
gives a preconditioning based on an approximate block factorization of 4 in which the
inverses required in a block LU factorization of 4 are approximated by banded
matrices. This is recursive but need be done only once at the beginning of the iteration.
The forward and back solves, which are done on each iteration, require only matrix-
vector multiplication and are amenable to parallel computation. A modification of the
factorization using a cyclic reduction ordering is also presented.

A somewhat different, but related, approach to the ICCG algorithm has been
taken by Lichnewsky [1982] (see also Lichnewsky [1983], [1984]) and Schreiber and
Tang [1982] by reordering the equations. Lichnewsky, assuming also a block tridiagonal
matrix, reorders the blocks in a red-black (odd-even) fashion, and then further reorders
within the blocks. The final algorithm is similar to the block cyclic reduction ones
described above. Schreiber and Tang use red-black and 4-color reorderings of the
equations, and also consider orderings for the ICCG (3) version of Meijerink and van
der Vorst [1977], in which L is allowed to have 3 nonzero diagonals outside the nonzero
pattern of A. Following Schreiber and Tang’s suggestions, Poole and Ortega [1985] give
experimental results for two model problems on the Cyber 203 and show that the
choice of the multicolor ordering is important in achieving maximum vector lengths.
Other related work on ICCG includes Meurant [1985], who develops an incomplete
block Choleski decomposition based on work of Concus, et al. [1985], and implements
it on the Cray-1, Reiter and Rodrigue [1984], who give an incomplete block Choleski
decomposition but based on a permuted form of A, Kowalik and Kumar [1982] who, in
the context of a block conjugate gradient algorithm for a multiprocessor environment
such as the Denelcor HEP, use a limited Choleski preconditioning scheme in which the
diagonal blocks of 4 are Choleski decomposed, and Jordan and Podsiadlo [1980], who
describe a conjugate gradient method implementation on the Finite Element Machine.

Still another approach to ICCG was taken by van der Vorst [1981]. He assumes
that 4 is a 5-diagonal matrix with the main diagonal scaled to 1 and takes L to be the
lower triangular part of 4 so that no Choleski decomposition is really involved. The
solution of the systems (4.8) is then effected by a truncated Neumann expansion of
(I—E)™!, where E is one of the off-diagonals of L. However, this choice of L is just
equivalent to the 1-step SSOR PCG method described below and Adams [1982] has
shown that the SSOR approach is more effective.

We now turn to the other general approach to obtaining preconditioning matrices.
Let A=P— Q be a splitting of A which defines an iterative method with iteration
matrix G= P Q. If we take m steps of this iterative method towards the solution of the
system Af =r, starting with an initial guess #°=0, the mth iterate satisfies

f(m)=(1.|_ G+ --- +Gm—1)P—1r
so that 7™ is the solution of the linear system
(49) Mi=r, MEP(I+ +Gm—1)_1‘

As perhaps the simplest example, we can use the Jacobi method in which P=D (the
diagonal part of A4); the solution of the system (4.9) is then implemented by m Jacobi
iterations which, as we have seen, are easily done on parallel and vector architectures.
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As a second example, we could use the SOR iteration but this gives a nonsymmet-
ric matrix M. The symmetric SOR (SSOR) iteration (see, e.g. Young [1971]) does lead
to a symmetric positive definite M. In the SSOR method, one iterative step consists of
an SOR sweep through the grid points followed by a sweep through the grid points in
the reverse order. Formally, this can be represented by the splitting 4 = P — Q with

1 -1 T
P=m(D—wL)D (D—wL )

where D, —L, — LT are the diagonal, lower and upper triangular parts of A4; the
solution of the system (4.9) is then implemented by m SSOR iterations in which we
would probably use the multicolor orderings previously discussed. We note, however,
that the number of iterations of the m-step SSOR PCG method using multicolor
orderings to implement the SSOR sweeps may be somewhat more than using the
natural ordering. Wang [1982b] has reported on an implementation of a 1-step SSOR
PCG using diagonal ordering of the grid points. Although the diagonal orderings do
not vectorize as well as the multicolor ones, a reduction in the number of iterations
could make them attractive. Rodrigue, et al. [1982] and Lipitakis [1984] have also
discussed the use of Jacobi and SSOR preconditioners.

The question arises, in general, as to when the matrix M of (4.9) is symmetric
positive definite. Adams [1982], [1985] proved the following, which extended a previous
result of Dubois, et al. [1979]. If P— Q is symmetric positive definite with P symmetric
and nonsingular, and G= P~ !Q, then the matrix M of (4.9) is symmetric and

a) For m odd, M is positive definite if and only if P is positive definite.

b) For m even, M is positive definite if and only if P+ Q is positive definite.

As an example of the use of this theorem, it can be shown that the matrices P and
P+ Q of the SSOR splitting are symmetric positive definite if 0 <w<2. Thus the
matrix M for the m-step SSOR preconditioning is symmetric positive definite. Simi-
larly, for the Jacobi iteration, the theorem shows that for m odd, M is positive definite
but for m even, M is positive definite only if D+ L+ LT is positive definite, which is the
classical condition for the convergence of the Jacobi iteration (see, e.g., Young [1971]).

Adams [1982], [1985] has given numerical results for the m-step SSOR PCG
method applied to Laplace’s equation and a plane stress problem. For these problems
the number of iterations required was indeed a decreasing function of m but the point
of diminishing returns occurred for m=1 or 2; that is, at least for these problems, it did
not pay to use m larger than 2.

Johnson and Paul [1981a,b] and Johnson, et al. [1983] have extended the Dubois,
et al. [1979] approach in another direction by replacing the expansion I+ --- + G™ ™1
in (4.9) by a polynomial in G; that is,

(4.10) M '=(agl+aG+ - +a,_G" )P,

(Actually they considered only the case P =1 corresponding to the Jacobi iteration on a
matrix assumed to have its main diagonal scaled to be the identity. But Adams [1982],
[1985] has shown that the same general approach holds for splittings in which P is
symmetric.) The idea now is to choose the parameters «, in (4.10) so as to ensure the
positive definiteness of M and to minimize the ratio of the maximum and minimum
eigenvalues of M ~'A. Johnson, et al. [1983] approach this problem by first noting that,
in the case P=1I, M~ 4 is also a polynomial, g(A4), in A4 and then choosing the a, to
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minimize either max g(x)/ming(x) or
(4.11) f;\" [1-g(x)]*w(x)dx.

In the above, A; and A, are the minimum and maximum eigenvalues of 4,w is a
suitable weight function, and the max and minof g are taken over the interval [A;, A, ].
Numerical experiments are reported for Laplace’s equation on a rectangle with the
5-point star finite difference discretization. They compared their method (with m=3
and the «, chosen by minimizing (4.11)) with various other methods (ICCG, point SOR,
conjugate gradient without preconditioning, etc.) and showed that in every case their
method required fewer iterations. Johnson and Lewitt [1982] describe software for
implementing the method on the Cyber 205. Saad [1983a,b] has given a rather general
analysis of the polynomial preconditioning approach including application to nonsym-
metric matrices.

Rodrigue, et al. [1982] consider various versions of the preconditioned conjugate
gradient method applied to a diffusion problem on the STAR-100. The diffusion
equation is approximated by the method of lines and the corresponding system of
ordinary differential equations is solved by an implicit method. It is in carrying out this
implicit method that the CG algorithm is used. Preconditioners considered were 1-step
Jacobi, 1-step line Jacobi, 1-step Symmetric Gauss—Seidel (SGS) and 1-step SGS with
the equations ordered in red/black form. On a particular sample problem run on the
STAR-100, the 1-step Jacobi PCG method was the fastest by a good margin.

Saad and Sameh [1981b] and Saad, et al. [1985] also consider the conjugate
gradient method as well as a cyclic Chebyshev method and a block Stiefel method
treated in an earlier paper (Saad and Sameh [1981a]). Their model problem is a second
order elliptic equation with Dirichlet boundary conditions on the unit square, dis-
cretized by the 5-point star and with the finite difference equations ordered red-black
by lines. They consider the use of a hypothetical array of p processors with a shared
memory and report numerical experiments on a sequential computer which showed that
the conjugate gradient method was the best of the three, but under certain assumptions
on the array they conclude that the block Stiefel method may be superior.

Software for some of the above methods, as well as others, is discussed in several
papers by Kincaid (see, e.g., Kincaid, et al. [1984]) and Schonauer (see, e.g. Schonauer,
et al. [1983]) and their colleagues.

Variable coefficients. So far we have considered mostly the solution of the linear
systems obtained from discretizing a differential equation. With general elliptic opera-
tors, additional difficulties will tend to revolve around the best ways to compute and
manage storage of the coefficients. For example, consider the equation

au,,+bu,, +cu,,=f, 0<x,y,z<1

where a,b, and ¢ are functions of x,y and z. The corresponding difference equations
using the usual 7-point formula with hi=Ax=Ay=Az are

2(al,j,k+b1,j,k+ci,/,k)ui,j,k_az,j,k(u1+1,/,k+u:—l,j,k)

_bz,j,k(ui,j+l,k+ul,j-l,k)—cl,j,k(ul,/,k+l+u1,/,k—l)=h2fi,j,k’

For a sufficiently coarse grid, the coefficients can be computed once and for all and
held in five O(N?) long arrays for vector machines, or distributed over the various
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processors of an array. But for a moderately fine grid, say N > 100, back-up storage
may be required and depending upon the complexity of the coefficients, the operating
system, and various other factors, it may be more economical to recompute the coeffi-
cients at each iteration. This strategy is, of course, common on existing serial machines
and the only new factor for vector or parallel computers would be to compute the
coefficients in sufficiently large batches—say 1,000-10,000 at a time—so that the
computation as well as the subsequent usage in the equation solver can be done
efficiently with parallel or vector operations. In particular, recomputation of the coeffi-
cients on an array might be useful to save communication time between the processors.

Irregular regions. A less satisfactory situation exists for handling irregular do-
mains. Consider, for example, the grid in Fig. 4.7, where the boundary nodes are
indicated by b. One way to handle such a grid is to circumscribe it by a rectangle—the
additional grid points thus introduced are indicated in Fig. 4.7 by crosses—and work
with the entire rectangular grid. For example, for Laplace’s equation and the Jacobi
iteration on such a grid, one could use the vector code (4.2) on the Cyber 200 with a
control vector, as before, to ensure that the boundary positions are not overwritten. Of
course, both additional storage and additional arithmetic are required for the points
outside of the domain, and the procedure becomes increasingly less efficient as the
domain deviates from rectangular. At some point, it is probably beneficial to use a
union of smaller circumscribing rectangles. This, of course, would save considerable
storage over a complete circumscribing rectangle but now the rectangles must be
processed separately; that is, the code (4.2) must be written separately for each rectan-
gle. Ideally, of course, one would like an ordering of the grid points that would allow
processing and storage of only the minimum number of points and still use vectors
whose length is the total number of grid points; but such an ordering, if it exists, is not
evident and has not appeared in the literature. A more sophisticated approach is to use
capacitance matrix methods (see, e.g., O’Leary and Widlund [1979]) but no results for
vector computers have been reported.

X X b b b b X X

X X b . b X

X b b

b . . b

X b . . . . b X

X X b b b b X X
F1G. 4.7

Parabolic equations. We turn now to methods for parabolic and hyperbolic equa-
tions. As we will see, many of the considerations for time-marching methods on vector
and parallel computers are very similar, if not identical, to those for iterative methods
for elliptic problems. Explicit methods will tend to be relatively more attractive than on
serial computers because of their usually better parallelization properties, but this will
not necessarily overcome the stringent stability requirements of small time steps. The
question of implicit versus explicit methods, however, is only one part of the broader
consideration of how well the method can be adapted to the architectures under
consideration. Other aspects which affect this will include the domain, the boundary
conditions (and perhaps computational boundary conditions needed for hyperbolic
equations and /or higher order methods), the form of the coefficients and whether their
calculation can be parallelized, the number of space dimensions, etc.
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We will begin with the simple parabolic equation
(4.12) u=au, ., >0, 0<x<1
with constant coefficient a and initial-boundary conditions

(4.13) u(0,x)=g(x), u(t,0)=a, u(t,1)=8

for constant « and S.
Consider first the standard second order Crank—Nicolson scheme

(414) wrt—uk =Bk 2wk 2wkt ul ), =1 N
where p=aAt/(Ax)? and uf and u}*" indicate values at the current and next time
levels, respectively. At each time step, a tridiagonal system of equations must be solved
and, as we saw in the last section, this is not particularly efficient on vector or parallel
computers with the algorithms now known. By contrast, the simplest explicit method
(4.15) W =ukp(uk, - 20k +uk ), j=1,--- N,

is mechanistically ideal for vector or parallel computers. Indeed, (4.15) has the same
form as the Jacobi iteration applied to a tridiagonal system of equations. On the other
hand, the Jacobi iteration could be applied to the tridiagonal systems of the
Crank—-Nicolson method (4.14). McCulley and Zaher [1974] reported reasonable results
with this approach for a diffusion problem on the Illiac IV; in their case 15 Jacobi
sweeps sufficed at each time step. More recently, Berger, et al. [1981] discussed a
similar approach using the Crank-Nicolson method. With a suitable time step and a
suitable predictor formula (forward Euler, Dufort-Frankel) to obtain the initial guess,
they found that a single Jacobi sweep on the implicit equations gave sufficient accu-
racy.

Gelenbe, et al. [1982] also consider the solution of the one-dimensional heat
equation. Finite difference discretization is used with a resulting parameterized scheme
which includes the fully implicit, fully explicit and Crank—Nicolson methods as special
cases. For the implicit schemes, an equation Au”*!=Bu™+ ¢ must be solved at each
time step and the grid points are ordered in such a way that 4 has the form

% %
*

*
% % *

L J

That is, it is tridiagonal except for two elements. This sparsity pattern is maintained
under LU or Choleski decomposition which is assumed to be done once at the outset.
The problem is the forward and back substitutions at each time step. The main purpose
of the paper is to give a probabilistic model of the computation on a multiprocessor
system and the authors consider in detail the two processor case. The results of their
model agree very well with experiments conducted on a system of two LSI 11’s at the
University of Paris.
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The same general considerations apply to problems in two or three space dimen-
sions. For example, for the two-dimensional heat equation, the explicit method corre-
sponding to (4.15) has the same form as the Jacobi iteration. Similarly, the ADI
iteration will have the same form as discussed for elliptic equations and the same
techniques for handling the tridiagonal systems would again apply.

Hyperbolic equations. For hyperbolic equations, the situation is similar. Indeed, it
is somewhat simpler in the sense that except for certain “stiff” systems (i.e. systems
with a wide range of eigenfrequencies and characteristic phase velocities), implicit
methods are less frequently used, even on serial computers. As a simple example,
consider the hyperbolic system

(4.16) u,+F(u),=0, 0xxgl

with suitable initial and boundary conditions. The standard two-step Lax—Wendroff
scheme is

= () (B, £,

(4.17)
w0 )

where y,=At/Ax and y,=1v,/2. We see that the two sets of difference equations in
(4.17) again have the general form of a Jacobi-like iterative method. A potential
difficulty, however, is the evaluation of the vectors derived from F(u). How well this
can be done in parallel will depend on the form of F. For example, suppose that u is the
3-vector of density p, momentum m, and energy e and F=(m,p+m?%/p,(e+p)m/p)
where p is given in terms of p, and possibly also m and e, by some “equation of state”
p=/f(p,m,e). Then the evaluation of F can be done in parallel as indicated in

m; m, .
FJ'= m/’p/+—p_"(ej+pj)? > j=1,---,N
J J

where N is the number of grid points. However, the calculation of the vector of p values
may or may not also be computed efficiently by vector operations depending on the
form of f. In addition, we will need to handle the given boundary conditions as well as
the computational boundary conditions obtained, for example, by extrapolation. John-
son [1984] reviews other considerations in solving the three-dimensional wave equation
on vector computers.

Adaptive grids. The preceding discussion has assumed that the grid over which the
partial differential equation, be it elliptic, parabolic, or hyperbolic, is discretized re-
mains fixed throughout the solution process. This makes it relatively easy to create
vectors out of the grid points or to map grid points onto processors so as to balance
computation or to take advantage of the communication topology. On the other hand,
many problems or methods may require a dynamically changing grid. It has become
common to treat time dependent problems, where some physical phenomena such as a
shock wave is moving through the region, with adaptive techiques or grid refinements
by adding or repositioning grid points in some area of the region that requires more
accuracy. This dynamic change in the grid structure has a serious effect on the data
structures for either vector or parallel computers.

For vector computers adaptive computation can be handled in much the same way
as described earlier for the multigrid algorithm, that is, by using the data movement
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instructions on the Cyber 200 or by returning to memory on the Cray. In either case
machine efficiency will be reduced. The situation is more difficult for parallel com-
puters. If a subregion assigned to some processor is refined, then either the computa-
tion on that processor increases, causing an imbalance, or the region must be redistrib-
uted across the array of processors. In either case, an extra burden may be placed on
the interprocessor communication mechanism. One approach to the redistribution
problem is to have processes that are controlling the computation on a subregion spawn
new processes to handle the refined region. Then a computing system that executes
these processes on available processors is required. This provides indirect load balanc-
ing, but the communication system must be very rich because locality of communica-
tion will, in general, be lost.

The FEARS project (see Zave and Rheinboldt [1979] and Zave and Cole [1983])
was an adaptive finite element system which spawned processes to take advantage of
parallelism. Refinement was based on a continuous monitoring of the errors and is
discussed in detail in Babuska and Rheinboldt [1977]. The subregions, whether refined
or not, were organized independently in the spirit of substructuring. As was discussed
in §3, this allows for independent parallel computation on the subregions; however, the
linear system that connects the subregions was solved sequentially. As reported in Zave
and Cole [1983], the sequential solution process requires 70 to 90 percent of the time
and thus reduces the overall speedup and efficiency of the process dramatically. Simu-
lations were performed for several computer systems including ZMOB and variations
of Cm*. The results of this study are reported in Zave and Cole [1983] and indicate that
the majority of the time is spent in communication or waiting.

Adaptive computation in a multigrid setting for three-dimensional problems was
the basis of a study by Gannon and Van Rosendale [1984a]. Based on ideas introduced
in Van Rosendale [1983a], they also used dynamically spawned processes to provide a
framework for the extraction of parallelism. They went on to define an architecture to
take advantage of the parallelism. The architecture, which is similar to Cedar (Gajski, et
al. [1983]), consists of clusters of processing elements with local memory; the clusters
are connected via a crossbar message switching network. Preliminary simulation
studies indicate that the system would have a very high level of efficiency due to the
fact that over 95 percent of the communication takes place within the clusters.

Spectral methods. A relatively new technique for solving partial differential equa-
tions that appears to be appropriate for vector and parallel computers is the spectral
method (see e.g. Gottlieb and Orszag [1977] and Voigt, et al. [1984]). In the spectral
method, a discrete representation of the solution u(x) of the differential equation Lu=f
is approximated by

(419) ()= L i (x)

where the ¢, are given functions and (4.18) is evaluated at appropriate points x;. In
order to obtain an approximate solution u,, expressions for the derivatives of u, are
required based on the form of L. If the x . ; and ¢, are appropriately chosen, u a(X; ) and
its derivatives may be evaluated using the FFT. Thus, any of the methods alluded to in
§3 could be used in a vector or parallel environment. The u (x;) values can be obtained
using an appropriate direct or iterative method so again the techniques discussed
previously become relevant. Spectral methods are being used extensively on vector
computers; see Orszag and Patera [1981a, b], [1983] for the Cray and Bokhari, Hussaini,
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Lambiotte and Orszag [1982] for the Cyber 200. These are only representative, and
many more references may be found in the bibliography given in Gottlieb, et al. [1984].
There appear to be no studies of the use of spectral methods on parallel computers.

5. Applications. An increasing number of papers have appeared in the last several
years describing the use of parallel or vector computers in a variety of application
areas. In this section, we will summarize a sampling of this literature without giving
extensive details.

Fluid dynamics. The major application area has been fluid dynamics calculations
of various kinds. Several early papers described the use of the Illiac IV, some before it
was operational. For example, Carroll and Wetherald [1967] discussed the possible
application of the Solomon computer—the predecessor, which was never built, of the
Illiac IV—to hydrodynamics problems and general circulation weather models in
particular; Reilly [1970] considered a Monte Carlo method for the Boltzmann equation;
and Ogura, et al. [1972] reviewed the theoretical efficiency of the Illiac IV for hydrody-
namics calculations. Wilhelmson [1974] and Ericksen and Wilhelmson [1976] consid-
ered convection problems—and in particular the Benard—Rayleigh problem; they used
Dufort-Frankel differencing on the diffusion terms, a scheme of Lilly for the convec-
tion terms, a fast Fourier method for the Poisson equation, and leap-frog differencing
in time. One of the main thrusts of their work was a proper balancing of computation
with disk to main memory transfers. Davy and Reinhardt [1975] discussed the applica-
tion of the Illiac IV to a chemically reacting, inviscid hypersonic flow problem, using
MacCormack’s method with shock capturing. McCulley and Zaher [1974] reported on
the solution of diffusion type equations in a problem that arises in planetary entry.

There were also a number of early papers addressing fluids problems on the
TI-ASC and CDC STAR-100. Boris [1976a] applied his flux-corrected transport (FCT)
algorithm to continuity type equations on the TI-ASC and concluded that the FCT
method is “fully vectorizable”. Lambiotte and Howser [1974] compared the ADI
method, Brailovskaya’s method [1965], and Graves’ Partial Implicitization method
[1973] on the CDC STAR-100 for the driven cavity problem and concluded that both
Brailovskaya’s method and Graves’ method vectorize well and were the fastest on the
STAR even though the ADI method was the fastest on a serial machine. Weilmunster
and Howser [1976] considered a boundary layer /shock interaction calculation governed
by the full Navier—Stokes equations in two dimensions. They reported speedups of as
much as 65 to 1 on the STAR over a corresponding program on a CDC 6600.

Giroux [1977] described the conversion of the HEMP code to the CDC STAR-100.
HEMP models two-dimensional deformations, motions and interactions of materials as
they are subjected to force fields; it uses an explicit finite difference scheme. Giroux
discussed in some detail the many issues in a successful implementation of this proce-
dure on the STAR. The final program showed a speedup of as much as a factor of 5
over the CDC 7600. Soll, et al. [1977] reported on the conversion of the GISS general
circulation model to the STAR. Preliminary runs of part of the code showed a speedup
of about an order of magnitude over the IBM 360 /95.

More recent work has concentrated primarily on the use of the Cyber 200 and
Cray series of machines, as well as some parallel arrays. Before describing these
developments, we note that there have also been a few recent papers dealing with the
older machines. For example, Lomax and Pulliam [1982] (see also Pulliam and Lomax
[1979]) report on computations for the unsteady Reynolds-averaged Navier—Stokes
equations on the Illiac IV. We also note that there have recently been a number of
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conference proceedings or anthologies devoted wholly or partly to applications. These
include the Los Alamos workshop on vector and parallel computing (Buzbee and
Morrison [1978]), applications of the Cray-1 at the Daresbury Laboratory in England
(Burke, et al. [1982]), a symposium on applications of the Cray-1 (Cray Research, Inc.
[1982]), three symposia on applications of the Cyber 205 (Control Data Corp. [1982],
Gary [1984], and Numrich [1985]), and a compilation of articles dealing with a variety
of machines but especially the Cray-1 (Rodrigue [1982]). Several of the articles in these
sources will be covered in the sequel. We also mention that the book by Gentzsch
[1984b] on vectorization contains an entire chapter and an extensive bibliography on
applications in fluid dynamics.

Strikwerda [1982] has used the CDC STAR-100 and Cyber 203 for solving the
compressible Navier—Stokes equations to obtain laminar flow in converging/diverging
nozzles with suction slots. A time-split differencing was used involving three different
splittings, one for the parabolic (viscous) terms and two for the hyperbolic (inertial)
terms, one for each space direction. Only two-dimensional or axisymmetric problems
were handled. The program was coded in SL/1 (Knight and Dunlop [1983]) using
32-bit arithmetic, which was found to give suitable accuracy. For a particular sample
calculation for a two-dimensional slotted nozzle, the number of grid points was 12,000
and the number of time steps to convergence was 40,000. The CPU timing for this
problem was 1.1 X 103 seconds per time step per grid point on the Cyber 203.

Bokhari, Hussaini, Lambiotte and Orszag [1982] treat the Navier—Stokes equations
for three-dimensional viscous compressible flow, including compressible shear flows at
high Reynolds number, for the Cyber 203 by a mixed spectral /finite difference method,
using the one- and two-dimensional FFT codes developed by Korn and Lambiotte
[1979] and Lambiotte [1979] as well as techniques for computing derivatives described
in Bokhari, Hussaini and Orszag [1982].

Deiwert and Rothmund [1983] use the Cyber 205 for the three-dimensional
Navier—Stokes equations modeling boat-tailed afterbodies which are at moderate an-
gles of attack and which contain a centered propulsive jet. There were 216,000 grid
points and a database of 510 words. Fornberg [1983] describes the computation of
steady viscous flow past a circular cylinder on the Cyber 205 for Reynolds numbers up
to 400. Wu, et al. [1983] report on a direct turbulence simulation which requires solving
the time-dependent Navier—Stokes equations in these dimensions. On a two pipeline, 2
million word Cyber 205, they obtain for a 64 X 64 X 64 mesh a computation rate of over
100 MFLOPS using 32-bit arithmetic.

Hankey and Shang [1982] (see also Shang, et al. [1980]) consider three-dimensional
Navier—Stokes codes for aerodynamics computations on the Cyber 200 and the Cray-1.
Results are given for wind tunnel diffusers, missiles at high angles of attack, self-excited
oscillatory flows, etc. Kumar, et al. [1982] report on similar problems for the three-
dimensional Navier—Stokes equations on the Cyber 203, including scram-jet inlet and
combustor analyses. Rudy [1980] reports on a two-dimensional aerodynamics code for
the Cray-1 in which a vectorization of about 85 per cent is attained. This holds the
megaflop rate to slightly over 10.

Kascic [1984b] discusses the implementation on the Cyber 205 of a vortex method
for the Euler equation for an incompressible inviscid homogeneous fluid. The emphasis
is on carefully utilizing the architecture and instruction set of the 205. Woodward
[1982] considers various schemes for hydrodynamic problems on different machines
and makes a number of worthwhile observations; for example, logical operations are
generally slow on vector computers and compress, merge, and mask operations are slow
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on the Cray-1 since they must be implemented by software. Cox [1983] describes the
use of the CDC Cyber 205 on an ocean model. A problem with 18 X 150 X195=5-10°
grid points required approximately 4 seconds per time step, about 4 times faster than
the TI-ASC previously used.

Gentzsch [1984a, c] provides an interesting benchmark study that includes a variety
of production codes for fluid dynamics problems such as the two-dimensional magneto-
hydrodynamic equations, the Navier—Stokes equations, and two- and three-dimensional
Euler equations. Results are given for a variety of computers including the Cray-1S,
Cyber 205, STAR-100, ICL-DAP, Denelcor HEP and a number of scalar machines.
One significant result is that hand coding to improve vectorization improved perfor-
mance by factors of 2.5 to 5.4 on the Cyber 205 and 1 to 3.3 on the Cray-1S.

Transonic flow. Transonic flow is an important area of aerodynamics which has
received considerable attention. Hotovy and Dickson [1979] used a three color ordering
of the nodes in connection with a relaxation scheme to solve the two-dimensional small
disturbance equation on the CDC STAR-100. They give timing comparisons for this
“checkerboard” method on the STAR and an SLOR code on a CDC Cyber 175. On
various runs on a 101 X41 grid, the STAR was 2.5 to 3 times faster although the
checkerboard method required over twice the number of iterations to converge. On a
finer (200 X 80) grid, about 4 times as many iterations were required for the checker-
board method and the STAR was less than twice as fast as SLOR on the Cyber 175.

Redhed, et al. [1979] treated the three-dimensional small disturbance equation of
transonic flow on the CDC STAR by using a red-black ordering of grid lines in the
cross-flow plane and applying line SOR to all the red columns and then all the black
ones. This yields a vector length of half the number of grid points in the cross-flow
plane. On a model problem with a relatively coarse mesh, 64 X 28 X 20, they reported a
speed-up of a factor of 3.4 over a standard line relaxation code running on a Cyber 175.

Hafez and South [1979] and South, et al. [1980a, b] consider relaxation methods for
the full potential equation of transonic flow in both two and three dimensions on the
CDC-STAR with comparisons with the CDC 7600 and Cyber 175 as well as the
Cray-1. They conclude that point and block SOR using red-black ordering is almost
fully vectorizable for this problem. In a subsequent paper, Hafez and Lovell [1983]
consider line SOR where m lines are given one color followed by m lines of the other
color. They found experimentally the m =2 gives the best results. In earlier work, Keller
and Jameson [1978] had used the STAR for the small disturbance equation of transonic
flow using a new explicit method. However, they achieved only a speedup of a factor of
1.8 over line overrelaxation running on a Cyber 175.

Melson and Keller [1983] treat the three-dimensional full potential equation in
nonconservative form by finite difference methods and in conservative form by finite
volumes. Using a test case with a 192 X 32X 32 grid and a two-color point relaxation
scheme (Zebra II, South, et al. [1980b]) they report a computation rate of 26 MFLOPS
on the Cyber 203. However, the convergence rate was poor compared with an SLOR
algorithm; for related work, see Yu and Rubbert [1982]. Eberhardt, et al. [1984] have
studied the mapping of a three-dimensional, implicit, approximate factorization algo-
rithm of the Euler or Navier—Stokes equations onto a two processor Digital Equipment
Corp. VAX system that is a reasonable model of a Cray X-MP. They note the
importance of careful memory management in a shared memory system and conclude
that the algorithm can be implemented on a two processor system with a speedup of
1.9.
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Reservoir simulation. There have also been a number of papers dealing with
reservoir simulation. Nolen, et al. [1979] give comparisons between the CDC STAR-100
and the Cyber 203 for a model problem. Six different three-dimensional grid sizes were
used with the number of unknowns ranging from 2000 to 8000, and tests are reported
on the solution of linear equations of these sizes, corresponding to one time step for the
time-dependent problem. The algorithms considered for the solution of the linear
systems are the D4 method of Gaussian elimination based on the ordering scheme of
Price and Coats [1974], and line, 2-line and plane SOR. For the SOR methods,
red-black orderings of the grid points are used in such a way that for line SOR the
vector length is on the order of nm /2, where n and m are the number of grid points in
the x and y directions. Similar orderings are used for 2-line and plane SOR, giving
smaller vector lengths. Run times on the STAR and 203 are reported for the six grid
sizes for the D4 and line-SOR methods; the 203 is somewhat faster on these problems
with speedup factors ranging from about 1.15 to 1.5. The only comparison reported for
a scalar machine is for Gaussian elimination on a 2000 unknown problem where the
203 was about 14 times faster than a CDC 6600. Additional comparisons between the
203, 205, and Cray-1 are given in Stanat and Nolen [1982]. For the problems reported
on, the 205 was a factor of about 2.5 to 3.5 times faster than the 203. The above work
and more recent developments are reviewed in Kendall, et al. [1984], which gives
comparisons of Cyber and Cray times for various aspects of the algorithms, and also
discusses architectural differences that influence implementation decisions.

Also for problems in reservoir simulation, Killough [1979] considered comparisons
between the IBM 370,168, with and without an attached IBM 3838 array processor,
and the Cray-1. His primary benchmark problem used a three-dimensional rectangular
grid with 35X 19 X 5(=3325) grid points and 29 production wells. A production code
for the 370,/168 was converted and vectorized for the Cray-1 and showed a factor of 12
improvement over the 168. Other papers dealing with reservoir simulation include
Buzbee, et al. [1979], Wallis and Grisham [1982] and Kendall, et al. [1983].

Weather prediction. Numerical weather prediction has historically provided one of
the major applications of fluid dynamics on high performance computers dating back
at least to the ENIAC (see Platzman [1979]). Probably the first weather simulation
work with a vector processor was done on the TI-ASC at the Geophysical Fluid
Dynamics Laboratory; the mathematical approach and the vectorization of the algo-
rithm are described in the review by Welsh [1982].

The present state of the art for numerical weather prediction is outlined in Cullen
[1983]. Current methods for global forecasts use a horizontal grid resolution of 150 km
with 15 levels in the vertical direction. Such models require approximately three minutes
of Cray or Cyber 200 time for each day of forecast and the average useful forecast
period is about four days. Local models for tracking specific meteorological phenomena
may have resolution down to 1 km or less. The numerical models tend to be finite
differences in the vertical direction and in time and either finite differences or spectral
in the horizontal direction. There are at least three other excellent reviews of this field,
oriented primarily toward the Cray. Williamson [1983] and Williamson and
Swarztrauber [1984] discuss the derivation of the underlying equations, the numerical
algorithms, and the implementation on the Cray. Both papers contain extensive bibliog-
raphies. Kasahara [1984] reviews many of the decisions that went into the development
of computational models and provides some performance figures for the Cray. This
paper contains over one hundred references.
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Parallel arrays have also been considered for numerical weather prediction. For
example, Kopp [1977] and Nagel [1979] report on the use of the SMS201, an array of
128 Intel 8080 microcomputers, for weather problems. They describe a stratified three-
dimensional problem in which there are 2000 mesh points at each of three levels and six
unknowns per grid point.

Structural analysis. Another major application area for vector and parallel com-
puters is structural analysis. Noor, et al. [1983] discuss the role of high performance
computing systems for analysis based on the finite element method concluding that
parallelism will play a significant role but suggesting that the full impact will not be
reached until software such as programming languages and compilers improves.

Early research on structural analysis applications on vector computers focused on
the generation of the elemental stiffness matrix (Noor and Hartley [1978]), and on the
solution of the global stiffness matrix system by direct methods (Noor and Fulton
[1975], Noor and Voigt [1975], and Noor and Lambiotte [1978]). These studies indi-
cated that the traditional goal in structural analysis of striving for matrices with small
bandwidths led to relatively inefficient programs on the STAR-100 because of short
vector lengths. The advent of the Cray with its superior performance on short vectors
led to renewed interest in the structural analysis community.

A careful study of the effectiveness of the Cray-1 for a structural optimization
problem, using an aircraft wing design as motivation, has been done by Venkayya, et
al. [1983]. Stresses and displacements are computed and then compared with values
representing an acceptable design envelope. Using optimization techniques the process
is repeated until satisfactory values are obtained. All modules of the algorithm were
studied and those that contributed significantly to the solution time were vectorized. As
expected, the most time consuming module was the linear equation solver. The result-
ing code, which was fine tuned using assembly language, was, on average, 74 times
faster than a scalar Fortran code on the Cray for a wing whose discretizations yielded
stiffness matrices with 756 to 5280 equations and half-bandwidths of 45 to 105.
Another series of applications reported by Goudreau, et al. [1983] involves the study on
the Cray-1 of the deformation of large cylindrical cannisters subjected to external
loads.

NASTRAN, a large structural analysis program, has been vectorized and is opera-
tional on the Cray. The results of this effort for the MacNeal Schwendler Corporation
version of the program are reported in Gloudeman and Hodge [1982], Gloudeman
[1984] and Gloudeman, et al. [1984]. Timing comparisons with a scalar machine (that
unfortunately is not identified) are given. The impact of sparse matrix operations is
discussed in McCormick [1982].

Improvements in the Cyber 200 over the STAR-100 have brought about renewed
interest in the Cyber 200 for structural analysis. For example, Robinson, et al. [1982]
consider implementation of SPAR on the Cyber 203. A different application involves
the study of fiber reinforced composite materials that are used in aircraft. At issue is
the damage caused by delamination, or the separation of individual layers, in the
presence of holes or discontinuities. In particular, Raju and Crews [1982] have con-
ducted a three-dimensional analysis of a four ply laminate with a circular hole, which
involved approximately 7000 grid points and a 20 million word database. A very recent
study (Raju [1984]) of a more complicated composite led to a system of 100,000
equations with a half-bandwidth of 2700 and a total database of 70 million words. This
problem was solved on a two pipeline Cyber 205 with 16 million words of memory at
an overall computation rate in excess of 150 MFLOPS using 32-bit arithmetic.
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Miscellaneous applications. We next consider a number of miscellaneous applica-
tion areas. Chang [1982] treats an acoustic wave propagation problem and gives com-
parisons between a Cray-1S, a Cyber 203, and a Cyber 730. On a series of 6 test
problems, the largest of which had vector lengths of 591, the 203 and the Cray were,
respectively, 67 to 118 and 142 to 187 times as fast as the 730. The 730, however, had to
use disk while the 203 and Cray did not. The state of the art in the dimensional
modeling of acoustic phenomena of interest to seismologists is reviewed by Johnson
[1984]. This paper contains a discussion of system and programming considerations
and gives some performance results. For example, a two-dimensional problem requiring
more than ten hours on a Digital Equipment Corp. VAX with an attached Floating
Point Systems, Inc. FPS-100 required only eleven minutes on a Cyber 205. Day and
Shkoller [1982] describe a three-dimensional code for earthquake analysis which was
first developed for the Illiac IV and then converted to a Cray-1. They report that the
Cray code ran 75 times faster than its implementation on a UNIVAC 1100 /81.

McDonald [1980] used a Chebyshev explicit iteration on an equation of the form
Au+a- vu=f with doubly periodic boundary conditions and where a is a function of
x and y. This equation arises, for example, in plasma physics. The differential equation
is discretized by the usual 5-point star for the Laplacian and centered difference
quotients for the first derivatives, and the domain is taken to be a rectangle. Timings
from runs on a TI-ASC are given for various grid sizes and compared with an ADI
iteration. Although ADI required fewer iterations the superior vectorization properties
of the Chebyshev iteration resulted in considerably faster running times.

The design of VLSI devices is another area that is making increased use of high
performance computers. This application is reviewed in the article by Fichtner, et al.
[1984]. The significant equations are presented and the numerical methods are dis-
cussed including implementation considerations for the Cray. The paper includes over
eighty references to other literature on integrated circuit design.

Molecular dynamics problems have been solved on the Cray, Cyber and ICL DAP
computers. Bowler and Pawley [1984] give a detailed analysis of implementing simula-
tions of phase transitions at the atomic level. They explain how to utilize the architect-
ural features of the DAP and present some representative results. Berendsen, et al.
[1984] provide a performance comparison of the Cray-1, the Cyber 203 and 205, the
DAP and several scalar computers on some relatively simple molecules. For example, a
simple protein in water required approximately 30 hours of Cray or Cyber time.
Projections for more complex molecules range up to 10° hours of CPU time, making
these among the most demanding computational problems.

Other papers dealing with applications include Tennille [1982] on a Cyber 203
code for modeling atmospheric chemical reactions, Liles, et al. [1984] on a thermal-
hydraulics program designed to study internal flows in nuclear reactors on the Cray,
and Boris and Winsor [1982] on reactive flow problems on the TI-ASC.

There have also been a number of studies of the potential solution of partial
differential equations on new, or as yet unbuilt, architectures. As previously mentioned,
Dennis and Weng [1977] consider a dataflow architecture for numerical weather predic-
tions. They use as a model the fourth order GISS code (Kalnay-Rivas, et al. [1976])
with a nominal goal of a speedup by a factor of 100 over a 360,/95, and describe the
computation on a hypothetical dataflow machine. In another study, Dennis [1984a]
investigated an implicit algorithm for the solution of the three-dimensional
Navier—Stokes equations. The Fortran version of the algorithm was rewritten in Val,
and this code was used to outline a hypothetical machine capable of 1000 MFLOPS.
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Meyer [1977] studied the possibility of solving the nonlinear Poisson equation Au = f(u)
on a hypothetical array of processors. Gallopoulos and McEwan [1983] describe the use
of a simulator for the MPP for the solution of the shallow water equations for weather
prediction. They conclude that the MPP is suitable for such numerical problems, even
though it was designed for image processing. Fox [1984] discusses a variety of applica-
tions on a parallel system with the hypercube interconnection and concludes that
reasonable efficiency requires the ratio of communication time to computation time be
kept near unity.

Epilogue. We have attempted to describe, perhaps too briefly, much of the work
which has been done on the use of parallel and vector computers for partial differential
equations. Two themes which occurred often, sometimes in conjunction, were decom-
position of a problem into independent portions, and reordering of the unknowns in
order to enhance such a decomposition. We expect these two themes to be even more
prevalent in algorithm development in the future.

It should be clear by now that the differences between vector computers and
parallel computers can have a profound effect on the selection of algorithms. In
particular, we have shown that computational complexity, the basis for algorithm
selection for decades, is still relevant for vector computers because each computation
costs some unit of time; however, it is much less relevant for parallel computers for two
reasons. First, parallel computers can support extra computation at no extra cost if the
computation can be organized properly. Secondly, parallel computers are subject to
new overhead costs required, for example, by communication and synchronization that
are not reflected by computational complexity. The value of doing extra computation at
no extra cost seemed to be recognized by many early researchers in the field who dealt
with models consisting of an unbounded number of processors. However, now that
parallel systems are available, the research community appears to be focused on
analyzing existing algorithms rather than exploring new algorithms for a parallel
computing environment. For whatever reason, there have been very few truly new
algorithms developed as a result of the opportunities offered by parallelism.

In the near term, it now seems clear that supercomputers from the major vendors
will consist of a relatively small number (4, 8,16, etc.) of powerful vector computers.
This is the case with the Cray X-MP, the Cray-2, the Cray-3, the Cyberplus, the ETA
GF-10 and the Denelcor HEP. The effective utilization of these machines will require
decomposition of the problem into a small number of large, relatively independent
parts, and vectorization of the individual parts. The longer term impact of VLSI in the
development of highly parallel architectures of thousands of individual processors
remains to be seen, although prototypes of such machines are being built. In between
these two extremes there are a number of small, new companies offering parallel
systems consisting of tens to hundreds of processors each with VAX-like performance.
It is simply too early to speculate on how these systems will influence algorithm
selection and development.

Thus, all one can say with any certainty is that large scale computing of the future
will certainly be highly parallel in one form or another. Even if a single standard
parallel system were to exist, there would still be considerable work to be done in the
development of efficient numerical algorithms. The likely plethora of different parallel
architectures in at least the foreseeable future makes this development more interesting.
An especially challenging question is that of software portability across different
parallel architectures, a task that will only be feasible when the foundations of parallel
computation are much better understood than at present.
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