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APPROXIMATING THE MEAN TIME IN SYSTEM 
IN A MULTIPLE-SERVER QUEUE 

THAT USES THRESHOLD SCHEDULING 

RANDOLPH NELSON 
IBM Corporation, Yorktown Heights, New York 

DON TOWSLEY 
University of Massachusetts, Amherst, Massachusetts 

(Received November 1985; revisions received April, September 1986; accepted September 1986) 

In this paper we consider a queueing system consisting of a single queue with multiple exponential servers with different 
servicing rates. We assume that arrivals to the queue come from a Poisson source and are scheduled according to a 
threshold policy. Since determining the exact mean time in system appears to be difficult, we present an approximation 
that yields results very close to those obtained from simulation. 

Jn this paper we study a multiple-server system 
sharing a common queue; the servers have differ- 

ent service rates. The control and analysis of such 
systems pose very interesting problems which, how- 
ever, have received little attention. We will present an 
approximation method for obtaining the expected 
response time of a customer in any such system that 
uses a threshold scheduling policy. 

Our motivation for studying threshold policies lies 
in the fact that these policies optimize performance of 
the system for a number of performance metrics. For 
example, Lin and Kumar (1984) show that a threshold 
schedule minimizes the mean response time of cus- 
tomers in a two-server system with Possion arrivals 
and exponential service times. Agrawala et al. (1984) 
consider a system with no arrivals, a fixed and finite 
number of customers in a queue with multiple servers, 
and exponential service times. They show that a 
threshold policy minimizes the total time required to 
process all the customers in the system. We have 
shown in another paper (Nelson and Towsley 1985) 
that a threshold policy maximizes the expected num- 
ber of departures from a multiple-server system be- 
tween successive arrivals when the arrival process is 
Poisson and service times are exponentially distrib- 
uted. Finally, Ibe (1982) considered a multiple-server 
system in which customers were always assigned to 
the fastest available processor whenever a processor 
became idle. This policy is a degenerate form of a 
threshold policy in which all thresholds are identically 
zero. In his study, Ibe presented an approximation 

model with which to evaluate the performance of the 
system. 

We will focus on multiple-server systems with an 
arbitrary number of servers, a Poisson arrival process 
and exponential service times. Queueing systems of 
this type are useful models for various computer sys- 
tem and communication network configurations-for 
instance, a multiprocessor system having different 
processors. In this case a job entering the queue 
(a central dispatch) would be assigned to one of 
the available processors according to some scheduling 
discipline. In another example, nodes of a communi- 
cations network could be linked to one another by 
several channels of varying capacities (for example, a 
transmission group in a Systems Network Architec- 
ture (SNA) network). Messages passing through such 
nodes would be scheduled on the available links. 

The paper is organized as follows: In Section 1 we 
describe the queueing system we consider, define a 
threshold scheduling policy, and discuss why finding 
an exact solution for the mean time in the system is 
difficult. In Section 2 we derive our approximation, 
and in Section 3 we compare the approximation with 
simulation results. Section 4 contains our conclusions. 

1. The Model 

Consider a set of N heterogeneous servers {P1, P2, 

PNj that serve a common queue. Jobs arrive to this 
queue according to a time-invariant Poisson process 
with rate X and are served in a first-come first-served 
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Figure 1. State diagram for N = 2. 

(FCFS) manner. The service time for a job executed 
on server Pi is an exponentially distributed random 
variable with mean l/,i for i = 1, 2, ..., N. We 
further assume that the servers are ordered so that 
A1 I /12 ! ... - YN. We assume that the servers are 
scheduled according to a threshold discipline. Specif- 
ically, for some thresholds 1 = T T2 .. . < TN < ??, 

the policy schedules a job from the queue to an idle 
server Pi only if Ti is smaller than or equal to the 
threshold of any other idle server and if the queue 
length is greater than or equal to Ti. 

2. Analysis 

Let x = (m, c) denote the state of the system; m 
represents the number of jobs waiting to be processed, 
and c = (c1, c2, . . ., CN) where ci = 1 if the ith server 
Pi is busy and ci = 0 otherwise. It is clear that (m, c) 
forms a Markov process. Figure 1 shows the state 
diagram for the case in which N = 2. In this paper we 
assume that the Markov process is ergodic, and we 
are concerned with calculating the mean value of the 
stationary distribution of the time spent in the system. 
This value can be expressed as 

W (Lq + Pi), (1) 

where Eq is the average queue length (not including 

customers in service) and pi is the utilization of the 
ith server. The difficulty in analyzing this Markov 
process exactly lies in the complexity of the state 
diagram. Specifically, there are 2 N possible states cor- 
responding to a configuration of (0, c) for all possible 
distinct values of c. In our approximation, we collapse 
the multidimensional process into a birth-dealth proc- 
ess as shown in Figure 2; the state of the system is the 
number of waiting customers. Note that some of the 
arrival transition rates are multiplied by a parameter 
pi (the figures do not show a value of pi if it equals 1). 
The parameters pi for i = 0, 1, . . . are crucial to our 
approximation. For i $ Tj - 1 for any j, we set pi = 
1. For i = Tj- land 1 < j < N, pi is defined to be the 
probability that an arrival to a waiting line of Tj - 1 
customers finds Pj busy. Only in this case will the 
queue length increase by 1, since if Pj is idle when the 
arrival occurs, the customer at the head of the queue 
will be scheduled immediately on Pj, thus leaving 
Tj- 1 customers still waiting for service. Given these 
parameters, one can use standard analysis to solve the 
birth-death equations and calculate an approximation 
to Lq given in Equation 1. To obtain approximations 
for Pi, we define f to be the stationary conditional 
probability that Pi is busy, given that the queue length 
is less than Ti. Since we assume the Markov process 
is ergodic, we can calculate f by calculating the pro- 
portion of time that Pi is busy when the queue length 

#po X X XPT -1 X X X XPT I X X 

0 I ***~~~~00 T1 + @* T-I T T3+I *@@ 

Figur 2. Sa dIagra12 o I1rh2 -a 1t 2 r im1'a2 ti1n'u2+nq3 1ts2+h3 1'd2+s 3 

Figure 2. State diagram for birth-death approximation, unique thresholds. 
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Figure 3. State diagram used to calculate po and f1. 

is less than T. We can then write 

Pi= P[Lq > Tj] 

+ f (I P[L,7?: Tj]) 1 si <N. (2) 

Knowing pi and f, one can substitute (2) in Equation 
1 to approximate the mean time in the system. In the 
remainder of this section, we give a method to calcu- 
late the parameters PT,-,, andfJ for i = 1, 2, . , N. 

2.1. Case 1: All Thresholds Different 

In this section we show how we calculate the pis and 
the fs under the assumption that all thresholds are 
unique. We first state a useful lemma. 

Lemma. Let a Markov process be contained on the 
state space 1, 2, . . ., r, r + 1, . . ., r + s, having the 
infinitesimal generator matrix G given by 

(A By 
G =? IJ 

where A is an r x r matrix and B is an r x s matrix. 
Then the (i, j) entry of-(A-) is the expected amount 
of time that the process spends in the transient state j 
starting from the transient state i, 1 < i, j < r before 
being absorbed in states r + 1, r + 2, . . ., r + s. 

Neuts and Meier (1981) proved this lemma. The 
approximation uses it to calculate the parameters Pi 
and f by analyzing a sequence of transient Markov 
processes. Specifically, to derive PT,-, andf we define 
states (j, Pi busy) and (j, Pi idle) for 0 < j < Ti - 1, 
and state (Ti, Pi busy) where the first index is the 
number of customers waiting in the queue. We then 
view the system from the time it makes a transition 
from (Ti, Pi busy) to (Ti - 1, Pi busy)-it cannot go 
to (T1 - 1, Pi idle)-to the time it returns to (Ti, Pi 
busy) as a transient Markov process with transient 
states (I, Pi busy), (j, Pi idle) for 0 < j - Ti 1 and 
absorbing state (Ti, Pi busy). The parameter Ti is 
calculated as the average amount of time spent in the 
transient states during which Pi is busy, divided by the 
average total amount of time spent in the transient 
states. The parameter pT,- is calculated by finding the 
average time spent in a state that has Ti - 1 waiting 
customers and Pi is busy, and dividing this quantity 
by the average time the system has Ti - 1 customers 
waiting. 

Let us describe this procedure in more detail for 
two cases, T. = land Tj >l for I < j<N. 

Case 1. T1 = 1: Consider the absorbing Markov proc- 
ess shown in Figure 3. State values in this figure are 

the number of jobs waiting in the queue which for 
this case is zero. The upper level represents those states 
for which PI is busy and the lower level those in which 
this processor is idle. In the original birth-death model, 
any transitions from state 1 to state 0 will necessarily 
have PI busy. Then, using the lemma with absorbing 
state (I, P1 busy), and ordering the states in the 
generator matrix G as (0, PI busy), (0, P1 idle), 
(1, PI busy), we find that the generator is given by 

G=X -A 01 
0 0 

By defining 

A +- K y g 
L X -X- 

and applying the lemma, we obtain 

f = PO = A' 0) 
A-'(0, 0) + A-1(0, 1), 

Case 2. Tj > 1: In Figure 4 we show the transition 
diagram in which the upper level of states corresponds 
to states for which Pj is busy. Assume that we have 
calculated p7>1 andf for i = 1, 2, . .. ,j - 1; we will 
now show how to calculate pIj-I and I. If we order 
the states as (i, Pj busy) for i = 0, 1, .., T1, . . , TI 
- 1, followed by (i, Pj idle) for i = 0, 1, . . ., T1, . . . 
Tj - 1, followed by the absorbing state (Tj, Pj busy), 
then the infinitesimal generator, G, is given by 

G = [Aj Aj (3) 

where Aj is a Tj x 1 column vector of all zeros except 
for the (Tj, 1) element, which equals X. Aj is given by 

LZi Mj I-I~j Ij 

and Ij is a Tj x Tj identity matrix, Zj is a Tj X TF 
matrix of all zeros except for the (Tj, TF) entry, which 
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Figure 4. State diagram used to calculate pij- and fj. 

is X, and Mj is a tridiagonal Tj x TJ matrix having 
elements, 1 < k < j, 

Mj(i, m) 

-(Xpo + 11) i = m 0, 

+ II + Z A 
( n= I 

i= T-1, m- Tj- 1, 
M)i) 

_ Api t ,Aj + Z tin 

=___ n- 

i =0, 1, ..., Tj 2, m =i, 

XPi i = 0 1,.., Tj -2, m = i +1, 
M(i) 

E An i= .,T-,m i1 
n=l 

0 otherwise, (4) 

where we define M(i) max{k: i > Tk j. 

We calculate PTj-l and]] as 

-k [' AJ (Ti - 1, j) 
X 2Tj-l A7I(T-1J 

A7(T- 1,] 1, T-1) 
r iXAJ }(Ti -1, Ti - 1) + AJ^1(Tj - 1 , 2, Tj - 1) 

Once we know the values of pi for i = 0, 1, . . . , we 
can easily solve for the steady-state probability i that 
i customers are in the queue by solving the following 
set of equations: 

k 
i-Tk+l fi 

| oPkPk k p pjPji)l jTk : i <Tk 

{i 
I= 

JJ 
1 k - N- 1 

I ~~~~N- I 
i-TN+l JJp _DiTTN,(5 7r PNPN 1 P pjp +l jTN~ <- i, (S) 

t ~~~~j=l 

where iro can be determined from the normalization 
condition. The value of L4 can be determined from 
(5). 

2.2. Case 2: Some Thresholds Might Be the Same 

In this section we show how the approximation out- 
lined in the previous section generalizes for the case 
in which the thresholds are not necessarily different. 
The approximation for this case again uses Equation 
1, but parameters pi and f are calculated in a more 
general manner. (Note that, if processors pjrn, m = 0, 
1, . . ., s have the same threshold, i.e., T1 = Ta + I . . 
= T+s, then pTj-I is the probability that all processors 
Pj+m for m = 0, 1, . .., s are busy when the queue 
length is Tj - 1.) The state space for this case grows 
exponentially with the number of identical threshold 
values, since the procedure requires the enumeration 

x 
BOTH BUSY 0 

PI BUSY >1 0 LI 

P2 BUSY X1 

BOTH IDLE 0 

Figure 5. State diagram for T2= T= 1. 
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of all possible configurations of busy processors. Our 
method would thus be useful only if the number of 
processors with identical thresholds is small. To avoid 
a cumbersome exposition we will exhibit two specific 
cases for which the thresholds are identical, and show 
how to calculate these parameters. The extension to 
the general case should be obvious. 

Suppose, as shown in Figure 5, that T2= T = 1. 
The Markov process used to solve for po and f for i = 
1, 2, as shown in Figure 5, consists of 4 states corre- 
sponding to all the possibilities for processors P. and 
P2 being busy or idle. If we order the states as (0, Both 
busy), (0, P1 busy), (0, P2 busy), (0, Both idle), followed 
by (1, Both busy), then the generator matrix is given 
by 

- 0l-+(X2) +2 Al 0 A 
X -(X~+yI All 0 0 

G ? +82) o2 ? 

0 X ? -a 0 

o 0 0 0 0_ 
We define A to be 

-(a + 1 +,92) /12 AI 0 

A- X -( + z1) AI 0 
0 -(X+,2) A2 

0 X 0 

and thus we can write 

A '(0, 0) + A '(0, i) 

2JAo A-'(0, j) X 

and 

A-1(O, 0) 
Po = O A-(0, j) 

Figure 6 shows the case in which T. < 7T2 = 

T3 < T4. In a manner similar to that for the case of 
Figure 5, we can write the A matrix for this case as 

M2 A2I2 A3I2 0 

A = Z2 M2- 212 /1312 0 
0 Z2 M2 - A3I2 /2I2 

L 0 0 Z2 M2 - (A2 + A3)I2 

where I2 and Z2 were defined previously, and M2 is 
given by 

M2(i, m) 

-(XPI + A2 + A3) i= 0, m = O. 

XPO i = O. m = I, 

X i= 1,2, ..., T2-2, 

m i+ 1, 

= (X+ E ? i) i= 1,2, ..,T2-1, 

m = i, 

,u i = 
1, 
2, ...,T2 -1, 

m -i, 

0 otherwise. 

Pho x A A 
BOTH BUSY * * 

IL2 $22 2 

ONLY P3 BUSY 0 T- 

F3 z P3 3 P3 X3 l3 

XPo 

ONLY P2 BUSY * T2- 

$2 2 2 

APO X A 
BOTH IDLE i * T2-2 2-) 

Figure 6. State diagram for T. < T2 = T3 < T4, Al 5 M2 
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Figure 7. State diagram for birth-death approximation, non-unique 
thresholds. 

For this case we can calculate 

f Ji,'A-(T2- lj)+A-'(T2- l,(i- )T2+j) Y_ 
T2 

_42 Jim E~~J= 'olA-'(T2 - 1j) 

i = 2, 3 

and 

A-'(T2- 1, T2 - 1) 
T2-1 EJ!= 1 A'-(T2- 1, jT2 - 1) 

In solving for E4 of Equation 1 for this system, we 
would solve the birth-death system shown in Figure 
7. The generalization to the more general threshold 
values is straightforward but notationally cumber- 
some. 

The exponential state space growth with the number 
of identical thresholds is not a factor if all the processor 
speeds for these thresholds are identical. In Figure 8, 
we show the case similar to that of Figure 6, but with 
/2 = L3. The state space reduction that occurs arises 
from the fact that one need not preserve information 
about the identities of the busy processors, but only 
note their number. In cases like this one, the state 
space growth becomes linear. 

3. Results 

In this section we compare the mean time in the 
system calculated by the approximation to that ob- 
tained by exact simulation methods. Our simulation 
used the Research Queueing Package (RESQ), a 
simulation package developed by IBM (see Sauer, 
MacNair and Salza 1980), and was run on an IBM 
3081. Confidence intervals were generated using the 
spectral method given in Heidelberger and Welch 
(1981). In Figure 9 we show the results for a three- 
server system in which the servicing rates differ geo- 
metrically by a factor of 1/10. The thresholds for the 
three servers are 0, 5 and 10. The approximation does 
very well for low or high values of the utilization, and 
overestimates the time spent in the system over mod- 
erate values. For high utilizations the approximation 
is close because most of the servers are busy, and thus 
the underlying Markov process is similar to the ap- 
proximating birth-death process. A similar observa- 
tion can be made for low utilizations, where most of 
the servers are idle, and thus the existence of the 
thresholds is not a major factor in the scheduling of 
jobs. The overestimation of the approximation for 
moderate utilization is also seen in Figure 10 where, 

Xp x A X X 

2 BUSY (I) (= **- 

2 BUSY (2) 0 0 22 T2- 

i1L2 t2 12 tL 2 

At2 At 2 A 
0 BUSY (3) g f T2-2 T2- 

Figure 8. State diagram for T1 < T2 = T3 < T4, Al = M2. 
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Figure 9. Comparison of simulation and approximation for three servers 
with rates 12.6, 1.26 and 0.126 for thresholds of 0, 5 and 10. 

for the same set of servers, the thresholds depend on 
the utilization. Here the thresholds are chosen to 
maximize the throughput of the system between suc- 
cessive arrivals to the system. For a more thorough 
description of this performance metric and a proof 

that it is obtained by a threshold scheduling policy, 
see Nelson and Towsley. 

The same overestimation for moderate utilizations 
is seen in Figure 11, for a five-server system. The 
particular thresholds chosen are those calculated by 

APPROX 

Uj 
0 _ f- o 

LU 
LI) 
z 
0 

_/ ~~~~90 PERCENT CONFIDENCE 

Cr I I I11 I 

0.2 0.4 0.6 0.8 1.0 

UTILIZATION 

Figure 10. Comparison of approximation and simulation for different 
thresholds and rates 12.6, 1.26 and 0. 126. 
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Figure 11. Comparison of simulation and approximation for five servers 
with rates 5.18, 4.14, 2.07, 1.55 and 1.03 for thresholds of 0, 1, 3, 5 and 9. 

the threshold policy derived in Agrawala et al. The 
thresholds we chose minimize the completion of jobs 
in the system, assuming that there were no other 
arrivals to the system. In our last graph, Figure 12, we 
compare the approximation to an exact analysis for 
the two-server case. We assume that both thresholds 

are equal to zero. This assumption implies that we 
always schedule the fastest server if it is available. Ibe 
studied such a policy, and derived an approximation 
to the mean time in the system for the case in which 
the system had an arbitrary number of servers. The 
graph shows an interesting anomalous behavior in 

0 

EXACT 
e0 A....... APPROXIMATION 

0/ 

an 

ZI 

ot / 

M/ 
/E 

CI I I I - 1 , v _tI . I I 
0 0.2 0.4 0.6 0.8 1.0 

UTILIZATION 

Figure 12. Comparison of approximation and exact analysis for service 
rates of 10 and 0.1 with both thresholds zero. 
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which the mean time in the system has a local maxi- 
mum at low utilizations. This situation occurs because 
of the wide variation in service rates. Since both 
thresholds are zero, the slower server is scheduled even 
when it would be better to have customers wait until 
the faster server became available. The incremental 
delay due to scheduling the slower server is offset, for 
higher utilizations, by the increased number of cus- 
tomers processed by the faster server, and thus the 
mean time in system decreases, over a region, as the 
utilization increases. It is clear from the graph that the 
approximation mimics this anomalous behavior. 

4. Conclusions 

We have presented an approximation for the expected 
response time for a queueing system having multiple 
servers scheduled by a threshold discipline. The main 
method used in the approximation is to decompose 
the system into a set of related transient processes that 
are analyzed separately to obtain parameters used in 
a simplified birth-death process. We validated the 
approximation against simulation results and found it 
very accurate for low and high utilizations, and tended 
to overestimate the actual response time for moderate 
utilizations. 

The complexity of calculating the approximation 
increases exponentially with the number of thresholds 
that are the same. The growth is linear only in the 
case in which equal thresholds occur for servers whose 
rates are also the same. Nevertheless, the approxima- 
tion is probably not practical for systems having many 
sets of equal thresholds. Determining a method to 
reduce the complexity for cases of this type is an 
interesting research problem. 
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