
Using Stochastic Petri Nets for Real-Time Nth-Order Stochastic Composition

Douglas Lyon

Computer Music Journal, Vol. 19, No. 4. (Winter, 1995), pp. 13-22.

Stable URL:

http://links.jstor.org/sici?sici=0148-9267%28199524%2919%3A4%3C13%3AUSPNFR%3E2.0.CO%3B2-4

Computer Music Journal is currently published by The MIT Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/mitpress.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue Jan 8 04:34:39 2008

http://links.jstor.org/sici?sici=0148-9267%28199524%2919%3A4%3C13%3AUSPNFR%3E2.0.CO%3B2-4
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/mitpress.html

Douglas Lyon Using Stochastic Petri Computer Science and Engineering Department
Dana Building
University of Bridgeport Nets for Real-Time
Bridgeport, Connecticut 06601, USA
Lyon@cse.bridgeport.edu Nth-order Stochastic

Composition

This article presents a technique for using stochas-
tic Petri nets for real-time realization of Nth-order
stochastic compositions (a Markov process). The al-
gorithm makes use of a data structure known as a
stochastic Petri table. This table is compact and
suitable for interactive performance on small com-
puters. We also show how the inherently concur-
rent nature of Petri nets can be used to implement
real-time MIDI processing. Since readers may be un-
familiar with Petri nets, we present a brief introduc-
tion to the basic ideas behind the Petri net and
compare it with the finite-state machine.

Background

Using a portable computer for real-time compo-
sition has a number of advantages over off-line
composition techniques (Alles 1977). Real-time
composition provides immediate feedback to the
composer that can improve productivity. In addi-
tion, it is useful in a performance environment.

The use of Markov chains for computer-assisted
composition is not new; Stephen Schwanauer and
David Levitt's book, Machine Models of Music,
describe the composition, in 1955, of the Illiac
Suite by Lejaren Hiller and Leonard Isaacson
(Schwanauer and Levitt 1993).

Attempts to realize Markov chain performances
in real time are not new either, though the early
work here (e.g., O1Haver 1978) only used first-order
processes. As far as we know, higher-order Markov
chain composition in real time has not been re-
ported in the literature.

A stochastic Petri table is a data structure that is
shown to enable the computation of higher-order,
real-time Markov processes. In the system de-

Computer Music journal, 19:4, pp. 13-22, Winter 1995
O 1995 Massachusetts Institute of Technology.

scribed here, we encode a melody using pitch class,
and ignore tempo and timbre information to sim-
plify the representation. The computation of the
stochastic Petri table is an off-line process. The sto-
chastic Petri table is compact (linear in the number
of arcs), and enables real-time Markov chain com-
putation. Our brute-force approach to computing
the Petri table is easy to implement and slow to
compute. A harder to implement-but faster-ap-
proach has been suggested, but remains untried.
After the computation of the stochastic Petri table,
the program writes it to a file to be read during
start-up by the interactive performance program.
Thus, this approach allows us to perform a pre-
computation phase that permits fast execution of
the real-time component.

We are motivated to take the stochastic Petri net
approach because we have seen other approaches in
the literature that do not give real-time perfor-
mance, and use more memory than is practical on
portable computers (Moore 1990). A further motiva-
tion for the use of Petri nets is the concurrent na-
ture of user interfaces and music performance. It is
often the case, for example, that a user will gener-
ate interrupts during a performance. As shown be-
low, these interrupts cannot be handled with a
finite-state machine, but can be handled by Petri
nets.

Limits of the Finite-state Machine Model

In this section we define the Turing machine, the
finite-state machine, and identify the limitations of
the finite-state machine model. We use these limita-
tions to motivate our use of the Petri-net model
that is discussed next.

A Turing machine is an imaginary computing de-
vice that consists of a control unit (which may as-
sume one state at a time), a tape (which can store a

Lyon 13

mailto:Lyon@cse.bridgeport.edu

symbol), and a read-write head (which moves rela-
tive to the tape and can relay information between
the control unit and the tape).

A finite-state machine is a deterministic device
with a fixed number of states. A special case of the
Turing machine, the finite-state machine is also
known as a finite automaton. The finite-state ma-
chine consists of a Turing machine with a single in-
put tape and a read-only head (Ralston 1983). The
output and next-state of a finite-state machine are
a function of the machine's present state and in-
puts (Katz 1994).

Finite-state machines are often depicted by state
diagrams (also called transition diagrams), which
are directed graphs that show a finite-state ma-
chine's input and output. A state diagram that rep-
resents a gum-vending machine is shown in Figure
1. The circles in Figure 1 represent states; each is
labeled with the amount of money that has been
put into the machine to get it into that state. The
arrows represent transitions; each is labeled with
the amount of money that must be put into the
machine to cause that transition.

One problem, though, is that the finite-state ma-
chine model does not handle interrupts well. From
a programmer's view, a sub-routine is serviced after
the state of the machine is pushed onto a stack.
The finite-state machine does not provide a stack,
nor does it describe how an interrupt should be ser-
viced, or to where it should return.

A further limit of the finite-state machine model
is that it cannot handle multiple asynchronous pro-
cesses-it cannot "be" in multiple states at one
time. This is really a result of its inability to allow
for the synchronization of parallel activities. One
way to perform this synchronization is through the
use of token passing.

Petri nets (discussed in the next section) can
model this concurrency and handle and recover
from interrupts, two features that are notably lack-
ing in finite-state machines.

Petri Nets

A Petri net is a bipartite, directed graph that uses
tokens to enable computations. The graph is bi-

Figure 1. A finite-state ma- with the amount of money
chine diagram for a gum- that must be put into the
vending machine. The machine to cause that
circles represent states; transition. The price of
each is labeled with the gum from this machine is
amount o f money that has 15c. The Petri net can rep-
been put into the machine resent any finite-state ma-
to get i t into that state. chine, but the opposite is
The arrows represent tran- not true.
sitions; each is labeled

nickel

dime

4.&

release gum, reset

partite because it uses two kinds of nodes called
places and transitions. The graph is directed be-
cause all connections in the graph consist of di-
rected arcs that lead from places to transitions or
from transitions to places. Data entities known as
tokens travel along the arcs and enable computa-
tion (Peterson 1977).

In the Petri net, places symbolize conditions and
transitions represent computations. In addition,
every transition is connected to input and output
places.

The Petri net may be represented graphically us-
ing a Petri net diagram, or textually using a Petri
net table. The primitives of the Petri net diagram
are shown in Figure 2. The diagram is better suited
for human communication, while the table is bet-
ter suited for machine communication. Figure 3
shows an example of a Petri net for a gum machine
represented by both a Petri net diagram (Figure 3a)
and a Petri net table (Figure 3b).

Computer Music [ournal 14

Figure 2. Petri ne t primi- sition, or from a transition
tives. The Petri ne t i s a t o a place. In this article,
bipartite graph, because the transition i s some-
there are t w o types o f t imes represented b y a
nodes: places and transi- straight line, and other
tions. It i s a directed t imes b y a hol low rect-
graph, because all arcs con- angle.
nect from a place t o a tran-

Place Multiple input place

Transition(n I)
*-+m
++

tn 	 Multiple output
place

Transition

The Petri net in Figure 3 represents the same sys-
tem that was modeled with a finite-state machine
in Figure 1. The finite-state machine cannot model
interrupts, and these are present in the example of
a real-time MIDI delay system, shown in Figure 4.
The real-time MIDI delay system is designed to act
like a 3-sec echo box with no decay and some maxi-
mum number of echoes for every MIDI event. This
has advantages over traditional approaches to
achieving a 3-sec delay: there is no noise or decay
in the repeated event, and the number of echoes is
a parameter that may be set by the performer.

The interrupt generated by the user, shown in
Figure 4 by the Mouse-button token, is typical of
user-generated events. User input occurs concur-
rently with the execution of the main body of the
program, and is asynchronous with respect to the
execution of the code.

The Petri net in Figure 4 is depicted as a Petri
table in Figure 5. A fragment of the Pascal language
source code that implements that Petri table is
given in Figure 6. The system from which this ex-
cerpt is taken was developed using Symantec Think
Pascal (Symantec 1991)on an Apple Macintosh
computer. The code was designed to be executed in
a sequential fashion, so it does not enable the han-
dling of true interrupts. Instead, the events are
queued by the operating system and de-queued by
the repeat [. . .] until button main-event loop of the
program. For the case of parallel Pascal, a more di-
rect translation from the Petri net to the code is
possible. The advantage of this approach over the

Figure 3. Petri diagram (a)
and table (b) for a g u m
machine. The price of g u m
is 15c and n o change i s
given. The stochastic Petri
table shows the present
place, nex t place, probabil-
i t y o f transition, token

name , and action caused.
The probability of leaving
state zero is 0.15. The prob-
ability o f remaining i n
state zero i s 1 - 0.15 =

0.85. This example could
be implemented as a Mar-
k o v chain.

-- --

N a m T p@ I
w I P l i

Enabling Tobnr
0.05

I
I

Tramirionr
tl

1 Acliom

1 -
1 Nud Place
1 p2

1% b3 0.05 13 P4
1% p(get gum 14 get gum pl
w PI 0.10 15 ~3
51 u2 0.10 16 fi

finite-state diagram is the explicit use of interrupts
in the highest level of design.

Markov Chains

In this section we present the Markov chain ab-
straction, and show how it can be implemented

Lyon

Figure 4. A Petri net for a Figure 5 . A Petri table for
real-time 3-sec MIDI de- a 3-sec delay This table
lay From any place in the represents the same Petri
Petri net (P1 ...P 71, an in- net shown by the Petri dia-
terrupt in the main-event gram of Figure 4. The
loop m a y be generated by in the last row, second
the user's input of a mouse column of the Petri table
click. Interruvts are hard indicates that the
to implement with finite- mouse-button token will
state machines. cause a jump from any

place in the Petri net.

-even1

end

echo-mar

get event

Figure 4

Figure 5

using transition tables. A Markov chain is a non-
deterministic finite-state machine; it can be repre-
sented by assigning probabilities to the transitions
in the finite-state machine. In addition, the sum of
all the probabilities leaving any Markov state must
be equal to one.

A Markov random process is classified as being
continuous-valued or discrete-valued. For the pur-
pose of selecting pitches from a scale (finite set),we
use the discrete-valued Markov random process
(DVMRPor Markov chain).A Markov chain is a
DVMRP with a countable or finite set of states.

Next Place
P2
P3
P2
p6
P4
P5
P3
P1
P 1
P7
P3
ad

Figure 6. Pascal code for
the 3-sec MIDI delay net.

Name
stan

begin I of main1
rnitialiregrogram;
transition := 1;
repeat

Case transition of
1: Iscan for an event 1
begin
if midi-get(event1 then Ipll
tran~ition :- 2 (got an event1

e15e
transition :- 1:

end: (case 11
2: loutput note I
begin
echo-event (event);
if event.number-of-timesgut < max-echos then
transition : = 3

else
transition := 5;

10k. w e echoed enough times, check the queue for old event31
end: Icase 21

3: (update and start again if any new events occur1
begin
if midi-get (event21 then
transition := 4 la new event occured while we were echoing]

else
tzansition : = 2: lkeep echoing, no new inputs1

end; l case 31
4 :
begin
(event); lkeep old event for later)
u--itelnl'sta$hingold event '1 :
copy-event(event2, event);
tran~itlon :- 2:

end: lcase 41
5 :
begin
if p e m p t y then
transitron := 1 (scan far fresh events1

elSe
transitlo" := 6;

end; [case 51
6 :
begin (queue is not empty so get stashed event and echo it1
remove-q(event1;
rritelnl'removed old event');
transition := 2 ;

end; (case 61
end; Icasel
until button;
QultMidi; ldlscards memory and removes interrupt handlers)

end.

Transitions
11
12
11
15
13
14
12
12
tl
t6
12
t7

The Markov chain satisfies the conditional proba-

Actions
get event

echo event
get event

check if q is empty
get event

store old event
echo event
echo event
get event

get old event
echo event
quit midi

Place
pl
P2
P2
p3
p3
P4
@
P5
p6
p6
P7

bility mass function expression

Enablin~Tokens

event
-event

echo-max
-echoemax

event
-event

-old-event
old-event

mouse button for all x,,...,x, and for all t, < ... < t, and for all n >
0. The value of the random variab1e.k at time t will
determine the conditional probabilities for the fu-
ture process values. The process values are called
the process state, and the conditional probabilities
are called the transition probabilities between the
states. By observing many events, a program com-
putes the probability that X will have a specific
value x at a particular time t. This is denoted
P,(xlt). A ~ a r k o vprocess is stationary if the proba-
bilities are static. For our system, we assume that
the Markov process is stationary because we per-
form off-line analysis.

The transition table of probabilities uses

16 Computer Music Journal

The resulting two-dimensional table represents
the transition probabilities in a first-order Markov
chain, as discussed by Charles Dodge and Thomas
Jerse in their book Computer Music (1985). Like
F. Richard Moore, these authors describe an N +
1 -dimensioned table to represent an Nth order Mar-
kov process. The brute-force approach to the com-
position using Markov chains usually centers upon
the creation of such a transition table.

This table of arc-transition probabilities is usu-
ally sparse, and so it requires a program to perform
access and computation with a large, higher-
dimensioned matrix containing many zero ele-
ments. The probabilities assigned to the arcs may
be arrived at by one of several methods. We use a
technique of statistical analysis of an existing piece
of music and have found this method described in
the literature (Moore 1990).

The order of a Markov process indicates the
amount of event memory that the process has. For
example, a zeroth-order Markov process has no
event memory. A first-order Markov process takes
into account a single "historical" event, and an
Nth-order Markov process takes into account the
last N events.

To perform the analysis of a melody, we create a
list of the pitch classes of the notes. For example,
in the main theme of Louis Bonfils Black Orpheus,
the notes are:

E, C, BI A, A, G#, B, E, E, C, B, A, A, GI B, E, El F,
GI A, D, D, Dl E, F, G, C, C, C, D, E, Fl B, B, C, D,
E , E , C , B , A , A , G # , B , E , E , A # , A , G , G , F , E , A , D ,
D , E , F / G , C , C , D , E , A , G # , E , E , G # , B , A , E , A ,
A, B, C, D, C, B, A1 B, C, D, C, B, A1 B, C, Dl C, BI
A, G.

Converting into a pitch class requires that each
note be assigned a number, for example:

[A A # B C C # D D # E F F # G G #] = [I 2 3 4 5 6 7
8 9 10 11 121.

The Black Orpheus theme then becomes:
8 ,4 ,3 ,1 ,1 ,12 ,3 ,8 ,8 ,4 ,3 ,1 ,1 ,11 ,3 ,8 ,8 ,9 ,11 ,

1, 6, 6, 6, 8, 9, 11, 4, 4, 4, 6, 8, 91 3, 3, 4, 6, 8, 8, 4,
3 ,1 ,1 ,12 ,3 ,8 ,8 ,2 ,1 ,11 ,11 ,9 ,8 ,1 ,6 ,6 ,8 ,9 ,11 ,
4 ,4 ,6 ,8 ,1 ,121818 ,12 ,3 ,1 ,8 ,1 ,1 ,314 ,6 ,4 ,3 ,1 ,
3 , 4 , 6 , 4 , 3 , 1 , 3 , 4 , 6 , 4 1 3 1 1 , 1 1 .

The technique of converting a melody into its cor-
responding pitch class is not new (Winsor 1987).

These notes are hand-written into a file called
no tes , and then read into an array of integers called
note-array by the program.

Assume that a note's occurrence is an indepen-
dent, random event. We have written a procedure
that compiles a table to record the frequency of
occurrence into an array called the pmf-array[i].
Here, PMF is an abbreviation for the probability
mass function. This is a statistical record of the fre-
quency of occurrence of each note in the melody. It
is treated as a discrete probability distribution func-
tion so that

Lyon 17

Figure 7. Code for compu-
tation of the Probability
Mass Function (PMF).

Compute the probability mass function array, pmf-array

randomgick = random(0,l)
sum = 0
i = l

repeat

sum = sum + pmf-array [il
i = i + l

until sum >= randomgick
play-note (i)

must be true.
We use the probability mass function array to

bias our choice of a note by picking a random num-
ber, randomqick from the range of 0 to 1.We then
compute the cumulative mass function by sum-
ming the elements of the probability mass function
array until they exceed the value of randomgick.
This is shown in the pseudocode given in Figure 7.

A first-order Markov process requires that the
transitions be used to compute a transition table
that records the frequency of occurrence of each
note. Each element in the transition table repre-
sents the probability of that note being played. We
compute the elements in the transition table by
summing the number of transitions for each row
and dividing each element in the row by that sum.
This "normalizes" the PMFs so that each row will
add up to one, i.e.,

hi

The transition table for a first-order Markov pro-
cess description of Black Orpheus appears in Figure
8. It is possible to transform this transition table
into a Markov diagram, but the results are clut-
tered. The advantage of using the transition table is
that it provides a compact and convenient form for
representing and programming first-order stochas-
tic processes. Using this technique, an Nth-order
Markov Process requires an N + 1-dimensional
transition table.

Suppose that we wish to compute Markov pro-
cess probability tables from order 0 to 9, and store
the results in the computer's memory. In general,
the number of cells needed in all Nth-order stochas-
tic processes from 0 to 9 involving p pitch classes
has

Figure 8. A transition table
for a fist-order Markov
process. In general, as the
order of the process in-
creases, the sparsity of
the matrix increases. Us-
ing this technique, an
Nth-order Markov pro-
cess requires an N + I -
dimensional transition
table.

elements when all the Nth-order processes are
stored in N + 1-dimensional matrices. For twelve
pitch classes and ninth-order processes, this gives a
value of f(12, 9) = 6.75 x 101°, and any attempt to
reduce this number may be foiled by the introduc-
tion of pathologic data created by an advisory, For
example, a large number of random numbers
(much larger than the number of elements in the
matrices) will eventually fill all the elements in
the matrices with non-zero values. This is some-
times referred to as a zeroth-order stochastic pro-
cess. Nevertheless, it is practical, for low values of
N, to perform the computation as described above.
For example, Figure 9 shows the code needed to
compute the first-order Markov chain for Black
Orpheus.

Using this approach, we can implement a second-
order Markov process using the data structure
shown in Figure 10.

We find, using equation (11, that a ninth-order
stochastic process over a twelve-tone system must
make use of approximately 6.75 x 101° elements.
To make matters worse, using a matrix approach re-
quires that we iterate over zero-valued elements

Computer Music Tournal 18

Figure 9. The pseudocode Figure 10. The data struc-
for computing a fist-order ture for a second-order
stochastic composition. Markov array.

procedure compute-1st-order

begin

subtract the order number to keep
the window from exceeding the number
of notes -- number-of-notes - order,
note, the number-of-notes > order
with notes do

for each (notel and note2) in

(note-array [i] and

note-array[i+l])

do

increment the

number-of-2nd-order-event

[notel, note21

normalize the probabilities

in the 1st-order matrix

end (compute first-order)

procedure play-first-order-

stochastic note
-

begin
pick = random(0,l)
use the current row to perform a

biased choice

play the choice and store the

next element

end {play-first-order-stochastic-note)

Figure 10

when computing the cumulative mass function.
One objective-a prerequisite for the interactive
realization of Markov processes on small comput-
ers-is to minimize the time it takes to compute a
branch between nodes in the Markov chain.

Algorithms are known (Press et al. 1992) that im-
plement sparse matrices, which require space pro-
portional to the number of elements. These sparse-
matrix approaches reduce the amount of space
needed, but cannot address the issue of execution-
time reduction. Since many visited states have zero
probability (using the matrix approach), the time
that the program takes to compute a branch cannot
be predicted. We have found that this creates un-
even playback of the Markov chain in real-time per-
formance. This is a primary motivation for our ap-
proach, which has space requirements that are
linear in the number of Markov states.

Stochastic Petri Nets

The Petri net approach removes the zero elements
in the transition table. The Petri table for the first-
order stochastic process shown above appears in Fig-
ure 1 1. The program shown in Figure 13 imple-
ments a second-order Markov process using a Petri
net. Transition probabilities are defined as the con-

Figure 1 1. A fragment of a Figure 12. The file format
first-order Petri net table. for the stochastic Petri
Removal of the zero ele- table. The columns appear
ments in the Markov table in the order place,
reduces the branch- probability, next-
computation time. The place.
number of rows is equal to
the number of transitions.

Figure 11

Figure 12

ditional probabilities for moving between pairs of
states.

To implement the Petri table and take full advan-
tage of the fact that the number of elements in the
table is linear with respect to the number of transi-
tions in the stochastic process, we need to write a
program that can read Petri tables directly. First we
establish a Petri table file format for a Markov
chain that is stored as [place, probabi 1 i ty,
next-place].This file format is illustrated in
Figure 12.

The Pascal data structure used to store the Petri
net, with the next states and their probabilities, is
defined in Figure 13. The pseudocode in Figure 14
plays a row in the Petri table. Here, CMF stands for
the cumulative probability mass function (com-
puted by summing the probabilities of each of the
transition arcs). To better understand the program,
consider the Petri table shown in Figure 12. To play
one row, we first pick a pseudorandom number
from 0 to 1, inclusive. We then step from one row
of the Petri table to the next until the cumulative
mass function exceeds our probability pick. When

Lyon 19

Figure 13. Declaration of Figure 14. Code to play
the stochastic Petri table notes using the Petri table.
data type.

type (Petri-markov data types)

(Data type used for the rows of the table in Figure 12 1

petri-row-record = record

place: integer;

probability: real;

nextglace: integer;

end; (petri-row-record]

row-array-type = array[l..351 of petri-row-record;

(Data type used for the Petri table I
petri-type = record

row-array: row-array-type;

number-of-rows: integer;

currentglace: integer;

end; (petri-array-type)

[Declare one table)

va r
petri: petri-type;

this occurs, we take the transition to the place that
corresponds to the row at which we stogped.

In case the cumulative mass function does not
add up to one (due to round-off error), we provide
a compound conditional test in the w h i l e loop,
((place-name = place) and (cmf < p r o b s i c k)) ,

that keeps us within the Petri table row.
The Petri table is a faster method for realizing

Markov chains than the Markov table, because of
the elimination of the zero elements. It would be
even faster to store the cumulative mass function,
rather than the probability mass function. This
saves a floating-point addition as the program iter-
ates over each element in the Petri table. The tran-
sition matrix requires 144 real numbers for a first-
order Markov process. The Petri table needs only
66 integers and 33 reals. Assuming that an integer
is 2 bytes long and that a real is 4 bytes, there are
144 x 4 bytes per real, or 576 bytes used for the
Markov transition table and 66 x 2 + 33 x 4 = 264
bytes for the Petri table. This saving grows as an
exponential function of the order of the Markov
process.

Suppose we use the Black Orpheus example to
compute a second-order Markov chain. To speed ex-
ecution and eliminate the sparse matrices, we use a
Petri net. A partial Petri net implementation for
this Markov chain is shown in Figure 15. Here, we
note that each of places has a transition probability
that sums to one. Let R be the row number of the
Petri table, and N1, N2, and N3 represent note 1,

procedure playgetri-row (var petri: petri-type);

(play one row in the petri-table implementation

of the first order Markov chain)

va r

i: inteuer;

place-name: integer;

crnf: real:

probgick: real; (a number between 0 and 1)

while-loop-not-done: boolean;

begin

(compute the cumulative probability mass function)
cmf = 0;
probgick = random(0,l)
(Until we exit)

while-loop-not-done := true;

with petri do

begin

i := currentglace;

place-name := row-array[il.place;

with row-array [il do

begin

while (place-name = place)

and (cdf < probgick) do

begin

(Sum up the probabilities into the CMF)

crnf := crnf + probability;

i := i t 1; (move to next row)

end; (while place-name)

(Play the chosen note 1
make-tone(sca1e-arrayli], tone-time);
currentglace := nextglace;
end; [with row-array[il)

end; [with petri)

end; [playgetri-row)

note 2, and note 3. Pijk is the probability that note
k will occur given the occurrence of notes i and j .
A partial Petri table for this is shown in Figure 16.

We have found that, for the Black Orpheus ex-
ample, there are 378 elements in a forth-order Petri
table. If a forth-order transition table were used, it
would need 1 l5= 161,051 elements, about 426
times more storage. Such improvements must be
viewed with cautious optimism-more experimen-
tation is needed.

To play such a table, a program must jump to a
row, given two notes. A procedure picks a uni-
formly distributed random number that varies from
0 to 1 (called r, created using a linear congruential
random number generator with a long period) (L1Ec-
uyer, Blouin, and Couture 1993). The procedure
then sums the probabilities to form the cumulative
mass function. When the CMF exceeds r, the value
for the next state, k , is obtained. For example, sup-

Computer Music Journal 20

Figure 15. A partial sto- Figure 16. A partial sto-
chastic Petri net. The tran- chastic Petri table. R is
sition probabilities are the row number of the
shown on each arc. They table. N1 and N2 are two
indicate the probability of notes in the history of the
the occurrence of a token. Markov chain. N3 is the

next note in the chain and
Pijk is the probability that
N3 will occur given the oc-
currence of notes N1 and
N2.

D4 p10 p3 PlO p l 0

Figure 15

R N1 N2 N3 Pijk
1 1 1 3 0.25
2 1 1 10 0.25
3 1 1 11 0.50
4 1 3 4 1.00
5 1 6 6 1.00
6 1 8 1 1.00
7 1 10 3 0.50
8 1 10 10 0.50
9 1 11 3 0.67

10 1 11 8 0.33
11 2 1 10 1.00
12 3 1 1 0.43
13 3 1 3 0.29
14 3 1 8 0.14
15 3 1 10 0.14
16 3 3 4 1.00
17 3 4 6 1.00
18 3 8 8 1.00

Figure 16

pose r = 0.30. Starting on row 1 in Figure 16, add-
ing P,,,,,+ P ,,,,,,+ P ,,,,,,= 0.50 > 0.30. In Petri net
parlance, k is a token that appears with a given
probability. Note N1 becomes the old N2, N2 be-
comes the old N3, and N3 takes on the value of the
nextqlace,or, N1 tN2 tN3 tnextqlace. For
added efficiency, an array (called the indirection
array) gives us a pointer to the beginning of the list

Figure 17. An indirection
array The first element
indicates the next note's
pitch class. The second ele-
ment points to the first
row in the Petri table
where the pitch class m a y
be found. This keeps the
procedure from having to
perform a search for the
next pitch class.

of places that start with note number one. An ex-
ample indirection array is shown in Figure 17.

We have implemented fifth-order stochastic pro-
cesses using Petri nets. After that, the 100-note ex-
ample tends to be deterministic. With the ability to
alter the order of stochastic control, in real time,
the author has been able to obtain playback at a
rate of 180 notes per sec. This rate was measured
on an Apple Macintosh PowerBook 165 (which
uses a Motorola MC68030 processor running at 33
MHz with no math coprocessor) with sequentially
changing orders of stochastic control (3, 4, and 5)
over a 10-sec interval. Since fifth-order stochastic
control is almost deterministic (for our example)
it takes very little time to compute the branch (on
average).

Conclusion

We have shown the stochastic Petri net paradigm
may be used to create an efficient method for com-
puting real-time Markov chains for composition
and real-time interaction. We have also used the Pe-
tri net paradigm to show how concurrent asynchro-
nous user inputs may be specified in a high-level
manner. The use of stochastic Petri nets to perform
real-time Marlzov processes is, as far as we know,
novel.

In the future, we could eliminate the computa-
tion of the cumulative mass function by storing the

Lyon 21

cumulative mass function rather than the probabil-
ity mass function. This would save the cost of one
addition during the branching computation. In addi-
tion, we think that the pre-computation of the sto-
chastic Petri table could be made faster than the
present implementation.

This author believes that the Markov chain
method of computation may be useful in the areas
of network protocol simulation, parallel computer
simulation, animation, and computer-assisted
dance. On this topic, as on many others relating to
the use of stochastic Petri nets in the arts, much
work remains to be done.

The source code and Macintosh-compiled version
of the program described in this article are avail-
able from the Computer Music Journal's World-
Wide Web site in the directory with the uniform re-
source locator ftp://www-mitpress.mit.edu/pub/
Computer-Music- Journal/Code/Lyon.

Acknowledgments

Special thanks go to Julius Dichter, for his careful
proofreading. Thanks also go to Stephen Travis
Pope and the Computer Music Journal referees for
their encouragement and suggestions.

This project was made possible, in part, by an In-
strumentation Laboratory Improvement grant from
the National Science Foundation, DUE-945 1520,
and by a Larsen Professor grant from the Larsen
Fund.

I would also like to thank the people who built
the Video Synthesis Laboratory at Rensselaer Poly-
technic Institute (RPI). It was through their volun-
teer efforts that an experimental electronic music
facility first appeared at RPI. Major contributions
were made by Tom DeWitt, Aaron Heller, Jim Hill,
Danny Rosenberg, Chris Shenton, Dean Winkler,
and others. I would also like to thank Joel Chadabe

for allowing me to use the Electronic Music Studio
at the State University of New York at Albany.

Finally, I wish to acknowledge the debt I have to
the late Mike Torello, who died while this article
was being written. Co-performer/co-composerand
friend, Mike's influence and enthusiasm were infec-
tious. He continues to be missed.

References

Alles, H. G. 1977. 'A Portable Digital Sound Synthesis
System." Computer Music Tournal 1(4]:44-49.

Batish, S. D., and A. Batish. 1989. Ragopedia Volume I.
1316 Mission St., Santa Cruz, California 96060: Batish
Publications.

Dodge, C., and T. Jerse. 1985. Computer Music. New
York: Schimer.

Katz, R. 1994. Contemporary Logic Design. New York:
Benjamin/Cummings.

LIEcuyer, P., F. Blouin, and R. Couture. 1993. 'A Search
for Good Multiple Recursive Random Number Genera-
tors." ACM lkansactions on Modeling and Computer
Simulation 3(2):87-98.

Moore, F. R. 1990.Elements of Computer Music. Engle-
wood Cliffs, New Jersey: Prentice-Hall.

OtHaver, T. 1978. "More Music for the 6502." Byte
3(6]:140-141.

Peterson, J. 1977. "Petri Nets." ACM Computing Surveys
9(3):223-252.

Press, W., et al. 1992. Numerical Recipes in C. Cam-
bridge, UK: Cambridge University Press.

Ralston, A. 1983. Encyclopedia of Computer Science and
Engineering, 2nd. ed., New York: Van Nostrand
Reinhold.

Schwanauer, S., and D. Levitt. 1993. Machine Models of
Music. Cambridge, Massachusetts: MIT Press.

Symantec Corporation. 1991. Think Pascal User Manual.
Cupertino, California: Symantec.

Winsor, P. 1987. Computer-Assisted Music Composition.
Princeton, New Jersey: Petrocelli.

Computer Music Journal

ftp://www-mitpress.mit.edu/pub/

